用户名: 密码: 验证码:
闭合型地下连续墙桥梁基础承载机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闭合型地下连续墙(以下简称闭合墙)整体刚度大,承载能力高,作为一种新型的桥梁基础,不仅具有良好的竖向承载性能,而且还具有很好的水平承载特性。然而,由于墙内土芯受力变形十分复杂,基础承载性状的影响因素众多,到目前为止,对闭合墙桥梁基础的承载机理这一问题尚未得到很好的解决。为此,本文结合交通部西部交通科技项目,采用现场荷载试验、数值计算和理论分析的方法对单室闭合墙基础的荷载传递机理及其承载性状进行了系统的分析和研究。主要研究内容和成果如下:
     (1)通过闭合墙现场竖向载荷试验,对黄土层中闭合墙的荷载-沉降特性、墙身轴力与墙侧摩阻力的发挥性状、墙侧摩阻力和端阻力荷载分担比的变化规律进行了分析。结果表明:闭合墙具有端承摩擦墙的特性;竖向承载力由墙侧摩阻力和端阻力共同承担;侧摩阻力和端阻力的发挥取决于墙周土性参数的变化及墙土之间相对位移量的大小。
     (2)考虑墙内土芯的承载作用,通过数值计算和分析,对竖向荷载作用下闭合墙基础的荷载传递机理,墙身内、外侧摩阻力的发挥机制,以及各荷载分量及其荷载分担比随墙顶荷载变化的分布规律等进行了研究;并探讨了墙身截面形状及尺寸、土体物理力学特性等因素对闭合墙承载性状的影响。
     (3)研究了墙端附近墙内土芯的受力变形规律。采用土拱理论,基于平面应变假定,确定了土拱的合理拱轴线为二次抛物线形式,并对土拱的最不利受力截面位置、土拱出现及保持稳定的条件进行了详细探讨。指出:存在于土芯端部附近范围内的“应力锅状拱”效应有利于墙身内侧摩阻力及端阻力的发挥。
     (4)通过水平荷载作用下闭合墙基础的三维数值计算,研究了闭合墙基础的水平受力变形破坏特征,以及墙身变位、内力及墙侧地基横向土抗力变化的分布规律。并探讨了不同加载方向下矩形闭合墙基础其水平屈服强度的方向性。
     (5)斜向荷载作用下闭合墙基础的承载机理与单一的竖向或水平向荷载分别作用情况不同,其受力变形特征包括了竖向或水平向荷载单独作用下的各种可能情况。数值计算表明:斜向荷载作用下闭合墙基础的极限承载力与墙项荷载的倾斜程度及墙身侧摩阻力的发挥性状有关;其极限承载力应综合考虑地基土体的竖向承载能力、基础上部结构允许的位移量、地基横向土抗力、墙身材料强度特性等方面的要求。
     (6)利用荷载传递法,推导出了闭合墙竖向荷载—沉降关系的弹塑性半解析公式,并求得了任意截面墙身轴力及墙身侧摩阻力计算表达式。通过计算分析,表明此公式能较好的分析竖向荷载作用下闭合墙基础的荷载传递机理及其承载性状。
     (7)基于地基系数m法,按照弹性地基上有限长梁的方法,建立了地基横向土抗力、墙身变位与内力关系的微分方程,采用幂级数求解的方法,导得了水平向荷载及斜向荷载作用下闭合墙墙身内力与变位的关系公式。并初步验证了此计算公式的合理性。
Because of the characteristics of whole large stiffness and high bearing capacity, as a new form of bridge foundation, the closed diaphragm wall (called the closed wall) has good both vertical and horizontal bearing capacity. However, owing to the complexities of the deformation of soil core within the closed wall, and the influencing factors for the load transfer mechanism and bearing behavior of the closed wall, the study on the bearing mechanism of the closed diaphragm wall as bridge foundation is in the air yet up to now.
     In this dissertation, by the methods of the in-situ loading test, numerical computation and theoretical analysis, the load transfer mechanism and bearing behaviors of the simple closed diaphragm wall as bridge foundation were studied systematacially. The main contents and results are as follows:
     (1) By the method of the in-situ vertical loading test of the closed wall, the characteristic of load-settlement, the working characters of axial force and skin friction, and the variational laws of the load-sharing ratio of skin friction and end resistance of the simple closed wall were studied in loess subsoil. The results indicated that the bearing characteristics of the closed wall present the properties of end-skin friction wall, the bearing capacity of the closed wall consisted of the skin friction and end resistance; and the working of skin friction and end resistance of the closed wall were related to the factors, such as the physical and mechanical characteristics of loess, the relative displacement between the diaphragm wall and loess, etc..
     (2) According to the numerical computation, considering the bearing action of soil core within the closed wall, the load transfer mechanism of the closed wall foundation subjected to the top vertical loading, the working mechanism of the inside and outside skin friction, and the distributing law of the various load components and its load-sharing ratio varied with the loading on top of the foundation, etc. were studied, respectively. Besides, the influencing factors, such as the section shapes and sizes of the closed wall, the physical and mechanics characteristics of soil, for the bearing behavior of the closed wall were discussed in detail also.
     (3) The arch theory was introduced to study the deformation characters of soil core nearby the toe of the closed wall, the form of quadratic parabola as the reasonable arch axial line of soil arch was determined. In addition, the most disadvantageous forcing position of soil arch, and the condition of appearing and keeping stability of soil arch were discussed carefully. The results showed that the effect of "stress dome shape arch" nearby the toe of the closed wall is advantageous for improving the inside skin friction and end resistance.
     (4) The deformation behavior of the closed wall foundation, displacement, internal forces of the closed wall and the horizontal soil resistance of subsoil were studied by the method of three-dimensional numerical computation, when the horizontal loading was acted on the top of the closed wall. And the orientation of horizontal yielding strength of the closed rectangular wall, which subjected to the various loading, were analyzed systematacially.
     (5) The deformation mechanism of the closed wall subjected to the inclined loading is different from that of the closed wall subjected to the vertical loading or horizontal loading only, and its deformation characters may include different kinds of the deformation characters subjected to the vertical loading or horizontal loading only. The results of numerical computation presented that the ultimate bearing capacity of the closed wall subjected to the inclined loading rest with the inclined degree of inclined loading and the working characters of skin friction, and the factors of the vertical bearing capacity of subsoil, the allowable displacement, the horizontal soil resistance of subsoil, the material strength of the wall, and so on, should be considered.
     (6) Based on the load transfer method, a set of elastoplasticity analytical formula for the axial load-settlement of the closed wall were deduced. Furthermore, the calculational expressions of the random sectional axial force and the skin friction were derived. By the computational analysis, the load transfer mechanism and the bearing behavior of the closed wall subjected to the vertical loading were analyzed commendably by these expressions.
     (7) According to the theory of finite-length beams on the elastic foundation, the differential equations of the horizontal resistance, the deformation and the internal forces of the closed wall have been established. Based on the subsoil coefficient m method, the formulae of the internal forces and the displacement of the closed wall subjected to the horizontal loading or inclined loading were deduced. And the calculated results indicated that the formulae were reasonable.
引文
[1]许黎明.地下连续墙桥梁基础[J].公路,1995,(10):25-29
    [2]丛蔼森编著.地下连续墙的设计施工与应用[M].北京:中国水利水电出版社,2000
    [3]张慧.地下闭合墙基础与地基共同工作的空间分析[J].甘肃科学学报,2005,14(4):99-102
    [4]石桥忠良,郝育森.青森斜拉桥地下连续墙基础.郑铁科技通讯,1989,(4):70-85
    [5]潘振胄.地下连续墙在桥梁基础工程中的应用[J].铁道建筑技术,1990,(6):18-19
    [6]地中連続壁基礎恊会.地中連続壁基礎の展望[J].基礎工,2001,29(1):60-65
    [7]郝育森.日本的一种新型桥梁基础-地下连续墙沉井.国外桥梁,1990,(2):20-30
    [8]郝育森.明石海峡大桥1号锚墩设计.国外桥梁,1996,(2):50-56
    [9]周建军,饶思礼,张有光等.虎门大桥锚碇大型混合基础的设计与施工[J].桥梁建设,1995,(2):44-48
    [10]赵永文.桑布贡吉桥护岸地下连续墙基础施工[J].桥梁建设,1997,(2):71-77
    [11]郭慧光,孙曼,徐伟.地墙“巨无霸”--武汉阳逻长江公路大桥45m埋深的南锚碇圆形地下连续墙施工及受力特性分析[J].建筑施工,2004,26(3):188-191
    [12]胡永生,赵有明.珠江黄埔大桥锚碇基础地下连续墙施工技术[J].桥梁建设,2006,(5):59-61
    [13]凤懋润.敢教天堑变通途--中国现代公路桥梁建设成就[J].中国公路,2007,(12):18-23
    [14]刘明虎,付宇文.井筒式地下连续墙基础设计及应用[J].公路,2006,(5):52-56
    [15]日本建设机械化协会.地下连续墙设计与施工手册.中国建筑工业出版社,1983
    [16]陆震铨,祝国荣.地下连续墙的理论与实践[M].北京:中国铁道出版社,1987
    [17]P.P.Xanthakos.Slurry Walls as Structure System[M].New York:1994.
    [18]王卫东.承重地下连续墙与高层建筑桩箱基础及地基共同作用的理论和实测研究[D].上海:同济大学,1996
    [19]唐孟雄.高层建筑与承重地下连续墙及桩箱(筏)基础共同作用研究[D].上海:同济大学,1996
    [20]姜斌.地下连续墙兼作主体结构时结构设计方法的分析研究[D].南京:东南大学,1996
    [21]刘兴旺.地下连续墙维护和承重结构内力变形及承载机理分析[D].杭州:浙江大学,1999
    [22]Corbett B O,et al.A load beating diaphragm wall at Kensington and Chelsea Town Hall[A]. Diaphragm walls and anchorages[C].Institute of Civil Engineering,London,1975
    [23]Fishier F A.Diaphragm wall projects at Sesforth,Redcar,Bristol and Harrow[A].Diaphragm walls and anchorages[C].Institute of Civil Engineering,London,1975
    [24]Kienberger H.Diaphragm walls as load bearing foundations[A].Diaphragm walls and anchorages[C].Institute of Civil Engineering,London,1975
    [25]Ramaswamy S D,Pertusier E M.Construction of barrettes for high-rise foundation[J].J.Constr.Engng.,ASCE,1986,112(4):455-462
    [26]Johnson E G,Johnson K E,Erikson C M.Deep foundation elements installed by slurry wall techniques[A].In slurry walls:design,construction,and quality control[M].Philadelphia,1992,207-224
    [27]铃木雄三.RC地中連続壁基礎杭の品質施工管理およぴど施工事例[J].基礎工,2007,35(10):81-84
    [28]李卫民,从蔼森.墙桩(条桩)的设计[J].西部探矿工程,2006,(7):1-2
    [29]雷国辉,洪鑫,施建勇.壁板桩的研究现状回顾[J].土木工程学报,2005,38(4):103-110
    [30]范文田.地下刚性墙柱静力分析[M].北京:中国铁道出版社,1984
    [31]Baker C N J,Azam T,Joseph L S.Settlement analysis for 450 meter tall KLCC Towers[A].In vertical and horizontal deformations of foundations and embankments:Pro.of Settlement'[C].Geotech.Spe.Publ.1994,No.40,ASCE,Vol.2,1650-1671
    [32]Baker C N J,Drumright E E,Joseph L S,Azam T.The taller the deeper[J].Civ.Engng.,ASCE,1996,66(11):3A-6A
    [33]Verfel J.Rock grouting and diaphragm wall construction[A].Developments in geotechnical engineering 55[M].Elsevier,1989,397-403
    [34]Davidson R R.Foundation innovations cut costs[J].Civ.Engng.,ASCE,1987,57(12):54-56
    [35]Ho C E.Deep barrette foundation in Singapore weathered granite[A].Proc.11~(th) Southeast Asian Geotech.Conf[C].Singapore,1993,529-534
    [36]Thasnanipan N,Maung A W,Baskaran G Diaphragm wall and barrette construction for Thiam Ruam Mit Station box,MRT Chaloem Ratchamongkhon Line,Bangkok[A].Pro.Int.Conf.on Geotech.And Geol.Engng.,GeoEng 2000[C].Melbourne,Australia,2000,6p
    [37]Thasnanipan N,Tanseng P,Maung A W & Anwar M A.Barrettes:a versatile foundation for transmission line towers[A].Pro.Int.Conf.on Geotech.And Geol.Engng.,GeoEng 2000[C].Melbourne,Australia,2000,6p
    [38]Ng C W W,Rigby D B,Ng S W L & Lei G H.Field studies of well-instrumented barrette in Hong Kong[J].Journal of Geotechnical and Geoenvironmental Engineering,2000,126(1):60-73
    [39]Ng C W W,Rigby D B,Ng S W L & Lei G H.Closure to Field studies of well-instrumented barrette in Hong Kong[J].Journal of Geotechnical and Geoenvironmental Engineering,2001,127(5):468-470
    [40]Thorn E.The Oslo Plaza Hotel-Scandinavias tallest building,founded on slurry wall concrete panels on an extremely steep rock surface[A].Pro.12~(st) Int.Conf.on Soil mmech.And Found.Engng[C].1989,vol.3:1523-1526
    [41]Schlosser F,Simon B,Morey J.High capacity barrettes in a region of old underground quarries[A].Proc.Int.Conf.on Piling and Deep Found[C].London,1989,119-130
    [42]Hajnal I M,Orton J,Regele Z.Construction of diaphragm walls[M].Translated by A B Simon,John Wiley & Sons,1984
    [43]Ho C E,Lim C H.Barrettes designed as friction foundations:a case history[A].Proc.4th Int.Conf.on Case Histories in Geotech.Engng[C].St.Louis,Missouri,USA,1998,236-241
    [44]Ho C E,Tan C G.Barrette foundation constructed under polymer slurry support in old alluvium[A].Proc.12~(th) Southeast Asian Geotech.Conf[C].Kuala Lumpur,1996,379-384
    [45]地中連続壁基礎恊会.地中連続壁(耐震壁,基礎)各社の施工実績[J].基礎工,1987,15(11):5-9
    [46]#12
    [47]#12
    [48]石川勝美,伊勢本,昇昭.地中連続壁を採用した超高層集合住宅の基礎設計[J].基礎工,1993,21(4):42-46
    [49]#12
    [50]#12
    [51]地中連続壁基礎恊会.地中連続壁基礎の実績と動向[J].基礎工,2004,32(11):2-5
    [52]和田克哉,永田佳文,若林登,五瀬伸吾.連続地中壁による壁式基礎の支持機構(上)[J].橘梁と基礎,1991,25(10):33-39
    [53]和田克哉,永田佳文,若林登,五瀬伸吾.連続地中壁による壁式基礎の支持機構(下) [J].橘梁と基礎,1991,25(10):37-43
    [54]和田克哉,菅原聪,若林登.地中多壁基礎の設計と施工[J].基礎工,1992,20(2):46-52
    [55]Kruizinga J.Development of skin friction and base resistance of instrumented large bored piles under working load conditions[A].Pro.1~(st) Int.Geotech.Seminar on Deep Found.on Bored and Auger Piles[C].1988,435-442
    [56]Burland J B.Discussion(session 4-drilling muds)[R].Grouts and drilling muds in engineering practice.Butterworths,London,1963,223-225
    [57]Fleming W G K,Sliwinski Z J.The use and influence of bentonite in bored pile construction[R].CIRIA Rep.No.PG3,Construction Industry Research and Information Assoc.,London,1977
    [58]Mazzucato A,Natali A.Analysis of non-linear behaviour of reinforced concrete diaphragm walls under horizontal load[A].Proc.1st Int.Geotech.Seminar on Deep Found.on Bored and Auger Piles[C].(ed.W.F.van Impe).A.A.Balkema,Rotterdam,1988,239-244
    [59]Plumbridge G D.Sze JW C&Tham TT F.Full scalelateral load tests on bored piles and a barrete[A].Proe.Foundations,19~(th) Geotechnical Division Annual Seminar[C],Hong Kong Institution of Engineers,2000,211-220
    [60]Cernak B.The time effect of suspension on the behavior of piers[A].Proc.6th Eur.Conf.on Soil Mech.and Found.Engng.[C].Vienna,Austria.1976,Vol.1,111-114
    [61]Ng C W W,Lei G H.Performance of long rectangular barrettes in granitic saprolites[J].Geotech.and Geoenviron.Engng.,ASCE,2003,129(8):685-696
    [62]Felenius B H,Altae A,Kulesza R,Hayes J.O-cell testing and FE analysis of 28-m-deep barrette in Manila,Philippines[J].Geotech.and Geoenviron.Engng.,ASCE,1999,125(7):566-575
    [63]Decourt L.Predicted and measured behavior of non displacement piles in residual soils[A].Proc.2~(nd) Int.Geotech.Seminar on Deep Found.on Bored and Auger Piles[C].A.A.Balkema,Rotterdam,1993,369-376
    [64]Hamza M,Ibrahim M H.Base and shaft grouted large diameter pile and barrettes load tests [A].Proc.Geotech-Year 2000,Developments in Geotech.Engng[C].(eds.Balasubramaniam A.S.et al),Bangkok,Thailand,2000,vol.2,219-228
    [65]Thasnanipan N,Maung A W,Tanseng P.Barrettes founded in Bangkok subsoils,construction and performance[A].Proc.13~(th) Southeast Asian Geotech.Conf[C].Taipei,1998,573-578
    [66]Zhang L M.Behavior of laterally loaded large-section barrettes,Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2003,129(7):639-648
    [67]T.Y.Poh & I.H.Wong.Effects of Construction of diaphragm wall panels on adjacent ground:field trial[J].Journal of Geotechnical and Geoenvironmental Enginnering,1998,124(8):749-756
    [68]O' Neil M W.,Reese L C.Drilled Shalfts:construction procedures and design methods[J].Federal Highway Administration Publ.No.FHWA-IF-99-025,U.S.,Department of Transportation,1999
    [69]Linder W R,Siebke H H.The new European Standard EN 1356 "Execution of bored piles"[A].Proc.3~(rd) Int.Geotech.Seminar on Deep Found.on Bored and Auger Piles[C].A.A.Balkema,Rotterdam,1998,299-307
    [70]#12
    [71]刘自明.桥梁深水基础.北京:人民交通出版社,2003
    [72]海野隆哉.連続地中壁を用ぃた函型刚体基礎[J].土木学会誌,1980,65(4):35-42
    [73]#12
    [74]地中連続壁基礎恊会.最近の地中連続壁基礎の実绩と動向[J].基礎工,1999,27(12):2-5
    [75]地中連続壁基礎恊会.地中連続壁工法[J].基礎工,2000,28(3):23-31
    [76]#12
    [77]飯間仁,河合綱昌,野中進一朗,小林鎭雄.連続地中壁による高架橋基の施工(東大阪生駒電鉄東大阪線)[J].铁道土木,1985,(7):427-434
    [78]王化勤,王力兵.地下连续墙在桥梁基础工程上的应用[J].中南公路工程,1998,23(4):38-41
    [79]郝育森.日本的几种特殊桥梁基础.国外桥梁,1990,(4):16-26
    [80]曲尾理三郎,藤岡繁樹.東北新干線王子南部高架橋連壁剛体基礎工事[J].土木技術,1984,39(5):547-555
    [81]#12
    [82]山本戌,河村勝,横山雅臣.新猪名川大橋主塔基礎[J].基礎工,1993,21(4):50-55
    [83]其田誠,森田正,岡誠一.浮島橋地中連続壁基礎の設計と施工[J].基礎工,1993, 21(4):84-88
    [84]#12
    [85]海野隆哉,大植英亮.地下連統壁の井筒設計法と現場水平載荷試驗[J].土木技術,1980,36(5):48-57
    [86]春原俊英,曾根義雄,中井雅彦.連壁剛体基礎工法の設計施工(東北新干線王子南部工区)[J].鉄道土木,1984,(8):51-58
    [87]栗山道夫.基礎の水平載荷試驗[J].基礎工,1996,24(5):27-33
    [88]高橋将德,古池正宏,茶谷文雄.地下連統壁による井筒基礎の載荷試驗[J].基礎工,1984,12(12):109-113
    [89]大志万和也.地中連統壁の設計[J].橋梁と基礎,1986,20(1):44-48
    [90]高木章次,茶林一彦.地下連統壁の設計[J].土木技術,1987,42(10):44-51
    [91]海野隆哉等.地下連統壁井筒基礎の設計施工[J].基礎工,1979,7(11).
    [92]#12
    [93]浅野勝博,高橋幸浩,小笠原令和.鉄道橋基礎的設計例:連壁剛体基礎[J).基礎工,1982,10(12):70-77
    [94]松橋数保,高橋将德,山岡禮三.連統地中壁工法による基礎[J].土木学会誌,1983,68(12):51-58
    [95]海野隆哉.地下連統壁による井筒基礎[J].基礎工,1984,12(12):8-14
    [96]棚村史郎.地下連統壁による并筒基礎(連壁剛体基礎)の設計(J).基礎工,1984,12(12):51-58
    [97]松橋数保,高橋将德.道路橋における地下連壁井筒基礎の設計[J].基礎工,1984,12(12):74-80
    [98]森下忠等.地下連統壁井筒基礎の施工[J].基礎工,1984,12(12):81-85
    [99]西川恭爾,平野薰,加藤勝美.鉄道橋における地下連壁井筒基礎の設計[J].基礎工,1984,12(12):87-92
    [100]河井章好,岡田鉄三,福岡悟.大型地中連統壁の設計[J).橋梁と基礎,1985,19(4):11-17
    [101]岡原美知夫,木村嘉富.連統地中壁工法の基準[J].土木技術,1992,47(2):42-49
    [102]平井正哉.地中連統壁の設計と施工[J].基礎工,1997,25(2):57-63
    [103]平井正哉,田坂幹雄,二島建.地中連統壁基礎の設計例[J].基礎工,1997,25(2):95-101
    [104]田坂幹雄.地中連統壁基礎の設計事例[J].基礎工,1999,27(2):55-59
    [105]丛蔼森.“三合一”地下连续墙和非圆形大断面桩基的开发和应用[J].北京水利,1997,(1):26-28
    [106]丛蔼森.三合一地连墙和条形桩基施工[J].岩土钻凿工程,1997,(4):81-89
    [107]张彦昭,丛蔼森.地下连续墙和非圆形大断面桩的开发和应用[J].西部探矿工程,2005,(8):28-30
    [108]丛蔼森.非圆形大断面的地下连续墙深基础工程综述[A].第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004:146-154
    [109]周生华.地下连续墙垂直承载机理试验研究[D].上海:同济大学,1991
    [110]李农.地下连续墙垂直承载力试验研究[D].上海:同济大学,1993
    [111]李桂花,周生华,周纪煜等.地下连续墙垂直承载力试验研究[J].同济大学学报,1993,17(4):575-581.
    [102]王庆国.一字型、葫芦形地下连续墙垂直承载力试验研究[D].上海:同济大学,1998
    [103]傅德明,王庆国,夏明耀.地下连续墙垂直承载力现场试验研究[J].同济大学学报,1997,(2):24-32.
    [104]常红.异形地下连续墙基础沉降预测及群墙效应研究[D].上海:同济大学,1998
    [105]常红,夏明耀,傅德明.地下连续墙垂直承载力室内模型试验研究[J].同济大学学报,1998,26(3):279-284.
    [106]孙学先,崔文鉴.Q_4黄土地基地下连续墙水平承载模型试验研究[J].兰州铁道学院学报,1995,14(3):49-54
    [107]张琦.承重地下连续墙-箱形基础的沉降研究[D].上海:同济大学,1989
    [108]Mindlin R D.Force at a point in the interior of a semi-infinite solid[J].Physics,1936,7(5):195-202
    [109]王硕航.单片地下连续墙及墙、桩、箱复合基础中地下连续墙垂直承载力试验研究[D].上海:同济大学,1997
    [120]唐孟雄.地下连续墙竖向垂直力弹性分析[J].广州建筑,1997,(4):2-6.
    [121]王卫东.地下连续墙沉降计算[J].岩土工程学报,1999,21(1):122-125
    [122]王卫东.沉重地下连续墙与桩筏基础共同作用计算研究[J].结构工程师,1999,(2):39-43
    [123]Poulos H G,Davis E H.The settlement behavior of single axially loaded incompressible piles[J].Geotechnique,1968,18(2):351-371
    [124]常红,郑越.竖向承载地下连续墙的沉降计算[J].中国公路学报,2003,16(3):73-76
    [125]Randolph M F,Wroth C P.Analysis of deformation of vertically loaded piles[J].Journal of the Geotechnical Engineering,ASCE,1978,104(12):1465-1488
    [126]雷国辉,洪鑫,施建勇.壁板桩承载特性的近似三维分析[J].岩土力学,2004,25(4):590-594,600
    [127]雷国辉,洪鑫,施建勇.矩形壁板桩群桩垂直承载特性的理论分析[J].岩土力学,2005,26(4):525-530
    [128]洪鑫,雷国辉,施建勇.深置矩形刚性基础承载特性的理想弹塑性分析[J].岩土力学,2004,25(9):1379-1384
    [129]卢之伟,谢旭升,黄雨,周岳正.地震时地下连续墙围束效应与围束土壤超孔隙水压力之探讨[J].岩土工程学报,2007,29(6):861-865
    [130]薛松涛,张茂雨,谢丽宇.在地震波作用下连续墙的动力响应[J].四川建筑科学研究,2005,31(12):134-136
    [131]广东省建设委员会.地下连续墙结构设计规程(DBJ/T15-13-95).广州:华南理工大学出版社,1995
    [132]中华人民交通部.港口工程地下连续墙结构设计与施工规程(JTJ303-2003).北京:人民交通出版社,2003
    [133]吴胜东,吉林.润扬大桥悬索桥北锚碇基础方案比选[J].桥梁建设,2003,(2):44-46
    [134]马奕斌,何培勇.润扬大桥南汊悬索桥南锚碇基础冻结排桩法设计与施工[J].广东交通职业技术学院学报,2005,(3):20-22
    [135]徐国平,刘明虎,刘化图.阳逻长江大桥南锚碇圆形地下连续墙设计[J].公路,2004,(10):11-14
    [136]张有光,关华.虎门大桥西锚碇基础地下围水连续墙的施工技术[J].国外公路,1998,(5):49-51
    [137]赵永文.桑布贡吉桥护岸地下连续墙基础施工[J].桥梁建设,1997,(2):71-77
    [138]应伟强.地下连续墙在桥梁工程中的应用分析[J].城市道桥与防洪,2005,(2):37-41
    [139]李涛.铁路桥梁连续墙挖井基础设计方法的试验研究[J].中国铁道科学,1997,18(2):46-53
    [140]于书翰.黄土地区拱桥桥台人工开挖地下连续墙基础[J].西安公路交通大学学报,2000,20(4):32-35
    [141]陈晓东,龚维明,孟凡超等.井筒式地下连续墙基础竖向承载特性试验研究[J].岩土工程学报,2007,29(11):1665-1669
    [142]李涛.黄土地区地下连续墙基础承载特性试验研究[D].南京:东南大学,2006
    [143]文华,程谦恭,陈晓东等.矩形闭合地下连续墙桥梁基础竖向承载特性试验研究[J].岩土工程学报,2007,29(12):1823-1830
    [144]文华,程谦恭,孟凡超等.矩形闭合墙桥梁基础墙-土-承台相互作用研究[J].土木 工程学报,2007,40(8):67-73
    [145]孟凡超,李涛,陈晓东等.黄土地区单片地下连续墙水平承载特性试验研究[J].土木工程学报,2006,39(11):96-100
    [146]孙学先,崔文鉴.地下闭合墙基础的计算方法研究[J].兰州铁道学院学报,1991,10(2):60-69
    [147]孙学先.差分递推法分析弹性地下闭合墙基础[J].兰州铁道学院学报,1991,11(4):24-31
    [148]孙学先.刚性地下闭合墙基础变位与内力计算方法的研究[J].岩土工程学报,1992,14(4):45-52
    [149]李涛.黄土地区桥梁挖井基础设计方法研究[J].岩土工程学报,1997,19(3):47-54
    [150]张慧,许兰兰,孙学先.空间接触单元法分析地下闭合墙基础荷载传递[J].兰州交通大学学报,2004,23(6):67-69
    [151]舒中潘,宋章,冉雪梅.应用Marc软件进行地下连续墙基础的接触分析[J].路基工程,2007,(2):102-103
    [152]宋章,程谦恭,孟凡超等.矩形闭合地下连续墙基础沉降特性分析[J].公路,2007,(9):5-12
    [153]孟凡超,陈晓东,舒中潘.地下连续墙基础沉降数值分析[J].公路,2007,(3):55-58
    [154]龚维明,戴国亮,薛国亚等.桩承载力自平衡测试理论与实践[J].建筑结构学报,2002,32(1):82-88
    [155]张尚根,刘新宇.桩基大吨位静载荷试验中堆载对桩顶位移的影响分析[J].工程力学(增刊),1996:185-187
    [156]袁从华,章光.大吨位堆载法对单桩承载力试验的影响[J].岩土力学,1997,18(1):78-83
    [157]金跃华.基桩堆载测试用的800吨伞形反力架[J].地基处理,2000,11(1):70-71
    [158]罗伟新,王金生,丁志成.基桩静载试验中的几个常见问题[J].岩土工程界,2002,6(3):52-55
    [159]褚克南,张文炜,姚学朝等.软土地区桩基超大吨位堆载试验、装置及工艺方法研究[J].岩土工程学报,2003,25(1):41-46
    [160]武晓峰.桩基静载试验的几种反力装置与应用[J].国外油田工程,2004,20(8):32-34
    [161]戴国亮,龚维明,马林.两种静载荷试验方法的对比[J].工程力学(增刊),1997,2001:291-294
    [162]吴鹏,龚维明,梁书亭.桩基自平衡测试的可靠性分析[J].岩土工程学报,2005,27(5):545-548.
    [163]徐金法,龚维明.桩承载力自平衡测试技术[J].江苏交通工程,1998,(2):28-31
    [164]戴国亮.桩承载力自平衡测试的理论与实践[D].南京:东南大学,2003
    [165]江苏省技术监督局和江苏省建设委员会联合发布.桩承载力自平衡测试技术规程(DB32/T291-1999.江苏省地方标准,1999
    [166]齐静静.湿陷性黄土地区地基处理试验研究[D].南京:东南大学,2005
    [167]中华人民共和国行业标准.公路桥涵施工技术规范(JTJ041-2000).北京:人民交通出版社,2000
    [168]中华人民共和国行业标准.建筑桩基技术规范(JGJ 94-94).北京:中国建筑工业出版社,1995
    [169]叶俊能.沉管灌注筒桩工作性状研究[D][博士学位论文].杭州:浙江大学,2003
    [170]陈志军.路堤荷载下沉管灌注筒桩复合地基性状研究[D][博士学位论文].杭州:浙江大学,2005
    [171]Trochanis A M,Bielakm P.Three-dimensional nonlinear study of piles[J].J.Geoteck.Engng,ASCE,1991,GT3,429-447
    [172]方鹏飞.超长桩承载性状研究[D][博士学位论文].杭州:浙江大学,2003
    [173]Potyondy J G.Skin friction between various piles and construction materials[J].Geotechnique,1961,11(4):339-353
    [174]Acer Y B,Durgunoglu H T,Yumay M T.Interface properties of sands[J].Geotech.div.,ASCE,1982,108(4):648-654
    [175]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2003
    [176]江正荣.地基与基础施工手册[M].北京:中国建筑工业出版社,1994
    [177]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997
    [178]韩煊,张乃瑞.北京地区群桩基础桩土荷载分担的现场试验研究[J].土木工程学报,2005,38(11):89-95
    [179]Terzaghi K.Theoretical soil mechanics(4~(th) edition)[M].New York:John Wiley & Sons,1947:66-67
    [180]蒋波,应宏伟,谢康和.挡土墙后土体拱效应分析[J].浙江大学学报(工学版),2005,39(1):131-136
    [181]蒋波.挡土结构土拱效应及土压力理论研究[博士学位论文][M].浙江:浙江大学,2005
    [182]Atkinson J H,Potts D M.Stability of a shallow circular tunnel in cohesionless soil[J].Geotechnique,1977,27(2):203-215
    [183]Ono K,Yamada K.Analysis of the arching action in granular mass[J].Geotechnique, 1993,43(1):105-120
    [184]Hassiotis S,Chameau J L,Gunaratne M.Design method for stabilization of slopes with piles[J].Journal of the Geotechnical and Geoenvironmental Engineering,1997,123(4):314-323
    [185]张春明,李先炜.锚拉支架支护散体顶板的两个拱研究[J].岩石力学与工程学报,2003,22(1):65-69
    [186]李永刚,白鸿莉.垂直墙背挡土墙土压力分布研究[J].力学季刊,2003,(2):102-106
    [187]Dancygier A N,Karinski Y S.Response of a buried structure to surface repetitive loading[J].Engineering Structure,1999,21(5):416-424
    [188]Dancygier AN,Karinski Y S.Simple model to assess the effect of soil shear resistance on the response of soil-buried structures under dynamics loads[J].Engineering Structure,1999,21(12):1055-1065
    [189]Han J,Gabr M A.Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil[J].Journal of the Geotechnical and Geoenvironmental Engineering,2002,128(1):44-53
    [190]王广军.桩板墙工程土拱效应及合理桩间距研究[硕士学位论文][M].成都:西南交通大学,2004
    [191]梁晓丹,刘刚,赵坚.地下工程压力拱拱体的确定与成拱分析[J].河海大学学报(自然科学版),2005,33(3):314-317
    [192]肖世国,夏才初,李向阳等.管幕内顶进箱涵前端网格横截面尺寸确定[J].岩石力学与工程学报,2005,24(14):2593-2596
    [193]Hewlett W J,Randolph M F.Analysis of piled embankments[J].Ground Engineering,1988,21(3):12-18
    [194]Low B K,Tang S K,Choa V.Arching in piled embankment[J].Journal of Geotechnical Engineering,1994,120(11):1971-1937
    [195]Russle D,Pierpoint N.An assessment of design methods for piled embankments[J].Ground Engineering,1997,30(11):39-44
    [196]曹卫平,陈仁朋,陈云敏.桩承式加筋路堤土拱效应试验研究[J].岩土工程学报,2007,29(3):436-441
    [197]陈福全,李阿池,吕艳平.桩承式路堤中土拱效应的改进Hewlett算法[J].岩石力学与工程学报,2007,26(6):1278-1283
    [198]胡敏云,夏永承,高渠清.桩排式支护护壁桩侧土压力计算原理[J].岩石力学与工程学报,2000,19(3):376-379
    [199]胡敏云,夏永承,高渠清.无锚撑桩排式支护护壁桩侧土压力计算方法[J].岩石力学与工程学报,2000,19(4):517-531
    [200]胡敏云,夏永承.从深基坑护壁桩桩身弯矩分析桩侧土压力[J].力学与实践,2001,23:1620
    [201]贾海莉,王成华,李江洪.关于土拱效应的几个问题[J].西南交通大学学报,2003,38(4):398-402
    [202]贾海莉,王成华,李江洪.基于土拱效应的抗滑桩与护壁桩的桩间距分析[J].工程地质学报,2004,12(1):98-103
    [203]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(2):174-176
    [204]韩爱民,肖军华,梅国雄.被动桩中土拱效应特征与影响参数研究[J].工程地质学报,2006,14(1):111-116
    [205]李忠诚,杨敏,张慧.侧移土体被动桩成拱效应及主动侧土压力计算[J].力学季刊,2006,27(3):505-510
    [206]李忠诚,杨敏.被动桩土压力计算的被动拱-主动楔模型[J].岩石力学与工程学报,2006,25(2):4241-4247
    [207]应宏伟,蒋波,谢康和.平行竖墙问的土拱效应与侧土压力计算[J].水利学报,2006,37(11):1303-1308
    [208]应宏伟,蒋波,谢康和.考虑土拱效应的挡土墙主动土压力分布[J].岩土工程学报,2007,29(5):717-7722
    [209]Wang W L.Yen B C.Soil arching in slopes[J].Journal of the Geotechnical Engineering Division,ASCE,1974,100(GT1):61-78
    [210]Richard L,Handy M.The arch in soil arching[J].Journal of Geotechnical Engineering,ASCE,1985,111(3),302-318
    [211]Harrop Williams K.Arch in soil arching[J].Journal of Geotechnical Engineering,1989,115(3):415-419
    [212]吴子树,张利民,胡定.土拱的形成机理及存在条件的探讨[J].成都科技大学学报,1995,83:15-19
    [213]冯君,绿和林,王成华.普氏理论在确定抗滑桩间距中的应用[J].中国铁道科学,2003,24(6):79-81
    [214]程谦恭,张倬元,崔鹏.平卧“支撑拱”锁固滑坡动力学机理与稳定性判据[J].岩石力学与工程学报,2004,23(17):2855-2864
    [215]张建华,谢强,张照秀.抗滑桩结构的土拱效应及其数值模拟[J].岩石力学与工程学 报,2004,23(4):699-703
    [216]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(3):445-450
    [217]叶永峰.排桩支护结构中的土拱效应[硕士学位论文][M].郑州:郑州大学,2006.
    [218]郑学鑫.抗滑桩桩间土拱效应及其有限元模拟研究[硕士学位论文][M].南京:河海大学,2007
    [219]Perry M G,Handley M F.The dynamics arch in free-glowing granular material discharging from a model hopper[J].Trans.Inst.Chen Engrs,1967,45:367-371
    [220]Kishda H,Isemoto N.Behavior of sand plugs in open-ended steel pipe piles[C].Tokeyo:The 9~(th) Int Conf Soil Mech.,1977,1:601-604
    [221]Paikowsky S G.A static evaluation of soil plug behavior with application to the pile plugging problem[P.Dr Thesis][M].MIT,1989
    [222]Paikowsky S G.The mechanism of pile plugging in sand[C].The 22~(th) Offshore Technology Conference,OTC 6490,Houston,Texas:1990:593-604
    [223]Randolph M F,Leong E C,Houlsby G F.One Dimensional analysis of soil plugs in pipe pils[J].Geotechnicque,1991,41(4):587-598
    [224]陈惠发著,詹世斌译.极限分析与土体塑性[M].北京:人民交通出版社,1995
    [225]洪毓康.土质学与土力学(第二版)[M].北京:人民交通出版社,1997
    [226]龙驭球,包世华.结构力学[M].北京:高等教育出版社,1988
    [227]中华人民共和国交通部部标准.公路桥涵地基与基础设计规范(JTJ024-85).北京:人民交通出版社,1985
    [228]赵明华.倾斜荷载下基桩的受力研究[博士学位论文][D].长沙:湖南大学,2001
    [229]Seed H B,Reese L C.The Action of Soft Clay along Friction Piles[J].Transactions,ASCE,1957,122:731-754
    [230]Kezdi A.The Beating Capacity of Pile and Pile Groups[C].Proc.4~(th) ICSMFE,London,1957
    [231]佐藤悟.桩基承载力机理,土工技术[M](译).1965,20:1-5
    [232]Gardner W S.Consideration in the Design of Drilled Piers[J].Design Construction and Performance of Deep Foundaton,1975
    [233]Kraft L M,Ray R P,Kagawa T.Theoretical τ- z curves[J].Journal of the Geotechnical Engineering,Division,ASCE,1981,107(3):1465-1488
    [234]Vijayvergiya V N.Load-movement characteristics of piles[C].Proc.4~(th) symposium of Waterway Port,Coastal and Ocean Division,ASCE,Long Beach,Califormia,1997
    [235]Coyle H M,Reese L C.Load Transfer for Axially Piles in Clay.Journal of the Soil Mechanics and Foundation Division,ASCE,1966,92(2):1-26
    [236]Vesic A S.桩与土体系的荷载传递,地基与基础译文集,No.5,《桩基础》[M].北京:中国建筑工业出版社,1982,60-79
    [237]曹汉志.桩的轴向荷载传递及荷载-沉降曲线的数值计算方法[J].岩土工程学报,1986,8(6):39-49
    [238]潘时声.单桩荷载与位移曲线规律分析[J].清华大学学报(自然科学版),1994,34(5):85-92
    [239]潘时声.用分层积分法分析桩的荷载传递[J].建筑结构学报,1991,12(5):68-79
    [240]袁建新,钟晓雄.桩荷载与变位的数值模拟分析[J].岩土力学,1991,12(1):1-8
    [241]梁明德,刘岳.刚性群桩的非线性分析[J].岩土工程学报,1995,17(6):23-31
    [242]阳吉宝,钟正雄.超长桩的荷载传递机理[J].岩土工程学报,1998,20(6):108-112
    [243]罗惟德.单桩承载机理分析与荷载-沉降曲线的理论推导[J].岩土工程学报,1991,12(1):35-44
    [244]Etnesto Motta.Approximate Elastic-Plastic Solution for Axially Loaded Piles[J].Journal of the Geotechnical Engineering,ASCE,1994,120(9):1616-1624
    [245]陈龙珠,梁国钱,朱金颍等.桩轴向荷载-沉降曲线的一种解析算法[J].岩土工程学报,1994,16(6):30-38
    [246]朱金颖,陈龙珠,葛炜.层状地基中桩静载试验数据的拟合分析[J].岩土工程学报,1994,20(3):34-39
    [247]陈明中,龚晓南,严平.单桩沉降的一种解析法[J].水利学报,1996,17(1):61-66
    [248]邱钰,刘松玉,周琳.嵌岩桩单桩沉降计算的一种简化模型[J].东南大学学报,1999,29(5):131-136
    [249]邱钰,胡雪辉,刘松玉.用荷载传递法计算深长大直径嵌岩桩单桩沉降[J].土木工程学报,2001,34(5):72-75
    [250]刘杰,张可能.层状地基中单桩荷载传递规律[J].中南工业大学学报(自然科学版),2003,34(5):571-575
    [251]Jie Liu,H.B.Xiao,J.Tang,Q.S.Li.Analysis of Load-Transfer of Single Pile in Layered Soil[J].Computers and Geotechnics,2004,31(1):127-135
    [252]洪鑫,雷国辉,施建勇.双线性荷载传递函数的单桩荷载沉降关系统一解[J].岩土工程学报,2004,26(3):428-431
    [253]王哲.大直径灌注筒桩承载性状研究[博士学位论文][D].杭州:浙江大学,2005
    [254]肖宏彬.竖向荷载作用下大直径桩的荷载传递理论及应用研究[博士学位论文][D]. 杭州:浙江大学,2005
    [255]罗晓辉,叶火炎.桩身荷载传递的弹塑性分析方法[J].岩土力学,2005,26(7):1090-1094
    [256]赵明华,杨明辉,曹文贵等.确定嵌岩灌注桩竖向承载力的荷载传递法[J].岩石力学与工程学报,2004,23(8):1398-1402
    [257]赵明华,刘江波,杨宇.[J].中南公路工程,2004,29(3):1-4
    [258]赵明华,邹丹,邹新军.基于荷载传递法的高承台桩基沉降计算方法研究[J].岩石力学与工程学报,2005,24(13):2310-2314
    [259]赵明华,何俊翘,曹文贵等.基桩竖向荷载传递模型及承载力研究[J].湖南大学学报(自然科学版),2005,32(1):37-41
    [260]赵明华,邹丹,邹新军.群桩沉降计算的荷载传递法[J].工程力学,2006,23(7):119-123
    [261]费康.现浇混凝土薄壁管桩的理论与实践[博士学位论文][D].南京:河海大学,2004
    [262]朱明双.现浇筒桩桩_土共同作用试验与数值研究[博士学位论文][D].杭州:浙江大学,2006
    [263]王正林,龚纯,何倩编著.精通MATLAB科学计算[M].北京:电子工业出版社,2007
    [264]桩基工程手册编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995
    [265]韩安理.水平承载桩的计算[M].长沙:中南大学出版社,2004
    [266](日文)日本道桥协会.地下连续墙基础设计施工指针.1992
    [267]胡人礼.桥梁桩基础分析与设计[M].北京:中国铁道出版社,1987
    [268]赵明华编著.桥梁桩基计算与检测[M].北京:人民交通出版社,2000.
    [269]金一庆,陈越,王冬梅编著.数值方法[M].北京:机械工业出版社,2007.
    [270]孙训方,方孝淑,关来泰编.材料力学(第四版)[M].北京:高等教育出版社,2002.
    [271]许黎明.一种新的桥梁基础型式-地下连续墙基础[J].国外桥梁,1995,(3):230-235
    [272]郭慧光,刘玉涛,徐伟.阳逻长江公路大桥南锚碇基础深基坑开挖模拟与实测分析[J].桥梁建设,2004,(3):16-19
    [273]李武,李鹤年.珠江黄埔大桥南锚碇地下连续墙成槽施工泥浆使用技术[J].桥梁建设,2007,(3):64-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700