用户名: 密码: 验证码:
微尺度形貌修饰硅表面的摩擦特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微机电系统(MEMS)中,由于尺寸效应和表面效应,微构件间的摩擦成为影响MEMS性能和可靠性的关键。通过微观表面形貌修饰来揭示与控制微构件的摩擦行为成为MEMS摩擦学设计的研究方向之一。本文在硅材料表面进行了微观形貌修饰,并在纳米到微米尺度下对其摩擦行为进行了实验研究和理论分析。
     由于现有的摩擦测试手段与MEMS实际工况相差甚远,作者研制了一台分辨率为8μN的微摩擦测试实验装置,可以控制不同的相对湿度,测量法向载荷为0.6-5mN范围内的球-面接触和面-面接触黏着力和摩擦力,论文利用该仪器研究了微形貌修饰硅表面的一系列摩擦特性。
     本文将构件微观形貌对摩擦行为的影响划分为两类,分别为接触区域内影响和接触区域外影响。通过不同形貌修饰表面在针-面、球-面和面-面接触下的干摩擦实验发现,在接触区域内影响摩擦力大小的形貌参数主要为粗糙度、平均峰顶曲率半径、相关长度和条纹方向,并且存在形貌修饰最优化可能。
     接触区域外的形貌主要影响摩擦的稳定性。本文建立了接触区域外形貌对摩擦影响的弹性棘轮模型,认为摩擦力不仅受斜率影响,而且与表面曲率半径有关。在纳米尺度研究中斜率对摩擦力的影响较大,在微米尺度研究中表面曲率半径的影响较大,并通过实验进行了验证。
     结合弹性棘轮模型建立了粘滑模型,认为在“粘”的过程中,测头是一边振动一边向前滑行,只是运动的速度很慢,这很好地解释了“爬滑现象(creep-slip)”。并通过AFM、UMT和自制仪器,研究了形貌修饰表面的摩擦不稳定性。结果表明,粘滑距离与表面微观形貌参数相关。
     建立了湿度环境下的面-面接触摩擦模型,认为存在相对湿度临界值。当相对湿度大于临界值时,摩擦力会突然大幅增加。通过自制仪器对规则凹坑修饰表面做了黏着和摩擦实验,结果发现随表面凹坑面积比增加,黏着力和摩擦系数均增加。
Friction between micro components is the key factor that affects the performance and reliability of MEMS (microelectromechanical system) because of scale effect and surface effect. One of the research directions of tribological design in MEMS is exploring and controlling the friction behaviors of micro components by micro surface texturing. In this paper, the micro surface texturing was made on silicon wafer surface, and experiments and theoretical analysis of its friction behaviors were carried out from nano to micro scale.
     Because there are not satisfied commercial tribology test instruments, a new micro-tribotester was made to measure the pull-off and friction forces in situations of ball-flat and flat-flat contacts, with 0.6-5mN load in varied relative humidity conditions. The resolution of the tester is 8μN. A series of friction experiments of micro textured surfaces were carried out by the micro-tribotester.
     This paper classified the effects of micro surface topography of components on frcition behavior into two categories, which are effect of interior and exterior contact area. Dry frcition experiments of varied textured surfaces in pin-flat, ball-flat and flat-flat contacts were carried out. The results show that the topography parameters which affect friction force are roughness, radius of curvature of asperity, correlation length and direction of texture. There is the possibility of optimization of surface texturing.
     The topography of exterior contact area mainly affects the stability of friction. The effects are studied by a new elastic ratchet model presented by this paper. The model indicates that the friction force is affected not only by slope but also radius of curvature of surface topography. In the model, the friction is dominated by slope at nano scale, and by radius of curvature at micro scale. It was validated by experiments.
     Stick-slip model was developed based on the above elastic ratchet model. The model indicates that the upper head is sliding with high frequency vibrancy in“stick”process, which well explaines the "creep-slip" phenomena. The friction instability of textured surfaces was studied by AFM, UMT and micro-tribotester. The results show that the slip distance is affected by topography parameters.
     Friction model of flat-flat contact in relative humidity conditions was developed. The model indicates there is a critical relative humidity, upon which the friction force will greatly increase. Adhesion and friction experiments of textured surfaces were carried out. The results show that the pull-off and friction forces increases with dimple area ratio.
引文
[1]周兆英,王晓浩,叶雄英,王伯雄,李莎,刘卫丹.微型机电系统.中国机械工程, 2000, 11(1-2):163-169.
    [2]王琪民.微型机械导论.合肥:中国科学技术大学出版社, 2003.
    [3]车录锋,徐志农,周晓军,程耀东.微型机械设计中某些理论问题的探讨.工程设计, 1998, 2:23-25.
    [4]温诗铸,丁建宁.微型机械设计基础研究.机械工程学报, 2000, 36(7): 39-42.
    [5]邓昭,饶文琦,任天辉,余来贵,刘伟民,余新良.微机电系统的微观摩擦学研究进展.摩擦学学报, 2001, 21(6):494-498.
    [6]温诗铸.微型机械与纳米机械学研究.现代科学仪器, 1998, 1:24-27.
    [7] Komvopoulos K, Yan W. A fractal analysis of stiction in microelectromechanical systems. J. Tribology, 1997, 119(3): 391-400.
    [8] Komvopoulos K. Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhesion Sci. Technol. 2003, 17(4): 477-517.
    [9] Liu H W, Bhushan B. Adhesion and friction studies of microelectromechanical systems/nanoelectro mechanical systems materials using a novel microtriboapparatus. J. Vac. Sci. Technol. A 2003, 21(4): 1528-1538.
    [10]刘莹,温诗铸.微机电系统中微摩擦特性及控制研究.机械工程学报, 2002, 38(3): 1-5.
    [11] Komvopoulos K. Surface engineering and microtribology for microelectromechanical systems. Wear, 1996, 200:305-327.
    [12]陈晓阳,沈雪瑾,等.薄膜型硅微机械的摩擦学问题.中国机械工程, 2002, 13(1):36-40.
    [13] Israelachvili J N. Intermolecular and surface forces. London: Academic, 1990.
    [14] Patton S T, Zabinski J S. Failure mechanisms of capacitive MEMS RF switch contacts. Tribology Letters, 2005, 19(4):265-272.
    [15] Lumbantobing A, Komvopoulos K. Static friction in polysilicon surface micromachines. Journal of Microelectromechanical Systems, 2005, 14(4):651-663.
    [16] Timpe S J, Komvopoulos K. An experimental study of sidewall adhesion in microelectromechanical systems. Journal of Microelectromechanical Systems, 2005, 14(6):1356-1363.
    [17] Bhushan B, Burton Z. Adhesion and friction properties of polymers in microfluidic devices. Nanotechnology, 2005, 16:467-478.
    [18] Machtle P, Helm C A. Adhesion and adhesion hysteresis of mica surfaces covered with bola-amphipiles in dry and humid air. Thin Solid films, 1998, 330: 1-6.
    [19] Adam A Feiler, Pal Jenkins, Mark W Rutland. Effect of relative humidity on adhesion and frictional properties of micro-and nano-scopic contacts. Journal of Adhesion Science and Technology, 2005, 19: 165-179.
    [20]黄庆安.硅微机械加工技术.北京:科学出版社, 1996.
    [21] Patton S T, Cowan W D, Zabinski J S. Performance and Reliability of a New MEMS Electrostatic Lateral Output Motor. IEEE International Reliability Physics Proceedings, San Diego, CA., 1999, 179-188.
    [22] Liu H W, Bhushan B. Nanotribological characterization of digital micromirror devices using an atomic force microscope. Ultramicroscopy, 2004, 100:391-412.
    [23] Patton S T, Zabinski J S. Failure mechanisms of capacitive MEMS RF switch contacts. Tribology Letters, 2005, 19(4):265-272.
    [24] Scherge M, Gorb S N. Biological Micro and Nanotribology. Berlin:Springer, 2001.
    [25] Timpe S J, Komvopoulos K. An experimental study of sidewall adhesion in microelectromechanical systems. Journal of Microelectromechanical Systems, 2005, 14(6):1356-1363.
    [26] Zhao Y P. Stiction and anti-stiction in MEMS and NEMS. ACTA Mechanica Sinica, 2003, 19(1):1-10.
    [27] Sundararajan S, Micro/nanoscale Tribology and mechanics of components and coatings for MEMS. Doctoral Dissertation, The Ohio State University, USA, 2001.
    [28] Williams J.A. Friction and wear of rotating pivots in MEMS and other small scale devices. Wear. 2001, 251:965-972.
    [29] Scherge M, Li X, Schaefer J A. The effect of water on friction of MEMS. Tribology Letter, 1999, 6: 215-220.
    [30] Scherge M, Schaefer J A, Mollenhauer O. The Role of water on the microtribology of MEMS. In: Reichl H, Obermeier E. eds. Micro system technologies. Berlin: VDI verlag, 1998. 630-632.
    [31]徐泰然.微机电系统封装.北京:清华大学出版社,2006.
    [32] Dhuler V R, Mehregany M, Philips SM. Effect of atmosphere on MEMS Operation. IEEE Transactions on Electron Devices, 1993, 40: 1985 - 1989.
    [33] Z.Rymuza. Control triboligical and mechanical properties of MEMS surface.Microsystem Technologies, 1999, 5:173-180.
    [34] Motohisa H,Hiroki K. Superlubricity mechanism for micro electro mechanical systems. Proceedings of the 10th Annual International Workshop on Micro Electro Mechanical Systems,Nagoya, Japan, 1997, 43 6 - 441 .
    [35] Neerinck D, Persoone P, Sercu M, et al. Diamond-like nanocomposite coatings for low-wear and low-friction applications in humid environments. Thin Solid Films, 1998, 317:402-404.
    [36] Tagawa M, Ikemura M, Nakayama Y, et al. Effect of water adsorption on microtribological properties of hydrogenated diamond-like carbon films. Tribology Letters, 2004, 17(3):575-580.
    [37] Zhang PY, Du ZL. The tribological behavior of LB films of fatty acids and nanoparticles. Wear, 2000, 242:147-151.
    [38]蒋玮,雒建斌,温诗铸. OST分子膜的摩擦特性.科学通报, 2000, 45(17):1900-1904.
    [39] Masuko M, Aoki S, Suzuki A. Influence of lubricant additive and surface texture on the sliding friction characteristics of steel under varying speeds ranging from ultralow to moderate. Tribology Transactions, 2005, 48:289-298.
    [40] Nakamura N, Hirao K, Yamauchi Y. Tribological properties of silicon nitride ceramics modified by ion implantation. Journal of the European Ceramic Society, 2004, 24:219-224.
    [41] Uehara Y, Wakuda M, Yamauchi Y, et al. Tribological properties of dimpled silicon nitride under oil lubrication. Journal of the European Ceramic Society, 2004, 24:369-373.
    [42] Meine K, Klob K, Schneider T, et al. The influence of surface roughness on the adhesion force. Surf. Interface Anal, 2004, 36:694-697.
    [43] Briscoe B J, Panesar S S. The effect of surface topography on the adhesion of poly (urethane)-metal contacts. J. Phys D Appl Phys, 1992, 25:A20-A27.
    [44] Kovalchenko A, Ajayi O, Erdemir A. The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic. Tribology Transactions, 2004, 47:299-307.
    [45] Wang X L, Kato K, Adachi K, et al. The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribology International, 2001, 34:703-711.
    [46] Kovalchenko A, Ajayi O, Erdemir A, et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribology International, 2005, 38:219-225.
    [47] Kovalchenko A, Ajayi O, Erdemir A, et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribology International, 2005, 38:219-225.
    [48] Panitz J K G,Pope L E, Lyons J E, et al. The tribological properties of MoS2 coatings in vacuum, low relative humidity, and high relative humidity environments. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998, 6(3):1166-1170.
    [49] Li H X, Xu T, Wang C B, et al. Effect of relative humidity on the tribological properties of hydrogenated diamond-like carbon films in a nitrogen environment. J. Phys. D: Appl. Phys., 2005, 38:62-69.
    [50] Kokaku Y, Kitoh M. Influence of exposure to an atmosphere of high relative humidity on tribological properties of diamnod-like carbon films. Journal of Vacuum Science and Technology, 1989, 7:2311-2314.
    [51] Schuhmacher A, Kruse N, Prins R, et al. Influence of humidity on friction measurements of supported MoS2 single layers. Journal of Vacuum Science & Technology B, 1996, 14(2):1264-1267.
    [52] Turq V, Ohmae N, Martin J M, et al. Influence of humidity on microtribology of vertically aligned carbon nanotube film. Tribology Letters, 2005, 19(1):23-28.
    [53] Pettersson U. Surfaces designed for high and low friction. Doctoral Dissertation, Department of Engineering Science, Uppsala University,i Sweden, 2005.
    [54] Bhushan B, Sundararajan S, Li X, Zorman C A, Mehregany M. Micro/nanotribological studies of singlecrystal silicon and polysilicon and SiC films for use in MEMS devices. Tribology Issues and Opportunities in MEMS, 1998:407-430.
    [55] Etsion I. Improving tribological performance of mechanical components by laser surface texturing. Tribology Letters, 2004, 17(4):733-737.
    [56] Blatter A, Maillat M, Pimenov S M, et al. Lubricated sliding performance of laser-patterned sapphire. Wear, 1999, 232:226-230.
    [57] Ando Y, Nagashima T, Kakuta K. Using FIB-processed AFM cantilevers to determine microtribology characteristics. Tribology Letters, 2000, 9:15-23.
    [58] Stephens L S, Siripuram R, Hayden M, et al. Deterministic micro asperities on bearings and seals using a modified LIGA process. Journal of Engineering for Gas Turbines and Power, 2004, 126:147-154.
    [59] Wakuda M, Yamauchi Y, Kanzaki S, et al. Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear, 2003, 254:356-363.
    [60] Sung I H, Lee H S, Kim D E. Effect of surface topography on the frictional behavior at the micro/nano-scale. Wear, 2003, 254:1019-1031.
    [61] Yoon ES, Singh RA, Kong H, et al. Tribological properties of bio-mimetic nano-patterned polymeric surfaces on silicon wafer. Tribology Letters, 2006, 21(1):31-37.
    [62] Ishikawa M, Okita S. Load dependence of lateral force and energy dissipation at NaF(001) surface. Surface Science, 2000, 445:488-494.
    [63] Harrison J A, White C T, Colton R J, Investigation of the atomic-scale friction and energy dissipation on diamond using molecular dynamics. Thin Solid Films, 1995, 260:205-211.
    [64] Sasaki N, Tsukada M, Tsukada M. Atomic-scale friction image of graphite in atomic-force microscopy. Physical Review B, 1996, 54(03):2138-2149.
    [65] Ruan JA, Bhushan B. Atomic-scale friction measurements using friction force microscopy. Part I. General principles and new measurement techniques. Journal of Tribology-Transactions of the ASME, 1994, 116: 378-388.
    [66] Zworner O, Holscher H, Schwarz U D, et al. The velocity dependence of frictional forces in point-contact friction. Appl. Phys. A 1998, 66:S263-S267.
    [67] Mate C M, Erlandsson R, Erlandsson R. Atomic scale friction of a tungsten tip on a graphite surface. Physical Review Letters, 1987, 59(17):1942-1945.
    [68] Ruan J, Bhushan B. Frictional behavior of highly oriented pyrolytic graphite. J.Appl.Phys., 1994, 76(12):8117-8120.
    [69] Sung I H, Lee H S, Kim D E. Effect of surface topography on the frictional behavior at the micro/nano-scale. Wear, 2003, 254:1019-1031.
    [70] Ando Y, Ino J. Friction and pull-off force on silicon surface modified by FIB. Sensors and Actuators A, 1996, 57:83-89.
    [71] Ando Y. Effect of capillary formation on friction and pull-off forces measured on submicron-size asperities. Tribology Letters, 2005, 19(1):29-36.
    [72] Packham. Surface energy,surface topography and adhesion. International Journal of Adhesion & Adhesives, 2003, 23:437–448.
    [73] Ando Y, Ino J. Friction and pull-off force on silicon surface modified by FIB. Sensors and Actuators, 1996, 57(2):83-89.
    [74] Ando Y, Ino J. Friction and pull-off forces on submicron-size asperities. Wear, 1998, 216:115-122.
    [75] Burton Z, Bhushan B. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Letters, 2005, 5(8):1607-1613.
    [76] Zou M, Cai L, Yang D. Nanotribology of a silica nanoparticle-textured surface. Tribology Transactions, 2006, 49(1):66-71.
    [77] Dedkov G V. Nanotribology: experimental facts and theoretical models. Physics-Uspekhi, 2000, 43(6):541-572.
    [78] Braun O M, Naumovets A G. Nanotribology: Microscopic mechanisms of friction. Surface Science Reports, 2006, 60:79-158.
    [79] Etsion I. Improving tribological performance of mechanical components by laser surface texturing. Tribology Letters, 2004, 17(4):733-737.
    [80] Kligerman Y, Etsion I, Shinkarenko A. Improving tribological performance of piston rings by partial surface texturing. Journal of Tribology, 2005, 127:632-638.
    [81] Etsion I. State of the art in laser surface texturing. Journal of Tribology, 2005, 127:248-253.
    [82] Ryk G, Kligerman Y, Etsion I. Experimental investigation of laser surface texturing ro reciprocating automotive components. Tribology Transactions, 2002, 45:444-449.
    [83] Wang X L, Kato K, Adachi K, et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribology International, 2003, 36:189-197.
    [84] Ronen A, Etsion I, Kligerman Y. Friction reducing surface texturing in reciprocating automotive components. Tribology Trans., 2001, 44:359-366.
    [85] Erdemir A. Review of engineered tribological interfaces for improved boundary lubrication. Tribology International, 2005, 38:249-256.
    [86] Pettersson U, Jacobson S. Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribology Letters, 2004, 17(3):553-559.
    [87] Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts. Tribology International, 2003, 36:857-864.
    [88] Ike H, Tsuji K, Takase M. In situ observation of a rolling interface and modeling of the surface texturing of rolled sheets. Wear, 2002, 252:48-62.
    [89] Du D, He Y F, Sui B, et al. Laser texturing of rollers by pulsed Nd:YAG laser. Journal of Materials Processing Technology, 2005, 161:456-461.
    [90] Courant B, Hantzpergue J J, Benayoun S. Surface treatment of titanium by laser irradiation to improve resistance to dry-sliding friction. Wear, 1999, 236:39-46.
    [91] Sirghi L, Nakagiri N, Sugisaki K, et al. Effect of sample topography on adhesive force in atomic force spectroscopy measurements in air. Langmuir, 2000, 16:7796-7800.
    [92] Ando Y. The effect of relative humidity on friction and pull-off forces measured on submicron-size asperity arrays. Wear, 2000, 238:12-19.
    [93] Rabinovich Y I, Adler J J, Esayanur M S, et al. Capillary forces between surfaces with nanoscale roughness. Advances in Colloid and Interface Science, 2002, 96:213-230.
    [94] Bhushan B, Nosonovsky M. Scale effects in dry and wet friction, wear, and interface temperature. Nanotechnology, 2004, 15:749-761.
    [95] Hooton J C, German C S, Allen S, et al. An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles. Pharmaceutical Research, 2004, 21(6):953-961.
    [96] Ata A, Rabinovich Y I, Singh R K. Role of surface roughness in capillary adhesion. J. Adhesion Sci. Technol., 2002, 16(4):337-346.
    [97] Flater E E, Corwin A D, Boer M P, et al. In situ wear studies of surface micromachined interfaces subject to controlled loading. Wear, 2006, 260:580-593.
    [98] Lin T W, Modafe A, Shapiro B, et al. Characterization of dynamic friction in MEMS-based microball bearings. IEEE Transactions on Instrumentation and Measurement, 2004, 53(3):839-846.
    [99]李振波,杨红红,肖永利等.微小摩擦测试系统中扰动观察器的应用研究.微米/纳米科学与技术, 2000, 5(1):100-102.
    [100]邹继斌,孙桂瑛,齐毓霖,李宗政.微负荷摩擦测试系统.摩擦学学报, 1998, 18(4):369-372.
    [101]杨明楚,雒建斌,温诗铸.磁记录微观摩擦学性能测试仪的研制.清华大学学报, 2000, 40(8):36-40.
    [102] Scherge M, Schaefer J A. Microtribological Investigations of Stick/Slip Phenomena using a novel Oscillatory Friction and Adhesion Tester. Tribology Letters, 1998, 4(1): 37-42.
    [103]苏才钧,吴昊,郭占社,孟永钢,温诗铸.单晶硅微构件力学特性片上测试系统.机械强度, 2005, 27(4):456-459.
    [104]陶宝琪,王妮.电阻应变式传感器.北京:国防工业出版社, 1993:295-324.
    [105]张功铭,赵复真.电阻应变检定技术.北京:中国计量出版社,1991:53-96.
    [106]温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002.
    [107] Persson BNJ, Contact mechanics for randomly rough surfaces. Surface Science Reports, 2006, 61:201-227.
    [108]赵亚溥,王立森,孙克豪. Tabor数、黏着数与微尺度黏着弹性接触理论.力学进展, 2000, 30(4):529-537.
    [109] Bhushan B. Principles and applications of tribology. New York: John Wiley, 1999.
    [110] Israelachvili J N. Adhesion, friction and lubrication of molecularly smoothsurfaces. In: Singer, Pollock, eds. Fundamentals of Friction Fundamentals of friction. Kluwer Academic: Macroscopic and microscopic Processes, 1992. 351-385.
    [111] Riedo E, Palaci I, Boragno C, Brune H. The 2/3 power law dependence of capillary force on normal load in nanoscopic frictions. Journal of Physical Chemistry, B 2004, 108: 5324-5328.
    [112] Bhushan B. Handbook of Micro/Nano Tribology. Boca Raton: CRC Press, 1999.
    [113] Jaroslaw Drelich, Garth W Tormoen, Elvin R Beach. Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope. Journal of Colloid and Interface Science, 2004, 280: 484-497.
    [114] Gnecco E. Bennewitz R, Gyalog T, et al. Velocity Dependence of Atomic Friction. Physical Review Letters, 2000, 84(6):1172-1175.
    [115] Hilda W, Ahmed S I U. Microtribological properties of silicon and silicon coated with self-assembled monolayers: effect of applied load and sliding velocity. Tribology Letters, 2007, 25(1):1-7.
    [116]郑林庆,摩擦学原理.北京:高等教育出版社, 1994.
    [117] Nosonovsky M, Bhushan B. Scale Effect in Dry Friction During Multiple-Asperity Contact. Journal of Tribology-Transactions of the ASME, 2005, 127:37-46.
    [118]周银峰.旋转摩擦诱发粘滑运动特性的研究(硕士学位论文).西安理工大学工程力学系, 2005.
    [119]霍林.摩擦学原理.上海交通大学摩擦学研究室,译.北京:机械工业出版社, 1981.
    [120]温诗铸.纳米摩擦学.北京:清华大学出版社, 1998.
    [121] Heslot F, Baumberger T, Perrin B. Creep, stic-slip, and dry-friction dynamics: Experiments and a heuristic model. Physical Review E, 1994, 49(6):4973-4988.
    [122]谢尔格,戈尔博.微/纳米生物摩擦学-大自然的选择.李健等,译.北京:机械工业出版社, 2004.
    [123]解国新,丁建宁,范真,付永忠.硅基微机械表面粘附及摩擦性能的AFM试验研究.中国机械工程,2006,17(2):200-203.
    [124] Robert J, Hubert M P, et al. Adhesion Forces between Glass and Silicon Surfaces in Air Studied by AFM: Effects of Relative Humidity, Particle Size, Roughness, and Surface Treatment. Langmuir, 2002, 18:8045-8055.
    [125] He MY, Blum A S, et al. Critical phenomena of water bridges in nanoasperitycontacts. Journal of Chemical Physics, 2001, 114(3): 1355-1360.
    [126] Bhushan B. Adhesion and stiction:Mechanisms,measurement techniques,and methods for reduction. Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures, 2003, 21(6): 2262-2296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700