用户名: 密码: 验证码:
客运专线无碴轨道设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国客运专线的大量兴建,无碴轨道得到了快速发展与广泛应用,但各型无碴轨道的设计不尽相同,没有形成统一的无碴轨道设计理论。本文在吸收国内外无碴轨道及相关工程研究成果的基础上,通过理论与试验研究,初步建立了统一的无碴轨道设计理论,并成功应用于遂渝线无碴轨道综合试验段、武广客运专线无碴轨道试验段及250km/h双块式轨道、板式轨道设计参考图的设计中。本文的主要研究工作和结论分为以下几个方面:
     (1)发展了无碴轨道列车荷载应力计算方法
     针对无碴轨道的结构特点,建立弹性地基上的梁板模型计算列车荷载应力,其中钢轨以Euler梁模拟,承载层以弹性薄板模拟,扣件、中间层及地基的弹性支承均以弹簧模拟,采用有限单元法实现。素混凝土或水硬性支承层宜采用折减弹性模量进行计算,以反映开裂对其抗弯刚度的影响。支承层弹性模量越高、厚度越厚、层间连接越强、裂缝间距越密,开裂后的弹性模量折减程度越高。对不同计算模型的计算结果和遂渝线实测资料进行了对比,验证了计算模型和参数的正确性。
     应用模型对板式轨道、双块式轨道进行了参数分析,结果表明:轨道板、底座板厚度对板式轨道承载层荷载应力影响较大,结构优化时,应着重在降低轨道板厚度、增加底座板厚度方面进行;底座板宽度宜按照45°荷载扩散角确定;尽量延长底座板长度,并在端部设置传力杆,以改善基床的受力条件;双块式轨道中结合式双层结构的应力水平较分离式双层结构低,在满足双块式轨枕埋置宽度的基础上应采用较窄的道床板宽度。
     (2)建立了无碴轨道温度应力计算方法
     根据连续式无碴轨道的裂缝发展特点,推导了连续式无碴轨道的温度应力、裂缝间距和裂缝宽度的计算公式,并进行了参数分析。为控制连续式无碴轨道的裂缝宽度在容许范围内应将裂缝控制为不稳定裂缝型式。此时钢筋最大应力由混凝土抗拉强度和配筋率控制,最大裂缝宽度则与钢筋和混凝土之间的粘结强度、混凝土抗拉强度以及配筋率有关,均与降温幅度无关。采用C40混凝土时,为满足0.5mm的裂缝宽度要求,配筋率应达到0.73%以上,钢筋直径宜在18~25mm间选择。采用高标号混凝土道床板、低标号混凝土支承层以及滑模施工或涂层钢筋时,应对应提高道床板配筋率。
     综合考虑国外无碴轨道、路面工程温度梯度取值以及遂渝线实测无碴轨道温度场,提出了我国无碴轨道温度梯度建议值。以板式轨道为例,研究了不同约束条件和CA砂浆弹性模量情况下的轨道板翘曲应力,得出无碴轨道翘曲应力可按无限大板进行计算的结论。
     (3)研究了基础变形对无碴轨道的受力影响
     将路基不均匀沉降和桥梁挠曲变形假设为正弦和半波正弦曲线,利用考虑基础变形的梁板有限元模型和简化的刚性基础、弹性基础模型对比分析了无碴轨道承载层附加弯矩,研究认为对于正弦型基础变形引起的无碴轨道附加弯矩的计算可采用刚性基础法进行。对于刚度较大的单元式道床板,不均匀沉降限值应适当提高,以保证自重作用下不产生空吊。
     梁端位移对无碴轨道扣件系统的受力影响较大,特别是错台高度、梁端转角和胶垫刚度。综合考虑列车荷载、错台等因素,从保护扣件受力的角度提出了不同胶垫刚度时的梁端转角限值。梁端位移对无碴轨道上抬稳定性有一定的影响,特别是在采用大抗拔力扣件系统时,需在梁端部位加强无碴轨道与桥梁的联结。
     (4)初步建立了我国无碴轨道设计理论与方法
     将无碴轨道设计分为功能设计与结构设计两部分。功能设计主要用于确定轨道的结构组成和施工方法等,使之满足高稳定和高平顺要求;结构设计则主要根据列车荷载、温度变化及基础变形及其共同作用确定承载层结构配筋等,使之满足强度与耐久性要求。
     在对国内外无碴轨道总结分类的基础上,对无碴轨道及主要部件进行了功能分析,提出功能设计的概念以保证无碴轨道的高平顺和高稳定性。对于使用寿命要求60年的无碴轨道结构,应保证在荷载作用下结构始终处于弹性工作阶段,宜采用以容许应力法为基础的结构设计方法。普通钢筋混凝土结构在荷载作用下可能会开裂,开裂之后抗弯刚度的降低将引起荷载作用下弯矩的改变,引入结构系数以反映此影响。以双块式轨道为例进行了路基和桥梁上单元式、连续式无碴轨道的结构设计。结构设计算例表明,对于单元式无碴轨道,配筋受列车荷载弯矩控制,而连续式无碴轨道配筋则受降温和混凝土收缩控制。
     (5)建立了无碴轨道落轴试验模拟模型,对无碴轨道动力特性进行评价
     以弹性地基上梁板模型为基础,建立了无碴轨道落轴试验模拟模型,对板式轨道动力特性进行了研究,结果表明扣件刚度对各部件加速度影响显著,为降低系统的振动水平,应采用较低的扣件刚度。CA砂浆弹性模量对轨道板和底座板加速度影响较大,底座板加速度明显低于双块式轨道支承层,且频率较低,说明CA砂浆具有一定的隔振作用,为降低下部基础的加速度水平,应采用弹性模量较低的CA砂浆。路基面支承刚度主要影响底座板的加速度,但影响程度较小。为降低系统振动水平,轨道板厚度宜取为0.2m左右,底座板厚度宜取为0.3m。
With the large scale construction of Passenger Dedicated Lines(PDLs), the ballastless track has got rapid development and extensive application. However, the design methods of different ballastless tracks were different, a uniform design theory for ballastless track did not exist. Based on the systematical summarization of ballastless track and corresponding projects home and aboard, a uniform ballastless track theoretical system is established through academic and experimental research in this thesis. The theory was successfully used in several projects, such as the ballastless track synthetically test section on Suining-Chongqing line(Suiyu line), the ballastless track test section on Wuhan-Guangzhou PDL, as well as the design of bi-block ballastless track and slab track for 250km/h reference blueprint design. The research work and main conclusion were divided into following areas:
     (1)Develop the stress calculation method of ballastless track under train load
     Considering the structure character of ballastless track, the stress under the train load should be calculated using the beam-shell model on elastic foundation. Rails are simulated by Euler beam. Bearing layers are simulated by elastic thin shell. The elasticity of the fastener, CA motar and subgrade are simulated by spring combination. The model is actualized using Finite Element Method. The plain concrete or hydraulic bounded layer should be modeled by using their reduced elastic modulus to reflect the influence to their bending stiffness when cracked. The greater the elastic modulus, or the larger the thickness of the supporting layer, or the stronger the interlaminar connection status, or the less the interval between cracks, the smaller the reduced elastic modulus of the cracked support layer will be resulted in. The calculation model and parameters were verified by the comparison between different models and field test data on Suiyu line.
     A parameter study about slab track and bi-block ballastless track was carried out using the beam-shell model. The results show the thickness of the track slab and base slab have great influence to the stress in bearing layer. The thickness of the track slab should be reduced and that of the base slab should be increased in structural optimization. The width of the base slab should be ascertained according to the 45°load dispersion angle. The length of the base slab should be extended and dowels should be set at the base slab ends to improve the subgrade mechanical condition. In bi-block ballastless track, the stress level in combined structure is less than that in separated structure. A smaller track slab width should be used when the embedded width constraint of the bi-block sleeper is satisfied.
     (2)Establish the thermal stress calculation method of ballastless track
     The thermal stress, cracks interval and crack width calculation formula were derivated according to the crack develop character of continuous ballastless track. A parameter study was carried out using these formulas. The crack type should be controlled to unstable cracks to limit the crack width in continuous ballastless track. The maximum stress in rebar is controlled by concrete tensile strength and reinforcement ratio. The maximum crack width is related to the bond strength between rebar and concrete, the concrete tensile strength and reinforcement ratio. The maximum rebar stress and crack width have no relation to the temperature drop range. The reinforcement ratio should be larger than 0.73% to limit the crack width within 0.5mm when using C40 concrete. The diameter of the rebar should be selected between 18mm and 25mm. The reinforcement ratio should be enhanced when using high-grade concrete in track slab or low-grade concrete in support layer or coated rebar or slip form construction method.
     Considering the temperature gradient value in ballastless track aboard, pavement and the test data on Suiyu Line comprehensively, the maximum temperature gradient value of our ballastless track was proposed. Taking slab track for example, the warp stress was analyzed under different constraint conditions and elastic modulus of CA motar. As a conclusion the warp stress of the ballastless track can be calculated using the infinite plate formula.
     (3)Study the foundation deformation influence to the ballastless track
     The subgrade uneven deformation and the deflection of the bridge are assumed to a sine or half-wave sine curve. The additional moment of the ballastless track bearing layer was calculated using the beam-shell finite element model considering the foundation deformation, a simplified rigid foundation and an elastic foundation model separately. As a conclusion the additional moment due to sine type foundation deformation can be calculated using rigid foundation method. The uneven deformation limit should be raised to guarantee no suspending under self-weight in short high stiffness track slab.
     The displacements at bridge end have great influence to the fastening system, especially for step height, bridge end rotation and pad stiffness. Considering the influence of the train load and step, a limit for bridge end rotation was proposed from the viewpoint of fastening system protection. The bridge end displacements have a certain effect to the uplift stability of the ballastless track, especially when using large uplift resistance fastening system. The interlaminar connection between ballastless track and bridge should be strengthened at bridge end.
     (4) Establish the design theory and method of ballastless track preliminarily
     The ballastless track design is divided into two parts: the function design and structure design. The track components and construction method are determined in the function design to satisfy the high evenness and stability requirements. The reinforcement in the bearing layer is determined to satisfy the strength and durability requirements in the structure design according to external loads and their interaction. The external loads include train loads, influences of temperature and the foundation deformations.
     A function analysis about ballastless track and their main components was carried out based on the summarization and classification of ballastless tracks home and aboard. The high evenness and stability of the ballastless track on PDLs is guaranteed by the function design conception. The ballastless track structure should always be in elastic stage because of its 60 years life span requirement, so the structure design method should be based on allowable stress method. The reinforcement concrete structure will crack due to load action and the bending stiffness will decrease which result in the change of the moment. A structure coefficient was introduced to reflect its influence. Taking bi-block ballastless track for example, the structure designs of ballastless track with single slabs and continuous slab on subgrade and bridge were carried out. The structure design examples show that the reinforcement for ballastless track with single slabs is controlled by the moment under train load, the reinforcement for ballastless track with continuous slab is controlled by the temperature drop and concrete shrinkage.
     (5)Establish the simulation model of the ballastless track falling wheelset experiment to estimate and evaluate the dynamic character of the ballastless track
     Based on the beam-shell model on elastic foundation, a ballastless track falling wheelset experiment simulation model was established. The dynamic character of the slab track was analyzed. The results show the fastener stiffness has great influence to the acceleration of each component. Lower fastener stiffness should be used to reduce the system vibration level. The elastic modulus of the CA motar has great influence to the track slab and base slab acceleration. The acceleration and the frequency of the base slab are significant lower than that of the support layer in bi-block ballastless track, which reflect that CA motar can isolate vibration to a certain degree. The subgrade stiffness mainly influences the acceleration of the base slab, but the degree is relatively small. The thickness of the track slab and the base slab should be about 0.2m and 0.3m to reduce the system vibration level.
引文
[1]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2004
    [2]He H W,Hou W W.Development of Ballastless Track Technology on China Railway(CR)[J].Railway Technical Review,2006,Special:18-22
    [3]刘百华.浅议高速铁路轨道的高平顺性[J].铁道建筑,1999(7):10-13
    [4]罗林.高速铁路轨道必须具有高平顺性[J].中国铁路,2000(9):8-11
    [5]卢祖文.高速铁路基础设施的重大技术问题[J].中国铁路.2004(8):12-13
    [6]Vogel W.Earthwork structures for new railway lines slab track—principles and suggestions for realization[J].Railway Technical Review,1995(1):29-36
    [7]Namura A,Kohata Y,Miura S.Effect of Sleeper Size on Ballasted Track Settlement[J].Quarterly Report of RTRI,2007,48(03):176-182
    [8]Hajime Wakui.Ladder Sleepers perform well in tests[J].Railway Gazette International,1997(09):583-585
    [9]Ando K,Mukai A,Horiike T,et al.Development of Solid-Bed Track with Removable Resilient Ties[J],Quarterly Report of RTRI:2002,43(03):107-112
    [10]Eszter Ludvigh.Mitigation of Railway Noise and Vibration Concentrating on the "Reducing at Source" Methods[J].Intersection Ⅱ,2004,1(2):3-11
    [11]赵国堂.提高轨道临界速度应作为客运专线设计工作的重要目标[J].中国铁路,2005(1):40-42
    [12]Rehfeld,Erich.Untergrundbeschaffenheit anforderungen fuer den einsatz fester fahrbahnen[J].Eisenbahningenieur,1995,46(4):258-264
    [13]Esveld C.Low-maintenance ballastless track structures[J].Rail Engineering International,1997,26(3):13-16
    [14]Moehren H.Paving alternatives to ballasted track[J].American Railway Engineering Association Bulletin,1998,98(762):470-523
    [15]Tani S.Labour saving track structure of JNR[J].Japanese Railway Engineering,1985,94:12-15
    [16]de Man I A P,Esveld C.Requirements for rail fastenings on slab track[J]Rail Engineering International.2001,30(2):9,11-12
    [17]Henn W.D.System comparison:ballasted track-slab track[J].Rail Engineering International,1993,22(2):6-9
    [18]何华武.我国客运专线应大力发展无碴轨道[J].中国铁路,2005(1):11-15
    [19]Bachmann H.State-of-the-art:Ballastless Track Systems[J].Railway Technical Review,2006(special):27-31
    [20]Esveld C.Recent Developments in Slab Track[J].European Railway Review,2003(2),81-85
    [21]Bringfried Belter,Rudolf Ditzen.Experience Gained with Laying Slab Track on the Newly-Built Cologne-Rhine/Main High-Speed Line[J].Railway Technical Review,2002(4):24-33
    [22]佐佐博明.日本新干线轨道及其维修[J].中国铁路,1999(12):42-46
    [23]王其昌,韩启孟.板式轨道设计与施工[M].成都:西南交通大学出版社,2002
    [24]冈田宏.日本新干线的现状和未来的发展[J].中国铁道科学.2002,23(2):21-25
    [25]Ando K,Sunaga M,Aoki H,et al.Development of Slab Tracks for Hokuriku Shinkansen Line[J].Quarterly Report of RTRI,2001,41(01):35-41
    [26]Ando K,Sunaga M,Sekine E,Aoki H,Yonezawa T,Okamoto T.Practical Use of Slab Track Structure with Reinforced Concrete Bed on Earthworks[J],RTRI REPORT,1999,13(5):5-10
    [27]任静.板式轨道的发展及应用前景[J].世界铁路,1994(2):14-16
    [28]张庆.日本铁路九州新干线板式无碴轨道介绍[J].中国铁路,2002(4):60-61
    [29]羽贺修.北越北线の高速化と新轨道构造等[J].新线路,1991,45(1):34-39
    [30]Sato Y.Development of vibration-decreasing slab track of type G and its practical use[J].Quarterly Reports of RTRI,1988,29(2):51-55
    [31]Ando K.Twenty years'experience on slab track[J].Quarterly Reports of RTRI,1994,35(1):7-14
    [32]Ando K.Present status on slab track and environmental countermeasure[J]. Quarterly Reports of RTRI, 1996, 37(4): 204-209
    [33] Bernhard Lichtberger. Track Compendium[M]. Hamburg: Eurailpress, 2005: 309-332
    [34] Stuchly H. An unconventional track for the latest in wheel/rail technology: technical and economic aspects[J]. Rail International, 1992, 23(6/7): 138-141
    [35] Fendrich L. DB explores the limits of ballastless track[J]. Railway Gazette International, 1995, 151(1): 45,47-49
    [36] Oberweiler G. Die Feste Fahrbahn-Eine kritische Zwischenbilanz nach 30 Jahre Forschung[J], Eisenbahntechnische Rundschau, 2002, 51(1/2): 68-74
    [37] Mattner L, Freystein H. Zulassung von Bauarten im Oberbau durch das Eisenbahn-Bundesamt[J], Eisenbahningenieur, 2002, 53(8):5-17
    [38] Belter B, Ditzen R. Erfahrungen beim Bau der Festen Fahbahn fur die Neubaustrecke Koln—Rhein/Main[J], Eisenbahntechnische Rundschau, 2002, 51(1/2):55-67
    [39] Wilcken A, Fleischer W, Lieschke H. Herstellung Feste Fahrbahn Rheda,Bauart Walter-Heilit mit Zweiblokschwlle,auf NBS Koln - Rhein/Main[J]. Eisenbahntechnische Rundschau, 2002, 51(4): 172-182
    [40] Belter B. Feste Fahrbahn auf der NBS Koln - Rhein/Main - erste Erfahrungen und Bewertung[J], Eisenbahntechnische Rundschau, 2000, 49(9): 597-605
    [41] Hilliges D. Mechanisierte Herstellung der Festen Fahrbahn Bauart Rheda[J]. Eisenbahntechnische Rundschau, 1989,38(3): 133-136
    
    [42] Leykauf G. Prefabricated slabs and frames for non-ballasted track[J]. ZEV-Zeitschrift fuer Eisenbahnwesen und Verkehrstechnik, 1999, 123(6): 221-228
    [43] Fleischer W, Lieschke H. Innovative Slab Track Systems of HEILIT + WOERNER[J]. Railway Technical Review, 2006, special: 36-42
    [44] Darr E. Full-scale tests with ballastless track between Mannheim and Karlsruhe[J]. Railway Technical Review, 1997,(1): 25-30
    [45] Leykauf G. Oberbauinstandhaltung bei einer Festen Fahrbahn[J]. Eisenbahntechnische Rundschau, 1989, 38(3): 139-144
    [46]Oberweiler G.Die Feste Fahrbahn[J].Eisenbahntechnische Rundschau,1989,38(3):119-124
    [47]Munchschwander P.The Development of Slab Track Systems in Germany [J].Railway Technical Review,2006,Special:6-7
    [48]Kurt Gerlich,Joachim Winkler.Ballastless Tracks on Bridges-Developments and Experience to Date[J].Railway Technical Review,1995,39(02):14-18
    [49]Leykauf G.The journey of ballastless track[J].European Railway Review,2005,3:59-68
    [50]Leykauf G,Lechner B,Stahl W.Trends in the use of slab track/ballastless tracks[J].Railway Technical Review,2006,special:10-17
    [51]Dubsky W.Weichen auf Feste Fahrbahn[J].Der Eisenbahningenieur,1995,46(6):420
    [52]Bachmann H.The Rheda Slab Track System-30 Years of Development.Innovation for Railway Track[J].Promain No.1,Fraunhofer Institute IITB,2001,Nov
    [53]Herstellung der festen Fahrbahn im M(u|¨)hlbergtunnel[J].Eisenbahntechnische Rundschau.1986,35(7/8):543-544
    [54]Darr.Edgar Qualitaet und Bestaendigkeit der Gleislage von Festen Fahrbahnen[J].Eisenbahningenieur,1997,48(1):26-32
    [55]Johannes Rohlmann,Josef Heβ.New Standard for Turnouts and Rail Expansion Joints for Traffic-Installation in a High-speed Track in Taiwan[J].Railway Technical Review,2006(special):52-59
    [56]Bachmann H,Mohr W,Kowalski M.The Rheda 2000 ballastless track system[J].European Railway Review,2003,8(1):44-51
    [67]Freudenstein S.Rheda2000-The ballastless track system for high-speed rail traffic of Rail.One[J],Railway Track Review,2006,46(Special):47-51
    [58]Freudenstein S.Rheda2000高速型无碴轨道[J].铁路技术评论,2005,11(1):51-56
    [59]Freudenstein S.RHEDA 2000 the Ballastless Track System for High-speed Rail Traffic of Rail.One[J].Railway Technical Review,2006(special):47-51
    [60]Ger Maas,Tanja Margarete Rickes.Productivity in Rail Construction Lessons Learned From the Development of the RHEDA 2000 Track Construction System[C].ISARC2006:246-251
    [61]Detandt H,Urban M.Slabs under Railway Tracks Founded on Piles for the Passage of Compressible Valleys by High-speed Trains[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [62]Jakob Kunz.Dependable System for High Speeds[J].Hilti Magazine,2005,Fall/Winter:20-23
    [63]Kristein A,Wendrich J.The Settlement Free Slab of the High Speed Line in the Netherlands[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [64]Winfried Bosterling,Dirk Vorderbruck.Innovative Elastic Rail Fastening Systems by Vossloh[J].Railway Technical Review,2006,special:60-63
    [65]DB Systemtechnik-Oberbautechnik.AKFF4-2002,Requirements Catalog for the Construction of the Slab Track 4th Revised Edition[S].Frankfurt:DB Netz AG NST-Produktmanagement Technik
    [66]Moelter T M.Closed and Open Joints at Bridges on High Speed Lines[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [67]Viktor Enoekl,Konrad Niibel.On the Track with Z(u|¨)blin[J].Railway Technical Review,2006,special:43-46
    [68]王先龙,李兵选.旭普林无碴轨道技术引进与国产化道路初探[J].铁道标准设计,2006(增刊):38-40
    [69]Mattivi N,Mueller M,Voelter U.Feste Fahrbahn Eine Herausforderung fuer den Vermessungsingenieur[J].Eisenbahningenieur,1994,45(8):536-542
    [70]Bogl S.Slab Track System - FF BogI[J].Railway Technical Review,2006(special):32-35
    [71]Antlauf W.Feste Fahrbahn Bogl:Einsatz bei der Neubaustrecke N(u|¨)rnberg-Ingolstadt [J].Der Eisenbahningenieur,2004,55(9):64-67
    [72]Lechner B,Leykauf G.Feste Fahrbahn mit Asphalttragschicht[J].Asphalt.2002,37(01):24-27
    [73]UIC Infrastructure Commission Civil Engineering Support Group.Feasibility study "ballastless track"[R].2002
    [74]Freudenstein S,Silbermann T.Renewal of the Brandleite Tunnel with Getrac Ballastless Track System on Asphalt[J].Railway Technical Review,2007,special:57-61
    [75]Freudenstein S.Innovative L(o|¨)sungen f(u|¨)r die Feste Fahrbahn GETRAC auf Asphalt[J].Der Eisenbahningenieur,2005,56(08):28-32
    [76] Arnhold G. New Hannover - Berlin HS line has rigid track bed[J]. International Railway Journal, 1998, 38(9): 15-16,19
    
    [77] Leykauf G, Lechner B. Design of Ballastless Track Structures using Sleeper Panels Fixed on Concrete or Asphalt Pavements[C]. World Congress on Railway Research (WCRR) ,2001, November, Koln, German
    [78] Danzer P. Appraisal of Repair Concepts for Different Designs of Ballastless Track [J]. Railway Technical Review, 2004,1:28-32
    [79] Teixeira P F. Optimization of high-speed ballasted tracks the interest of using a bituminous sub-ballast layer[C]. TRB 2006 Annual Meeting
    [80] Momoya Y, Horiike T, Ando K. Development of Solid Bed Track on Asphalt Pavement[J]. Quarterly Report of RTRI, 2002, 43(3): 113-118
    [81] Bullen F, Mangan D A, Bethune J. Review of the international use of asphalt for rail track support systems[C]. Proceedings of the 19th ARRB Conference, Sydney, 1998 Aust.
    [82] European Asphalt Pavement Association. Asphalt in Railway Tracks[R]. 2003, Oct. Netherlands, Breukelen
    
    [83] Ando K, HORIIKE T, MOMOYA Y, EMOTO M. Performance Tests and Basic Design on Solid-Bed Track on Asphalt Pavement[J]. RTRI Report, 2000, 14(4): 19-24
    [84] SNCF I/SYSTRA. Beijing-Shanghai High-Speed Railway Consulting Services on the Engineering Design[R], Consulting Report, 2005.3
    [85] Esveld C. Slab Track: A Competitive Solution[J]. Rail International, Schienen der Welt, 1999, June
    [86] Daniels L E. Embedded Track Design and Performance[C]. 9th National Light Rail Transit Conference, 2003, Portland, American.
    [87] Markine V L, de Man A P, Jovanovic S, Esveld C. Optimum Design of Embedded Rail Stucture for High-Speed Lines[C]. Proceedings of the 3~(rd) International Conference on Railway Enginnering, Edinburgh, 2002, July
    [88] Penny Ch. Balfour Beatty embedded track system[C]. Proceddings of Rail-Tech Europe 2003 Conference, 2003, Jaarbeurs Utrecht, Netherland
    [89] Markine V L, de Man A P, Jovanovic S, Esveld C. Multicriteria Optimisation of Railway Track for High-Speed Lines[C]. Proceedings of the 2~(nd) ASMO UK/ISSMO Conference on Engineering Design Optimization, Swansea, UK, 2000
    [90] Gyula Kormos. Longitudinal Behaviour of Rail Embedded in Elastic Material[J]. Periodica Polytechnia Ser. Civ. Eng. 2002, 46(1): 115-124
    [91] V.L. Markine, C. Esveld, A.W.M. Kok, A.P. de Man. Optimization of a High-Speed Railway Track Using Multipoint Approximation Method[J]. American Institute of Aeronautics and Austronautics:1-5
    [92] Eszter LUDVIGH. Elastic Behaviour of Continuously Embedded Rail Systems[J]. Periodical Polytechnica Ser. Civ. Eng. 2002, 46(1): 103-114
    [93] Shamalta M, Metrikine A, Vrouwenvelder T. Dynamic Response of an embedded railway track to a moving train[C]. IABSE Symposium, Antwerp, Belgium, 2003, August
    [94] KIYOSHI ASANUMA. Ladder Track Structure and Performance [J]. Railway Technology Avalanche, 2004(6): 35
    [95] Okuda H, Wakui H, Tanabe M. Impact Response Analysis of the Floating Ladder Track With Rail Irregularities of the Weld[J]. Transactions of the Japan Society for Computational Engineering and Science, 2001, 20010009
    [96] Okuda H, Sogabe M, Matsumoto N, et al. Mechanical Properties and Running Performance on Floating Ladder Tracks[J]. RTRI Report, 1998, 12(9): 7-14
    [97] Okuda H, Asanuma K, Matsumoto N, et al. Environmental Performance Improvement of Railway Structural System Using Ladder Track[C]. IABSE Symposium, 2003, August, Antwerp, Belgium
    [98] Cope D L. Concrete Support for Railway Track: Precast and in Situ Slabs[C]. Proceedings of the Institution of Civil Engineers (London), 1982, 72(8): 375-392
    [99] Jackson Bertie. Ballastless Track: A Rapid Transit Wave of the Future? [J] Railway Track and Structures, 1984, 80(4): 37-39
    [100] Garstenauer K. Die Gestaltung des Infrastruktur - Beniitzungsentgelts der OBB[J]. Der Eisenbahningenieur, 2004 , 53(12): 851- 855
    
    [101] Schilder R. Ballastless track application in existing tunnels - experience gained on Austrian Federal Railways[J]. Rail Engineering International, 1993, 22(04): 7-10
    
    [102] 姚明初,邵立新. 铁路新型轨下基础[M].北京:中国铁道出版社, 1986: 57-91
    [103]范佳,林之珉,赵曦,江成.高速铁路减振型无碴轨道减振技术的研究[J].中国铁道科学,1998(12):57-63
    [104]江成,林之珉.高速铁路无碴轨道结构的试验研究[J].中国铁路,2000(7):22-24
    [105]张庆,张立国,冉蕾,胡金培,赵廷俭.秦沈客运专线板式无碴轨道结构设计[J].铁道标准设计,2002(6):9-12
    [106]左景奇,姜其斌,傅代正.板式轨道弹性垫层CA砂浆的研究[J].铁道建筑,2005,9:96-98
    [107]徐伟建,王智勇.抗冻性CA砂浆性能研究[J].铁道建筑,2003(12):66-67
    [108]周宇,许玉德,李海锋,梯子式轨道结构系统[J].城市轨道交通研究,2002,5(01):21-23
    [109]王继军.无碴型预制混凝土纵梁新型轨道结构的研究[J].铁道建筑,2004(11):62-65
    [110]中铁二院工程集团有限责任公司.遂渝线无碴轨道综合试验段工程无碴轨道总结报告[R].成都,2007:20-80
    [111]铁道科学研究院,成都铁路局,铁道第二勘察设计院.遂渝线无碴轨道试验段综合试验总报告[R].北京,2008:15-44
    [112]姚力,翟婉明,罗震.遂渝线路基上板式无碴轨道结构设计研究[J].铁道工程学报,2006(5):51-54
    [113]刘名君,颜华,田春香.大跨梁、简支T梁铺设无碴轨道的可行性[J].铁道工程学报,2006(9):36-40
    [114]田春香,颜华,赵坪锐,王平.无碴轨道道岔区轨下基础受力分析[J].铁道工程学报,2006(5).48-50
    [115]Bernhard L.Developments in Road Pavement Construction and Railway Track Technology for a Sustainable Surface Transport Infrastructure[J/c].
    [116]中铁二院工程集团有限责任公司,铁道科学研究院,中铁八局集团有限公司.遂渝线无碴轨道综合试验段关键技术试验研究总报告[R].成都,2007.12:19-21
    [117]王其昌,陆银根.铁路新型轨下基础应力计算[M]北京:中国铁道出版社,1987:15-45
    [118]Esveld,C.Modern Railway Track 2nd Edition[M].Zaltbommel:MRT Productions,2001
    [119]刘玉详,陈秀方.板式轨道结构分析计算的两种方法[J].城市轨道交通研究,2007(06):32-34,66
    [120]齐春雨.土质路基板式轨道结构强度计算研究[J],铁道标准设计,2006(2):26-28
    [121]孙立.武广客运专线双块式轨道设计[J].铁道标准设计,2006(增刊):155-158
    [122]高江宁.整体道床计算方法与设计参数研究[D].成都,西南交通大学,2004:52-59
    [123]岳渠德,姜福香,李向国.区间轨道结构双层叠合交叉梁系力学模型研究[J],铁道标准设计,2002(12):1-4
    [124]李锁全,段树金,王军文,石现峰.轨道结构的弹性支承交叉梁系模型[J].工程力学,2001(增刊):508-513
    [125]王军文,段树金,李锁全.高速铁路板式轨道结构静力分析[J].工程力学,2002(增刊):290-293
    [126]刘成轩,翟婉明.轨道板强度问题的有限元分析初探[J].铁道工程学报,2001(1):24-26
    [127]高亮,马鸣楠,王冬梅.直线电机运载系统桥上无碴轨道结构力学特性的研究[J].铁道标准设计,2007(7):5-7
    [128]李春霞.土路基上板式轨道力学分析[D],成都,西南交通大学,2005:24-31
    [129]赵坪锐.板式无碴轨道动力学性能分析与参数研究[D],成都,西南交通大学,2004:11-20
    [130]赵坪锐,刘学毅.板式轨道动力特性分析及参数研究[J].铁道建筑,2004(05):48-50
    [131]佐藤吉彦,徐涌(译).新轨道力学[M].北京,中国铁道出版社,2001:238-240
    [132]任静.板式轨道研究与设计初探[J].铁道标准设计,1996(06):25-28
    [133]Eisenmann J,Leykauf G.Feste Fahrbahn f(u|¨)r Schienenbahnen[M].Betonkalender,2000:10-15
    [134]管吉波.德国Rheda2000无碴轨道系统路基地段的力学计算简介[J],铁道标准设计,2006(增刊):182-185
    [135]范俊杰.现代铁路轨道[M].北京:中国铁道出版社,2000:43-51
    [136]Rail.One GnmH.Rheda 2000 Crack width calculation according to DIN 1045-1[R],Ingolstaedter,2005,6
    [137]Lechner B.Der Temperaturgradient als Bemessungsgr(o|¨)sse bei der Dimensionierung von Dicken Betondecken[D].M(u|¨)nchen,Technische Universit(a|¨)t M(u|¨)nchen,1996
    [138]Eisenmann J,Leykauf G.Beton-fahrbahnen[M].Munchen:Ernst&Sohn,2003:22-59
    [139]#12
    [140]谈至明,姚祖康.非线性温度场下的水泥混凝土路面温度应力[J].中国公路学报,1993,6(4):
    [141]张红波.贫混凝土基层水泥混凝土路面温度应力分析[D].硕士学位论文,长沙理工大学,2005.4
    [142]姚祖康.水泥混凝土路面设计[M].合肥:安徽科学技术出版社,1999:77-79,83-84,110-113
    [143]曹东伟,胡长顺.连续配筋混凝土路面温度应力分析[J].西安公路交通大学学报,2001,21(02):1-5
    [144]曹东伟,胡长顺.CRCP混凝土温度松驰应力分析[J].中国公路学报,2001,14(01):1-4
    [145]周永磊,寒冷地区连续配筋混凝土路面温度应力分析与配筋设计[D].长春:吉林大学硕士学位论文,2006
    [146]邓学均,陈荣生.刚性路面设计(第二版)[M].北京:人民交通出版社,2004:423-430
    [147]王森荣.板式无碴轨道温度力研究[D].成都:西南交通大学硕士学位论文,2007
    [148]车晓娟.轨道板配筋对温度裂缝的影响分析[D].成都:西南交通大学硕士学位论文,2007
    [149]赵伟.单元板式无碴轨道伤损及纵向受力分析[D].成都:西南交通大学硕士学位论文,2008
    [150]朱颖.大跨桥上纵连板式轨道结构受力分析与试验研究[D].成都:西南交通大学硕士学位论文,2007
    [151]邓存宥.大跨桥上纵连板式无碴轨道结构分析及参数研究[D].成都:西南交通大学硕士学位论文,2007
    [152]日本铁道建设公团盛冈支社.东北干、RC路基工程详细设计等RC路基工程、t=300设计计算书[R].1999
    [153]Heitkamp-Deilmann-Haniel GmbH.雷达2000中国系统轨道工程混凝土道床板—钢筋方案Ⅰ[R].武汉:武广铁路客运专线有限责任公司,2006:11-13
    [154]Faeh A,Gloor M,Gerber T.Optimised Ballastless Track Systems[C]IABSE Symposium,Antwerp,Belgium,2003,August
    [155]Esveld C.Developments in High-Speed Track Design[C],IABSE Symposium,Antwerp,Belgium,2003,August
    [156]Esveld C.Markine V.Use of Expanded Polystyrene(EPS) Sub-Base in Railway Track Design[C],IABSE Symposium,Antwerp,Belgium,2003,August
    [157]Zwarthoed J M,Markine V L,Esveld C.Slab Track Design:Flexural Stiffness Versus Soil Improvement[C].Proceedings of Rail-Tech Europe 2001 Conference.Utrecht,2001,April
    [158]Henke V,Falkner H.SFRC for Jointless Railway Tracks[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [159]Takahashi T,Sekine E,Horiike T,et al.Study on the Applicability of Short Fiber Reinforced Concrete to Precase Concrete Slabs for Slab Track[J].Quarterly Report of RTRI,2008,49(01):40-46
    [160]日本铁道建设公团盛冈支社.东北干、轨道板设计PRC构造A-55C设计计算书[R].1999
    [161]翟婉明,韩卫军,蔡成标.高速铁路板式轨道动力特性研究[J].铁道学报,1999,21(06):64-69
    [162]蔡成标,翟婉明,王其昌.高速列车与高架桥上无碴轨道相互作用研究[J].铁道工程学报,2000(03):29-32
    [163]Tanabe M,Wakui H,Matsumoto N,et al.Dynamic internations of Shinkansen train,track and bridge[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [164]O'Riordan N,Ross A,Allwright R,et al.Long Term Settlement of Piles under Repetitive Loading from Trains[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [165]詹永祥,蒋关鲁,魏永幸.无碴轨道桩板结构路基在地震荷载下的动力 响应分析[J].中国铁道科学,2006,6:22-26
    [166]Ripke B,Knothe K.Simulation of high frequency vehicle-track interactions[J].Vehicle System Dynamics,1995,24(suppl):72-85
    [167]Sato Y.Effect of Track Rigidity on Ground Vibration due to Running Train[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [168]Hasslinger Herbert L,Mittermayr Paul,Presle Gerard.Das dynamische Verhalten unterschiedlicher Oberbausysteme zufolge fahrender Lasten[J].Eisenbahningenieur,1999,50(7):44-48
    [169]Steenbergen M J M M,Metrikine A V,Esveld C.Assessment of Design Parameters of a Slab Track Railway System from a Dynamic Viewpoint[J].Journal of Sound and Vibration,2007,306:361-371
    [170]Suiker A S J,Metrikine A V,de Borst R.Steady state response of a granular layer to a moving load-a discrete model[J].Heron,2000,45(1):75-87
    [171]和振兴,翟婉明.板式轨道交通引起的地面振动模型[J].交通运输工程学报,2006(03):13-17
    [172]Rehfeld,Erich Untergrundbeschaffenheit anforderungen fuer den einsatz fester fahrbahnen[J].Eisenbahningenieur,1995,46(4):258-264
    [173]Kumaran G,Menon D,Krishnan N K.Dynamic Studies of Railtrack Sleepers in a Track Structure System[J].Journal of Sound and Vibration,2003,268:485-501
    [174]赫丹,向俊,郭高杰,孔凡兵,曾庆元.砂浆刚度和阻尼对高速列车—板式轨道时变系统竖向振动的影响[J].铁道科学与工程学报,2006,3:26-30
    [175]Vehicle-track-interaction and soil dynamics[J].Veh.Syst.Dyn.1998,29(special):553-558
    [176]Verbic B,Schmid G,Koepper H D,et al.Investigating the dynamic behaviour of rigid track[J].Railway Gazette International,1997,153(09):583,585-586
    [177]Mohammadi M,Karabalis D L.Dynamic 3-D soil-railway track interaction by BEM-FEM[J].Earthquake Engineering & Structural Dynamics,1995,24(09):1177-1193
    [178]Hubert W,Friedrich K,Pflanz G,et al.Frequency-and time-domain BEM analysis of rigid track on a half-space with vibration barriers[J]. Meccanica,2001,36(4):421-436
    [179]de Man A,Esveld C.Recording,Estimating and Managing the Dynamic Behaviour of Railway Structures[C].International Conference on Noise and Vibration Engineering(ISMA25),Leuven,Belgium,2000,September
    [180]王其昌.用落轴法分析研究轨道冲击响应[J].铁道学报,1992,14(03):102-109
    [181]江成,林之珉.高速铁路无碴轨道结构的试验研究[J].中国铁路,2000,(07):22-24
    [182]朱剑月,练松良.轨道结构落轴冲击动态响应有限元分析[J].铁道学报,2005,27(03):76-79
    [183]朱剑月,练松良.弹性支承块轨道结构落轴冲击动力性能分析[J].中国铁道科学,2006,27(03):22-26
    [184]童大埙.铁路轨道[M].北京:中国铁道出版社,1988:42-50
    [185]赵坪锐,刘学毅.双块式轨道开裂支承层的折减弹性模量[J].西南交通大学学报,2008,43(04):459-464
    [186]何华武.无碴轨道技术[M].北京:中国铁道出版社,2005:33-39
    [187]赵国堂.高速铁路无碴轨道技术[M].北京:中国铁道出版社,2005:44-53
    [188]Eisenmann J,Leykauf G.Verkehrsfl(a|¨)chen aus Beton.Betonkalender 2007[M].Ernst & Sohn:108-114
    [189]郑大智,冯德成.层状弹性体系力学[M].哈尔滨:哈尔滨工业大学出版社,2001
    [190]de Backer H,van Bogaert P,de Corte W.Structural Optimum Panel Length of Concrete Track Slab in Tunnels[C].IABSE,2003,August,Antwerp,Belgium
    [191]郑传超,王秉纲.道路结构力学计算[M].北京:人民交通出版社,2003:202-203
    [192]姚祖康.水泥混凝土路面设计理论与方法[M].北京:人民交通出版社,2003:28-35,45-46
    [193]杨荣山等.嘉陵江大桥轨道静态测试试验报告[R].成都:西南交通大学,2007:21-25
    [194]DIN 1045,Concrete,reinforced and prestressed concrete structures[S].
    [195]过镇海,时旭东.钢筋混凝土原理和分析[M],北京:清华大学出版社, 2003:244-252
    [196]赵国藩.高等钢筋混凝土结构学[M],北京:中国电力出版社,1999
    [197]M.Sule,K.van Breugel.The effect of reinforcement on early-age cracking due to autogenous shrinkage and thermal effects[J].Cement & Concrete Composites,2004,24:581-587
    [198]Rui Faria,Miguel Azenha,Joaquim A.Figueiras.Modelling of Concrete at early ages:Application to an externally restrained slab[J].Cement &Concrete Composites,2006,28:572-585
    [199]蔡成标等,客运专线无碴轨道再创新理论研究报告—动力学分报告[R].成都,西南交通大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700