用户名: 密码: 验证码:
新型高效微推进技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小卫星组网编队飞行可以完成许多复杂昂贵的大卫星所无法完成的工作,其关键在于卫星编队的形成与保持。因此,对微小卫星间相对轨道位置的保持、高精度的姿态控制提出较高的要求。所需推力小,精度高,一般为毫牛,甚至微牛量级。本文针对百公斤级微小卫星姿控的需求,以研制一个高效双氧水化学微推力系统原理样机为目标,研究内容包括自增压燃料箱,基于MEMS的微型推进器及其真空微推力性能测试,芯片内部流动光学可视化观测等。
     推进系统占卫星总体质量比重较大,传统系统通常包含高压气瓶,减压阀等,系统部件比较多,质量大,难于微型化。本文发明了一种自增压燃料箱,使用小加热器控制NH_4HCO_3分解产生气体的方式进行燃料箱的增压。该系统结构简单,重量轻,易于微型化。
     优化设计了一款MEMS推进器芯片B,该芯片的流道采用S型流道非对称结构,增加工质在腔体内滞留时间;催化腔采用密排微柱结构,大大增加了催化面积,使双氧水催化反应更为充分。在硅芯片背面直接加工金属薄膜加热器。整个芯片B结构紧凑,充分利用反应热,减少热损失。
     搭建了真空微推力测试实验台。采用杠杆力的放大原理进行微推力测量,使用真空油阻尼系统降低环境噪音干扰。通过实验发现了只要测力探头足够大,喷嘴喷出的气流对探头的冲击力随着冲击距离的增大而出现一个高平台区。在该区内冲击力几乎维持不变,而且与喷嘴的推力大致相等。从而找到了一种采用合适大小的测力探头在高平台区的距离范围内进行冲击力测量来间接测量微型冷气推进器微推力的方法,避免了推进器引线干扰的问题。
     最后以芯片A为喷口,外加Pt丝增加催化表面和电辅助加热的方法研制了一款微型双氧水推进器。该推进器克服了硅芯片与其它金属管道部件的密封连接问题。并进行了推进性能测试实验。采用液柱压差法测量了微流量。经测试表明该款微型双氧水推进器在入口绝压为2~3bar时获得4~6mN的平均推力;加热仅为2~3w的情况下获得的200s左右的比冲,达到了预期的研制目标。
Multiply small satellites can make up of a team of formation flying and then accomplish a mission that an expensive big satellite can not. It is crucial for Formation flying of small satellites to keep in very precise position and orientation. Then small satellites need to control their track and attitude precisely. They need very small thrust, usually milli-Newton. even micro-Newton.In this article our objective is to develop a high efficient hydrogen dioxide micro-propulsion system aim to apply on a nano-satellite of tens of kilogram. The research includes a self-pressurizing fuel tank, fabrication of a MEMS-based microthruster and thrust measurement in vacuum, using optical microscope and high-speed camera to observe the flow field in the chip, etc.
     Propulsion system usually takes up a large fraction of weight of a satellite. The traditional propulsion system contains many components such as high pressure pressurant bottle, pressure regulator and so on. It is hard to microminiaturize traditional propulsion system. In this article a self-pressurizing fuel tank is invented. It use a micro-heater to heat to decompose NH4HCO3 and generate gas to increase the pressure of the fuel tank. This structure of the system is simple and the weight is light. It is easy to be microminiaturized.
     In this article, we design a MEMS microthruster chip B. This chip's fluid path is not straight and symmetry, as usually, instead, it has a S shap of flow path. This design make the fuel stay more time in the chip; the catalyse chamber is made up of micro-pillar array. The micro-pillar array greatly enlarges the catalystic area, and increase the decomposition rate. The whole chip B is compact, can use the reaction heat efficiently, and reduces the heat loss.
     A micro-thrust test stand in vacuum was setup. It adopts a lever to enlarge the micro-thrust force and a vacuum oil damping system to reduce the noise from surrounding. Through experiments, we found that the impinging force reaches a plateau section with the increase of impinging distance if only the impinging plate is big enough. In the plateau section, the impinging force is almost equal to the thrust force. Then, one can measure the impinging force instead of the direct thrust force measurement. By this method, the disturbance of connecting lines is avoided completely.
     At last, we use chip A as nozzle, adding Pt silk as accessorial catalystic surface, and equipped with electronic heater, to prepare a H_2O_2 micro-thruster. The problem of the silicon chip connected with stainless steel component is addressed. Then the micro-thruster is tested. The micro-flow rate of the micro-thruster is measured by liquid column differential pressure method. The test result show that this kind of micro-thruster can produce 4~5 mN thrust force with 2~3 bar inlet pressure; the specific impulse reach about 200 s with 2~3 w heating power.
引文
[1]余金陪,杨根庆,梁旭文编著.现代小卫星技术与应用[M].上海:科学普及出版社,2004,第一版.
    [2]尤政,张高飞.基于MEMS的微推进系统的研究现状与展望[J].微细加工技术,2004,1:1-8.
    [3]D.H.Morash,L.Stand,Miniature propulsion components for the pluto fast fly by spacecraft,1994,AIAA Paper 94-3374.
    [4]A.P.London,A.A.Ayon,A.H.Epstein,et al.,Microfabrication of a high pressure bipropellant rocket engine[J].Sensors and Actuators A,2001,92:351-357.
    [5]D.Platt,A Monopropellant milli-newton thruster system for attitude control of nanosatellites,16th Annual USU Conference on Small Satellites,2002,SSC02-Ⅶ-4.
    [6]Salvo Marcuccio,Angelo Genovese,Mariano Andrenucci,1997 FEEP microthruster technology status and potential applications,In Proc.48th Int.Astronautical Federation Cong.,Turin,Italy.Paris:International Astronautical Federation.
    [7]R.J.Cassady,W.A.Hoskins,A micro pulsed plasma thruster(PPT)for the Dawgstar Spacecraft[J].IEEE,2000.
    [8]J.R.Brophy,J.E.Blandino J.Mueller,NASA Tech.Briefs,1996,50(2):36-37.
    [9]T.Ishikawa,S.Satori,H.Okamoto,et al.,Status of nanosatellite development for mothership daughtership space experiment by Japanese universities,14th Annual USU Conference on Small Satellites,2000,SSC00-Ⅱ-7.
    [10]C.Phipps,J.Luke,Diode Laser-driven microthrusters:a new departure for micropropulsion[J].AIAA Journal,2002,40(2):310-318.
    [11]E.V.Mukerjee,A.P.Wallace,K.Y.Yan,et al.,Vaporizing liquid microthruster[J],sensors and actuators A,2000,83:231-236.
    [12]D.H.Lewis Jr,S.W.Janson,R.B.Cohen,et al.Digital micropropulsion[J].Sensors and Actuators A,2000,80(2):143-154.
    [13]K.Takahashi,H.Ebisuzaki,H.Kajiwara,et al.Design and testing of mega-bit microthruster arrays[J].Nanotech AIAA 2002-5758,Houston.
    [14]C.Rossi,B.Larangot,T.Camps,et al.Solid propellant micro-rockets-towards a new type of power MEMS[J].Nanotech AIAA 2002-5758,Houston.
    [15]Andrew D Ketsdever,Riki H Lee et al.,Performance testing of a microfabricated propulsion system for nanosatellite applications[J].J.Micromech.Microeng.2005,15:2254-2263.
    [16]Robert L.Bayt,Analysis,fabrication and testing of a MEMS-based micropropulsion system[D].[Ph.D.].Cambriage,MA:Massachusetts Institute of Technology,1999.
    [17]Chen Xupeng,Li Yong,Zhou Zhaoying,Fan Ruili,A homogeneously catalyzed micro-chemical thruster[J].Sensors and Actuators A,2003,108:149-154.
    [18]Ye X Y,Tang F,Ding H Q,Zhou Z.Y,Study of a vaporizing water micro-thruster[J].Sensors and Actuators A,2001,89:159-165.
    [19]蔡建.激光微推进的原理和应用研究[D].合肥:中国科学技术大学,2007.
    [20]Darren L Hitt,Charles M Zakrzwski,Michael A Thomas,MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition[J].Smart Mater.Struct.2001,10:1163-1175.
    [21]Siegfried W.Janson,Henry Helvajian,William W.Hansen and Lt.John Lodmell,Microthrusters for nanosatellites[J].The Second International Conference on Integrated Micro Nanotechnology for Space Applications.(MNT99),Pasadena,CA,April 11-15,1999.
    [22]Donald Platt,A Monopropellant Milli-Newton Thruster System for Attitude Control of Nanosatellites[J].16th.Annual USU Conference on Small Satellites,2002,SSC02-Ⅶ-4.
    [23]Johan Kohler,Johan Bejhed,Henrik Kratz,et al.A hybrid cold gas microthruster system for spacecraft[J].Sensors and Actuators A,2002,97-98:587-598.
    [24]J.Muller,Thruster option for microspacecraft:a review of exiting hardware and emerging technologies[J].AIAA Paper,1997,97-3058,pp.1-29.
    [1]李本儒.卫星用推进剂贮箱的设计与发展[J].控制工程,1997,4:1-11.
    [2]Ledebuhr AG,Kordas J F,et al.Autonomous,agile,micro-Satellite technology for use in low earth orbit missions[J].SSC98-Ⅴ-1,The 12th Annual Utah State University Small Satellite Conference.
    [3]John C.Whitehead,Michael D.Dittman,Arno G.Ledebuhr.Progress toward hydrogen peroxide micropropulsion[J].SSC99-Ⅻ-5,13th AIAA/USU Conference on Small Satellites.
    [4]Chien-Chong Hong,Suresh Murugesan,Sanghyo Kim,Gregory Beaucage,Jin-Woo Choi,and Chong H.Ahn.A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip[J].Lab Chip,2003,3:281-286.
    [5]Maurya D K,Das S,Lahiri S K.Silicon MEMS vaporizing liquid microthruster with internal microheater[J].Journal of Micromechanics and Microengineering,2005,15:966-970.
    [6]Hitt D L,Zakrzwski C M,Thomas M A.MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition[J].Smart Materials and Structures,2001,10:1163-1175.
    [7]Ye XY,Tang F,Ding H Q,Zhou Z Y,Study of a vaporizing water micro-thruster[J].Sensors and Actuators A,2001,89:159-165.
    [8]黄本诚,马有礼.航天器空间环境试验技术[M].北京:国防工业出版社,2001.
    [9]金恂叔.航天研制中的环境试验及其发展趋势(下)[J].环境技术,2001,6:27-34.
    [1]洪永强,蒋红霞.微电子机械系统及硅微机械加工工艺[J].电子工艺技术,2003,24(5):185-188.
    [2]樊红安,蒋军彪,冯培德,王小斌.感应耦合等离子刻蚀技术研究[J].中国惯性技术学报,2002.4:62-66.
    [3]尤政,张高飞.基于MEMS的微推进系统的研究现状与展望[J].微细加工技术,2004,1:1-8.
    [4]Xu J L,Feng Y,Cen J W Transient flow patterns and bubble slug lengths in parallel microchannels with oxygen gas bubbles produced by catalytic chemical reactions[J].International Journal of Heat and Mass Transfer,2007,50:857-871.
    [1]刘向阳,范宁军,李科杰.微型推进器推力测试的现状及发展趋势[J].测控技术,2004,23(5):10-20.
    [2]唐飞,叶雄英,周兆英.一种基于间接标靶法的微小推力测量技术[J].微纳电子技术,2003,7(8):18-22.
    [3]Willmes G F,Burton R I.Performance measurements and energy losses in a 100 watt pulsed arcjet[R].AIAA 96-2966.
    [4]吴汉基,冯学章.地球静止卫星南北位置保持控制系统的选择[J].中国空间技术,1994,5:17-24.
    [5]Merkowitz S M,Maghami P G,Sharma A,et al.A μ Newton thrust-stand for LISA[J].Phys.Rev.Lett.2000,85:2869-2872.
    [6]Haag T W.Thrust stand for pulsed plasma thrusters[J].Rev.Sci.Instrum.1997,68(5):2060-2067.
    [7]Cubbin E A.Laser interfemm etry for pulsed plasma thruster performance measurement.In:24th joint Propulsion Conference,Indianapolis,Indiana,June 27-29,AIAA 94-3392.
    [8]Cubbin E A et al.Pulsed Thrust Measurement using Laser Interferometry.In:32nd Joint Propulsion Gonerence.AIAA paper 96-2985.
    [9]Willson M J,Bushman S S,Buton R L.A compat thrust stand for pulsed plasma thrusters.In:25th International Electric Propulsion Conference,August 24-28,IEPC paper 97-122.
    [10]赵宝瑞,李晶,蒋金伟.微小推力自动测量系统研究[J].宇航计测技术,2000,20(4):31-35.
    [11]Robert L.Bayt,Analysis,fabrication and testing of a MEMS-based micropropulsion system[D].[Ph.D.].Cambriage,MA:Massachusetts Institute of Technology,1999.
    [12]Cubbin E A,Ziemer J K,Choueiri E Y,et al.Pulsed thrust measurements using laser interferometry[J].Review of Scientific Instrument,1997,68(6):2339-2346.
    [13]Merkowitz S M,Maghami P G,Sharma A,et al.A μ,Newton thrust-stand for LISA[J].Physical Review Letters,2000,85:2869-2872.
    [14]Andrew J Jamison,Andrew D Ketsdever,Muntz E P.Gas dynamic calibration of a nano-Newton thrust stand[J].Review of Scientific Instruments,2002,73(10):3629-3637.
    [15]Chen X P,Li Y,Zhou Z Y,et al.A homogeneously catalyzed micro-chemical thruster[J].Sensors and Actuators A,2003,108:149-154.
    [16]Ye X Y,Tang F,Ding H Q,Zhou Z Y.Study of a vaporizing water micro-thruster[J].Sensors and Actuators A,,2001,89:159-165.
    [17]Maurya D K,Das S,Lahiri S K.Silicon MEMS vaporizing liquid microthruster with internal microheater[J].Journal of Micromechanics and Microengineering,2005,15:96-970.
    [18]董志勇.冲击射流[M].北京:海洋出版社,1997.
    [19]汤普森.可压缩流体动力学[M].北京:科学出版社,1986.
    [20]Tadhg S O,Darina B M.Jet impingement heat transfer - Part Ⅰ:Mean and root-mean-square heat transfer and velocity distributions[J].International Journal of Heat and Mass Transfer,2007,50:3291-3301.
    [21]陈庆光,徐忠,吴玉林,等.矩形管湍流冲击射流场的PIV实验研究[J].实验流体力学,2005,19(1):87-93.
    [22]何枫,谢峻石,姚朝晖.超声速欠膨胀冲击射流的数值模拟[J].推进技术,2002,23(2):96-99.
    [23]赵承庆,姜毅.气体射流动力学[M].北京:北京理工大学出版社,1998.
    [24]萨顿 G P,比布拉兹 O.火箭发动机基础[M].洪鑫,张宝炯等译.北京:科学出版社,2003.
    [1]London A.P.A systems study of propulsion technologies for orbit and attitude control of microspacecraft.Master's thesis,Massachusetts Institute of Technology,1996.
    [2]汤普森.可压缩流体动力学[M].北京:科学出版社,1986.
    [3]Chen X P,Li Y,Zhou Z Y,et al.A homogeneously catalyzed micro-chemical thruster[J].Sensors and Actuators A,2003,108:149-154.
    [4]休泽耳D K等著.液体推进剂火箭发动机设计[M].北京:国防工业出版社,1973.
    [5]何永善,冯玉豪.卫星用的小推力推进系统的剖析.控制工程.1993,1:7-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700