用户名: 密码: 验证码:
载流摩擦磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步,社会经济的发展,人类探索领域的不断扩大,遇到了众多特殊工况下的摩擦学问题,高速电气化铁路系统的受流是典型的载流条件下的特殊摩擦磨损问题,目前尚未见到地铁中使用的钢铝复合式第三轨和受电靴的载流摩擦磨损特性及机理的研究。
     本文通过对销-盘摩擦磨损试验机的夹具和控制部分进行改进,研制了载流摩擦磨损试验装置,并用其首次试验研究了地铁钢铝复合式第三轨与受电靴摩擦副之间的载流摩擦磨损特性。采用扫描电子显微镜(SEM)、电子能谱仪(EDX)、X射线衍射分析仪(XRD)、和表面轮廓台阶仪等微观手段,系统研究了电流、速度、极性、法向压力等对钢铝复合式第三轨与受电靴摩擦副之间的载流摩擦磨损特性,揭示了摩擦副的磨损机制;试验还在CETRUMT-2试验机上用自行设计的夹具,研究了支撑刚度对载流摩擦磨损特性的影响。研究得到的主要结论和结果如下:
     1、随着电流和速度的增大,磨损体积损失相应增大;电流、法向压力和速度等的综合作用导致摩擦表面的温升,是影响载流摩擦副的摩擦磨损特性的重要因素,相应于温度增大,磨损体积损失增大;表面过渡层中的水膜电解出的氧离子导致受电靴材料的结合力削弱,表面逐渐疲劳而破坏,受电靴接正极时的磨损量略大于接负极时的磨损量;表面轮廓分析表明,钢铝复合轨的磨损量随着速度的增大略有增大,但磨损量比受电靴的销试样小得多,只在微米量级。随着电流的增大,摩擦系数出现较小范围内的波动,有先增大然后减小的趋势;随着速度的增大,摩擦系数减小;不同极性条件下摩擦系数都比较接近,受电靴接正极时的摩擦系数略微较接负极时大。
     2、载流时摩擦系数随着法向压力的增大呈现出增大的趋势,而无电时摩擦系数随着法向压力的增大呈现出减小的趋势。载流磨损体积损失随着法向压力的增大均呈现出现先快速减小而后缓慢增大的“U”形变化趋势,发现存在一个最佳法向压力,此压力下的磨损体积损失最小,且随着速度的增大最佳法向压力相应增大。建立的磨损量-法向压力-速度三维关系模型(W-F-Vmodel)能与实际的试验结果较好的吻合,它对于载流摩擦磨损系统磨损的定量预测,对于最优磨损条件的确定等都具有积极的意义。地铁第三轨受流时,对应于一定的运行速度,最佳法向压力是最佳的工作压力,此时既能保证顺利受流,又能使得摩擦副材料总损失量较小,从而对确保行车安全,降低维护频率,节约地铁运行成本等都有一定的实用价值。
     3、钢铝复合轨和受电靴的受电磨损机制主要是机械磨损和电气磨损,四种机械磨损机制分别为粘着磨损、磨粒磨损、氧化磨损和疲劳磨损。电气磨损和机械磨损相互加强,电弧烧蚀导致了比机械磨损大得多的磨损,磨损过程表现为多种机制综合作用的结果。
     4、变支撑刚度试验结果表明:加载系统的支撑刚度对载流摩擦磨损有影响,不同的支撑刚度条件下,随着载荷降低,载荷的振幅均增大,且弹性加载的载荷振幅总体上小于刚性加载;对变形能的试验揭示了弹簧的摩擦耗能与变形能的比值越大,吸振能力越强,载流磨损量越小。实际载流工况中,采用合理的支撑刚度加载,能较好地降低载荷的振幅,减少电弧烧蚀,保证良好的受流。
     5、基于摩擦学的三公理,建立了载流摩擦磨损系统构成图和系统过程图,以及载流摩擦磨损电传导电路模型,为载流摩擦磨损的研究奠定了分析基础,能较好的解释电因素对摩擦磨损的作用。研究结果在很大程度上丰富对载流摩擦磨损的研究,对接续的研究工作具有重要的意义。
With the progress of science and technology, the development of the economy, and the expansion of exploration field, human being comes across a lot of peculiar working condition tribology problem. Power supply of high speed electric railway is a typical peculiar tribology problem; however the research concerning tribological characteristics of aluminum-stainless steel composite conductor rail and collector shoe used in subway third rail traction system has not been reported so far.
     In this paper, a new tester by modifying the jigs and the control system of conventional pin-on-disc apparatus has been developed. The friction and wear characteristics of aluminum-stainless steel composite conductor rail and collector shoe have been investigated on the tester with electrical current applied across the sliding interface. The morphologies of worn surfaces have been observed and analyzed by means of scanning electron microscope (SEM) and energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD), and surface profilometer, etc. The tribological characteristics of aluminum-stainless steel composite conductor rail and collector shoe under different electric current, sliding speed, polarity, and normal force have been tested systematically. Effects of bracing stiffness on the friction and wear with electrical current also have been investigated on the modified rig of CETR UMT-2 tester. The main obtained results and conclusions in this dissertation are as follows:
     1. The results show that the wear volume loss decreases with the increase of electric current and velocity. The current, normal force and sliding speed induce the temperature rises between the friction parts, and these are the key factors influence the friction and wear characteristics. The wear volume loss increases with the rising of temperature. The electrical wear loss has bearing on polarity. Water molecule adsorbed by sliding contact surface decomposed into hydrogen and oxygen ion under the influence of electrical field. The oxidation reaction occurred bewteen positive metal ions (or carbon ions) and negative oxygen ion weakened the bond bewteen the grains in the surface layer. The wear volume loss of a positive collector shoe is larger than that of a negative collector shoe. Surface profile analyse shows that wear volume losses of aluminum-stainless steel composite conductor rail increase with the increase of sliding speed, but the losses are under micron level, which are much less than wear volume losses of the collector shoe. With the increae of current, the friction cofficients fluctate under the less range, with the trend of first enhancing and then diminishing. the friction cofficients decrease with the increase of sliding speed, and nearly equal under different polarity.
     2、The friction cofficients increase with the increase of normal force under the current, but decrease with the increase of nomral force without current. With the increase of normal force, the electrical wear volume loss firstly decreases greatly then increases slightly in the shape of U. The experiment results show that a optimum normal force exists in friction and wear with electric current, the wear volume loss is least under the optimum normal force, and the optimum normal force increase with the increase of sliding speed. On the basis of tests and analyses, a three demension W-F-V (Wear volume loss-Normal force-Velocity) model are established. The model is fairly fitting of actual test results, and is valuable in the prediction of wear loss under current and the choice of optimum frictional condition. In the real working condtion of three rail, working under the the optimum normal force makes electrical power supply stable and wear loss much less, reduces maintenance frequency, ensures driving safety, and saves subway running cost.
     3、Mechanical wear and electric wear are major wear mechanism in the friction and wear between aluminum-stainless steel composite conductor rail and collector shoe. The mechanical wear includes adhesive wear, abrasive wear, oxidative wear, and fatigue wear in the tests. Mechanical wear and electric wear enhance mutually, and wear losses caused by electric arc erosion is much larger than those caused by mechanical wear. The wear process shows the results of being a synthetical effect by various mechanisms.
     4、Tests show that bracing stiffness of loading system has effect on the on the friction and wear with electrical current. Under different bracing stiffness, vibration amplitude of normal force increased with decreasing of the normal force, however, vibrations from the elastic system exhibited less than those from the rigid system. Spring's ratio of frictional energy to deformation energy has relation with the mass loss of the pair. If the ratio is larger, the wear loss is less. In working condition, selection of appropriate range of normal force and stiffness of spring is necessary to decrease the wear loss induced by arc erosion.
     5、Based on the three Axioms in Tribology, a system structure map, a system process map, and a electric circuit model are established. These results have established the analytical basis for research in friction and wear with electric current and are significant for the future research.
引文
[1]周仲荣,雷忠源,张嗣伟.摩擦学发展前沿.北京:科学出版社,2006
    [2]T.A.Taylor,B.W.Thompson,W.Aton.High speed rub wear mechanism in IN-718 vs.NiCrAl-Bentonite.Surface and Coatings Technology,2007,202(4-7):698-703
    [3]S.G.Jia,P.Liu,F.Z.Ren,B.H.Tian,M.S.Zheng,G.S.Zhou.Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways.Wear,2007,262(7-8):772-777
    [4]Y.Su,N.He,L.Li,X.L.Li.An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V.Wear,2006,261(7-8):760-766
    [5]G.Kim,B.Kim,S.Lee.High-speed wear behaviors of CrSiN coatings for the industrial applications of water hydraulics.Surface and Coatings Technology,2005,200(5-6):1814-1818
    [6]S.Taktak,S.Ulker,I.Gunes.High temperature wear and friction properties of duplex surface treated bearing steels.Surface and Coatings Technology,2008,202(14):3367-3377
    [7]R.Rodriguez-Baracaldo,J.A.Benito,E.S.Puchi-Cabrera,M.H.Staia.High temperature wear resistance of(TiAl)N PVD coating on untreated and gas nitrided AISI H13 steel with different heat treatments.Wear,2007,262(3-4):380-389
    [8]J.Hardell,B.Prakash.High-temperature friction and wear behaviour of different tool steels during sliding against Al-Si-coated high-strength steel.Tribology International,In Press,Corrected Proof:3377
    [9]Y.-t.Xi,D.-x.Liu,D.Han.Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature.Surface and Coatings Technology,2008,202(12):2577-2583
    [10]W.Hubner,A.Pyzalla,K.Assmus,E.Wild,T.Wroblewski.Phase stability of AISI 304 stainless steel during sliding wear at extremely low temperatures.Wear,2003,255(1-6):476-480
    [11]M.Hua,W.Xicheng,L.Jian.Friction and wear behavior of SUS 304 austenitic stainless steel against Al2O3 ceramic ball under relative high load.Wear,In Press,Corrected Proof:
    [12]P.Samyn,G.Schoukens.The effect of processing method on dry sliding performance of polyimides at high load/high velocity conditions.European Polymer Journal,2008,44(3):716-732
    [13]李鹏,杜三明,孙乐民,张永振.载电条件下铬青铜/纯铜摩擦副摩擦磨损性能研究.摩擦学学报,2003,(3):250-252
    [14]I.T.Landly.Contact Wire wear on electric railroad.AIEE,1929,10:756-759
    [15]H.Zaidi,K.J.Chin,J.Frene.Analysis of surface and subsurface of sliding electrical contact steel/steel in magnetic field.Surface and Coatings Technology,2001,148(2-3):241-250
    [16]H.Zhao,G.C.Barber,J.Liu.Friction and wear in high speed sliding with and without electrical current.Wear,2001,249(5-6):409-414
    [17]S.Kubo,K.Kato.Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current.Wear,1998,216(2):172-178
    [18]D.H.He,R.Manory,H.Sinkis.A sliding wear tester for overhead wires and current collectors in light rail systems.Wear,2000,239(1):10-20
    [19]M.Milkovic,D.Ban.Influence of the pulsating current amplitude on the dynamic friction coefficient of electrographite brushes.Carbon,1996,34(10):1207-1214
    [20]Z.Chen,P.Liu,J.D.Verhoeven,E.D.Gibson.Electrotribological behavior of Cu-15 vol.%Cr in situ composites under dry sliding.Wear,1997,203-204:28-35
    [21]D.H.He,R.Manory.A novel electrical contact material with improved self-lubrication for railway current collectors.Wear,2001,249(7):626-636
    [22]C.R.F.Azevedo,A.Sinatora.Failure analysis of a railway copper contact strip.Engineering Failure Analysis,2004,11(6):829-841
    [23]张敏,凤仪.电流对碳纳米管-银-石墨复合材料摩擦磨损性能的影响.摩擦学学报,2005,(4):328-332
    [24]Z.Chen,P.Liu,J.D.Verhoeven,E.D.Gibson.Tribological behavior of Cu---20%Nb and Cu---15%Cr in situ composites under dry sliding conditions.Wear,1996,199(1):74-81
    [25]P.L.Hurricks.The effect of applied voltage on the frictional behavior of carbon black filled elastomers.Wear,1979,52:365-380
    [26]岩井邦昭,本本好夫,高桥赏.Relationship between tribology characteristics and induced voltage,alternating field in ring-rod-type dry wear test.日本机械学会论文集,59(562):1899-1905
    [27]陈仁际,翟文杰.用外加电压控制摩擦力的机理与技术:Ⅱ.外加电压对摩擦力和的研究.摩擦学学报,1996,(3):235-238
    [28]郝广平,翟文杰,等.外加电压对边界润滑下钢/铜摩擦副摩擦磨损的影响.润滑与密封,2003,(2):37-38
    [29]翟文杰,山本雄二.外加电场对边界润滑条件下钢-钢摩擦副摩擦磨损性能的影响.摩擦学学报,2000,(6):435-438
    [30]朱润生,张建斌.滑动摩擦主动控制的试验研究.摩擦学学报,1999,(4):311-315
    [31]蒋洪军,孟永钢.电场对Al2O3/Cu摩擦磨损特性的影响及其机理研究.中国科学:E辑,1998,(6):491-498
    [32]蒋洪军,孟永钢.外加电压对三氧二铝/黄铜摩擦副摩擦的主动控制试验研究.摩擦学学报,1999,(3):244-249
    [33]蒋洪军,孟永钢.外加电场对3种陶瓷/金属摩擦副摩擦行为的影响.中国机械工程,1999,(7):785-789
    [34]M.K.Muju,A.Ghosh.Effect of magnetic field on the difussive wear of cutting tools.Wear,1980,58:137-145
    [35]M.K.Muju,A.Radhakrishna,.Wear of non-magnetic materials in the presence of a magnetic field.Wear,1980,58:49-58
    [36]Y.Yamamoto,S.Gondo.Effect of a magnetic field on boundary lubrication.Trib Int,1987,20(6):342-346
    [37]董祥林,陈金荣.磁场对金属摩擦磨损影响的研究及展望.材料科学与工程,2000,(1):116-120,188
    [38]董祥林,简小刚.磁场对中碳钢滑动摩擦磨损的影响.金属学报,1999,(6):571-580
    [39]H.Zaidi,L.Pan,D.Paulmier,F.Robert.Influence of a magnetic field on the wear and friction behaviour of a nickel/XC 48 steel couple.Wear,1995,181-183(Part 2):799-804
    [40]H.Zaidi,A.Senouci.Influence of magnetic field on surface modification and the friction behavior of sliding couple aluminium/XC 48 steel.Surface and Coatings Technology,1999,120-121:653-658
    [41]A.Senouci,H.Zaidi,J.Frene,A.Bouchoucha,D.Paulmier.Damage of surfaces in sliding electrical contact copper/steel.Applied Surface Science,1999,144-145:287-291
    [42]A.Senouci,J.Frene,H.Zaidi.Wear mechanism in graphite-copper electrical sliding contact.Wear,1999,225-229(Part 2):949-953
    [43]S.Kubo,K.Kato.Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk.Tribology International,1999,32(7):367-378
    [44]H.Nagasawa,K.Kato.Wear mechanism of copper alloy wire sliding against iron-base strip under electric current.Wear,1998,216(2):179-183
    [45]胡道春,孙乐民,上官宝,张永振.紫铜/铬青铜摩擦副在干摩擦和水雾条件下的载流摩擦磨损性能研究.润滑与密封,2007,(11):105-107
    [46]H.Zaidi,E.Csapo,H.Nery,D.Paulmier,T.Mathia.Friction coefficient variation in a graphite-graphite dynamical contact crossed by an electric current.Surface and Coatings Technology,1993,62(1-3):388-392
    [47]E.Csapo,H.Zaidi,D.Paulmier,E.K.Kadiri,A.Bouchoucha,F.Robert.Influence of the electrical current on the graphite surface in an electrical sliding contact.Surface and Coatings Technology,1995,76-77(Part 2):421-424
    [48]D.Paulmier,M.El Mansori,H.Zaidi.Study of magnetized or electrical sliding contact of a steel XC48/graphite couple.Wear,1997,203-204:148-154
    [49]王观民,张永振,杜三明,刘维民.不同气氛环境中钢/铜摩擦副的高速干滑动摩擦磨损特性研究.摩擦学学报,2007,(4):346-351
    [50]王观民,张永振,杜三明.二氧化碳气氛下钢铜摩擦副摩擦磨损特性研究.润滑与密封,2007,(2):66-68
    [51]王观民,张永振,杜三明.两种不同气氛下钢铜摩擦副摩擦磨损特性研究.热加工工艺,2006,(24):8-11
    [52]A.Bouchoucha,H.Zaidi,E.K.Kadiri,D.Paulmier.Influence of electric fields on the tribological behaviour of electrodynamical copper/steel contacts.Wear,1997,203-204:434-441
    [53]凤仪,陶宁,等.压力对碳纤维-铜-石墨复合材料电磨损性能的影响.矿冶工程,2001,(1):74-76
    [54]D.Hai He,R.R.Manory,N.Grady.Wear of railway contact wires against current collector materials.Wear,1998,215(1-2):146-155
    [55]戴利民,刘越,等.受电弓滑板受流摩擦中体温升的模拟计算分析.铁道学报,2002,(5):56-61
    [56]戴利民,林吉忠,等.滑板材料受流摩擦时接触点瞬态温升对磨损性能的影响.中国铁道科学,2002,(2):111-117
    [57]戴利民,丁新华,等.铝包覆浸金属碳滑板材料受流磨损性能的试验研究.铁道机车车辆,2002,(3):22-24
    [58]徐屹,凤仪,王松林,张学斌,沈剑.电流密度对CNTs-Ag-G复合材料接触电压降和磨损性能的影响.摩擦学学报,2006,(5):484-488
    [59]徐屹,凤仪,王松林,张学斌,沈剑.碳纳米管-银-石墨复合材料的电磨损性能.机械工程学报,2006,(12):206-210,217
    [60]D.H.He,R.R.Manory,N.Grady.Wear of railway contact wires against current collector materials.Wear,1998,215(1-2):146-155
    [61]松山晋作.受电弓的受流摩擦学.电力牵引快报,1997:52:60
    [62]马沂文,陈宏和,张陆军.地铁车辆铁制受流靴的研制.机车电传动,2004.4:
    [63]马沂文,白秀梅.城市轨道交通供电接触网类型的比较.城市轨道交通研究,2003,(1):20-24
    [64]于松伟.我国地铁接触轨技术发展综述与研发建议.都市快轨交通,2004,17(2):6-11
    [65]马沂文.我国地铁发展概况.电力机车与城轨车辆,2003,(1):52-52
    [66]赵焱.钢铝复合接触轨上部受流技术.铁道建筑,2004,7:90-91
    [67]邢甲第,吴文军.钢铝复合接触轨的典型结构及其制造工艺.城市轨道交通研究,2004,7(4):71-74
    [68]邢甲第,李玉芹.钢铝复合导电轨的性能与应用.城市轨道交通研究,2003,6(4):80-82
    [69]余梦华.武汉市轨道交通的接触轨系统[J].城市公共交通,2003,4:31-32
    [70]金鹏,朱晓军.钢铝复合轨在北京地铁5号线工程中的应用研究.铁道标准设计,2007,10:75-78
    [71]龚文涛.钢铝复合接触轨在广州地铁4号线的应用.都市快轨交通,2007,20(3):82-85
    [72]程强.广州地铁4号线牵引网形式的选择.城市轨道交通研究,2006,9(7): 14-15,18
    [73]汪涤吾.钢铝复合接触轨的使用研究.地铁与轻轨,2001,3:22-24
    [74]杨连发,郭成,程羽,邢建东,邢甲第.塑性成形技术在钢铝复合导电轨制造中的应用及发展趋势.塑性工程学报,2004,11(4):9-15
    [75]杨连发,郭成,程羽,刘洪伟.钢铝复合导电轨制造技术的探讨.中国铁道科学,2004,25(6):103-108
    [76]马沂文.地铁牵引供电的刚性接触网.电气化铁道,2002,4:38-40
    [77]胡建红,陈敬超,李强,阎杏丽.电力机车用滑动集电材料的研究及其选用.电工材料,2004,1:38-42
    [78]马行驰,何国求,陈成澍,何大海,胡正飞.现代轨道交通摩擦集电材料及相关载流摩擦磨损研究进展.材料导报,2007,21(3):63-66
    [79]刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993
    [80]余俊,徐真,等.摩擦学.湖南:湖南科学技术出版社,1983
    [81]董霖,陈光雄,朱旻昊,周仲荣.地铁钢铝复合式第三轨/受电靴载流摩擦磨损特性研究.摩擦学学报,2007,(3):274-278
    [82][日]碳素材料学会编.电机用电刷及其使用方法.北京:机械工业出版社,1976
    [83][日]大森丰明.电接触材料手册.北京:机械工业出版社,1987
    [84]杨于兴.X射线衍射分析.上海:交通大学出版社,1994
    [85]贾淑果,郑茂盛,刘平,任凤章,田保红,周根树.在加载电流作用下Cr 对Cu-Ag合金磨损性能的影响.摩擦学学报,2005,(5):484-488
    [86]贾淑果,郑茂盛,刘平,任凤章,田保红,周根树.Cu-Ag-Cr合金电摩擦性能研究.功能材料,2006,(4):658-662
    [87]R.Holm.Electric contacts theory and application.Berlin:Springer,1967
    [88]宋正芳.电机电刷的应用与维护.黑龙江:黑龙江科学技术出版社,1984
    [89]李恒政,童文俊,杨志懋,丁秉钧.炭滑板的石墨化度对电弧烧蚀速率的影响.炭素,2006,(1):23-26,11
    [90]A.Bouchoucha,S.Chekroud,D.Paulmier.Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper-stainless steel.Applied Surface Science,2004,223(4):330-342
    [91]A.Bouchoucha,E.K.Kadiri,F.Robert,H.Zaidi,D.Paulmier.Metals transfer and oxidation of copper--steel surfaces in electrical sliding contact.Surface and Coatings Technology,1995,76-77(Part 2):521-527
    [92]L.Dong,G.X.Chen,M.H.Zhu,Z.R.Zhou.Wear mechanism of aluminum-stainless steel composite conductor rail sliding against collector shoe with electric current.Wear,2007,263(1-6):598-603
    [93]董霖,李丰学,陈光雄,周仲荣.有无电流工况下钢铝复合轨/受电靴的摩擦磨损特性.润滑与密封,2006,(6):36-38
    [94]李鹏,张永振,李健,孙乐民,杜三明.载流条件下铬青铜/纯铜摩擦副摩擦磨损性能研究.润滑与密封,2007,(2):1-3
    [95]李鹏,张永振,等.有无电流条件下铬青铜/纯铜摩擦副摩擦磨损性能.润滑与密封,2003,(2):56-57
    [96]翟文杰,陈仁际.用外加压控制摩擦力的机理与技术:Ⅰ.摩擦自生电势与摩擦力的相关性研究.摩擦学学报,1996,(1):1-5
    [97]A.Gangopadhyay,G.Barber,H.Zhao.Tool wear reduction through an externally applied electric current.Wear,2006,260(4-5):549-553
    [98]李丰学,陈光雄,朱曼吴.两种受电靴材料与不锈钢带电接触摩擦磨损特性的试验研究.润滑与密封,2007,(2):13-15,18
    [99]K.J.Chin,H.Zaidi,M.T.Nguyen,P.O.Renault.Tribological behavior and surface analysis of magnetized sliding contact XC 48 steel/XC 48 steel.Wear,2001,250(1-12):470-476
    [100]I.Yasar,A.Canakci,F.Arslan.The effect of brush spring pressure on the wear behaviour of copper-graphite brushes with electrical current.Tribology International,2007,40(9):1381-1386
    [101]K.Kato,A.Iwabuchi,T.Kayaba.The effects of friction-induced vibration on friction and wear.Wear,1982,80(3):307-320
    [102]邱宣怀.机械设计.北京:高等教育出版社,1996
    [103]谢友柏.摩擦学的三个公理.摩擦学学报,2001,(3):161-166
    [104]郑林庆.摩擦学原理.北京:高等教育出版社1994
    [105]程礼椿.电接触理论及应用.北京:机械工业出版社,1985
    [106]S.N.波斯特尼苛夫.摩擦和切削及润滑中的电物理和电化学现象.北京:国防工业出版社,1983
    [107]王其平.电器电弧理论.北京:机械工业出版社,1989
    [108]张冠生.电器理论基础.北京:机械工业出版社,1989
    [109]许实章.电机学.北京:机械工业出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700