用户名: 密码: 验证码:
基于性能抗震设计理论的城市高架桥抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于对现代地震经验和教训的深刻反思,美国学者于20世纪90年代初提出了基于性能的抗震设计理论,这是工程抗震发展史上的一个重要里程碑。基于性能的抗震设计的目的是将所设计的结构在受到不同水平地震作用下的性能达到一组预期的性能目标;它使抗震设计目标由传统的以生命安全为单一设防目标转为考虑生命安全与财产损失两方面的具体要求,强调了“个性”设计。高架桥是现代化大城市的立体交通网络中关键的基础设施,随着城市现代化的发展,在城市生命线工程中占有越来越重要的地位。本文在对城市高架桥的抗震设防水准、性能水准和基于性能抗震设计理论弹性设计等方面的简单探讨基础上,以桥墩顶点位移延性系数为设计参数,建立了一套完整的基于性能抗震设计理论的抗震设计方法,并着重研究了几个相关的关键性问题。
     1.提出了城市高架桥的抗震设防水准的建议值和高架桥重要性分类标准,并采纳改变设计基准期的方法来体现重要性的差别;提出了城市高架桥的5级性能水准和4个性能目标,确定采用桥墩顶点的位移延性系数作为性能指标;对常规城市高架桥推导了桥墩位移延性系数、破损指标与性能水准的对应关系。
     2.根据各个重要性等级下各级抗震设防水准下的超越概率,推导了地震影响系数最大值α_(max)的具体数值,并制作成表格,可用于基于性能的结构弹性阶段的设计,为设计人员提供了更广泛更灵活的选择。
     3.选取了434条地震波,按《双层城市高架桥抗震设计指南》关于场地类别和地震动特征周期分区的要求分为12组,对大量具有不同屈服强度系数的单自由度体系在进行了弹塑性时程分析,求得了延性需求谱和基于A_y-D_y格式的地震需求谱,并探讨了阻尼比对延性需求谱的影响。研究表明:两种需求谱与结构的强度水平、自振周期有关;阻尼比影响系数与结构的阻尼比、自振周期有关;以上两种需求谱和阻尼比影响系数都受场地类别和地震动特征周期分区等因素的显著影响。通过非线性回归分析,建立了考虑场地类别和地震动特征周期分区等因素的两种需求谱和阻尼比影响系数的数学表达式,其成果可供基于《双层高架桥抗震设计指南》和《城市桥梁抗震设计规范》的高架桥弹塑性阶段设计和相关研究直接使用。特别是A_y-D_y格式的地震需求谱,具有如下性质:过原点的射线与屈服强度系数的需求谱曲线相交,各交点对应的周期都相同,这为实现考虑多级性能目标的基于位移的结构抗震设计提供了便利。
     4.从5个独立桥墩和6个全桥结构在十几条地震记录作用下的弹塑性时程分析入手,对桥梁结构Push-over分析采用的水平加载模式进行了研究。分析结果表明:对于规则(长细比大于2.5小于10)独立桥墩,采用基于位移的水平加载模式对桥墩进行Push-over分析比基于水平力模式更加合理;桥墩的位移模式由第1模态振型确定,并可简化为桥墩顶部重心处施加一个位移的方式。对于全桥结构,通过对桥梁上部结构位移、桥墩顶点位移和桥墩底部剪力等指标分布规律的分析,得到全桥结构Push-over分析的水平加载模式可采纳在上部结构(各桥墩对应点处)重心处施加水平位移的方式,全桥结构的位移模式由上部结构的模态振型(组合)确定。
     5.结合求得的延性需求谱和A_y-D_y格式的地震需求谱的数学表达式,提出了结构非线性位移反应的简化求解方法——弹塑性需求谱法。在阐述了弹塑性需求谱法的理论依据基础上,提出用该方法计算桥梁结构弹塑性位移的具体步骤:首先借助模态Push-over分析,将非线性多自由度体系分解为多个独立的非线性单自由度体系及确定有关参数;运用基于A_y-D_y格式的地震需求谱的特点,确定结构在不同模态各级地震作用下的屈服强度系数;根据延性需求谱,确定位移延性系数并得到等效单自由度体系的位移,最后将结果转化为多自由度体系,并进行组合。
     6.从Mander等人给出的约束应力——应变的本构关系出发,通过一系列的假定,得出了矩形、圆形截面桥墩力学配箍率ω_w、轴压比η_k和曲率延性系数μ_φ之间的关系表达式——桥墩的变形能力公式;将之与25组试验数据进行对比,本文公式与试验结果在平均意义上吻合较好。
     7.阐述了城市高架桥基于性能的抗震设计的两个阶段和具体的设计步骤:一是弹性设计阶段,这一阶段的设计过程为大家所熟悉,主要是采用反应谱法进行设计;二是弹塑性设计阶段,主要的步骤为:(1)采用弹塑性需求谱法求解结构在指定地震作用下的弹塑性位移;(2)在指定性能目标下,对桥墩的变形能力进行设计。以某城市高架桥的一联作为算例,进行了基于性能的抗震设计,并将计算结果与弹塑性时程分析结果进行比较,证明了本文方法的正确有效。
Based on the profound reconsidering to modern earthquake experience and lesson, the American scholars proposed performance-based seismic design theory in the beginning of 1990s, this is an important milestone in the engineering seismic development history. The core content of the performance -based seismic design theory is to make the structure achieves a group of anticipated performance objectives under different design earthquake levels; It causes the seismic design objective changed from the traditional objective which taking the safety as the single defended goal to consider safety and the property damage two aspects requirement, emphasizing the individual design. The viaduct is the essential infrastructure in transport networks of modern cities, along with the development of urbanization process, it holds the more and more important status in the city lifeline project. Based on the simple discussion on urban viaduct earthquake design levels, performance levels and structural performance-based seismic elastic design, in this dissertation , a set of performance-based seismic design method for urban viaduct is established completely by taking the bridge pier top displacement ductility coefficient as design parameter, and several related key problems are emphatically studied.
     1. Proposed the purposed value of the urban viaduct earthquake design levels and importance classification levels, and by changing the design reference period method to represent the important difference; Proposed the urban viaduct 5 performance levels and 4 performance objectives; Selected the displacement ductility coefficient of bridge pier top as the performance parameter; It is deductived in this dissertation about the corresponding relations of displacement ductility coefficient of bridge pier top, the damage index and the performance levels to conventional urban viaduct.
     2. According to the exceeding probability under all of design earthquake levels in certain important level, the earthquake affecting coefficient maximum α_(max) is deductived and manufactured to table form, this is available to performance-based seismic design in elastic stage, and provided a more widespread more flexible choice to design personnel.
     3. In this dissertation, 434 earthquake ground motion records are selected, and be classified into 12 groups according to the soil conditions and the earthquake ground motion characteristic periods grouping in "Double-decked Urban viaduct Earthquake resistance Design Guide", The elasto-plastic time history analysis is carried on to a great deal of SDOF system with various yield strength coefficient, and obtained the ductility demand spectrum,the A_y-D_y form earthquake demand spectrum and the damping ratio influence coefficient. The research indicated that, the two kinds of demand spectra are related to yield strength coefficient and periods,and the the damping ratio influence coefficient are related to damping ratio, the above three items depend on soil conditons and earthquake ground motion characteristic period groupings strongly. Through the non-linear regression analysis, the mathematical expressions of above two kinds of demand spectra and the damping ratio influence coefficient are established that considering soil conditions and earthquake motion characteristic periods grouping, it might supply in viaduct design in plastic randge and correlative research based on "Double-decked Viaduct Earthquake resistance Design Guide" and "City Bridge Earthquake resistance Design Standard" .Specially the A_y-D_y form demand spectrum, that has the following characteristic of that structural periods represented by radial lines which crossing zero point intersecting demand spectra with different ductility factors are all the same. This has provided the convenience for the realization multiple performance objectives in displacement-based seismic design.
     4. In this dissertation, the lateral load pattern for bridge Push-over analysis is studied by means of elasto-plastic time history analysis to 5 single piers and 6 whole bridge structures under tens of earthquake ground motion records. The analysis result indicated that: to regular single pier (slenderness ratio is bigger than 2.5 and smaller than 10) , it is more reasonable that by using displacement-pattern-based lateral load pattern in bridge Push-over analysis than lateral force-pattern-based; The bridge pier displacement pattern is determined by the 1st vibrate mode, and may be simplified to a single displacement that loading on the center of gravity of bridge superstructure. As for the whole bridge structure, by analyzing the distributation of the displacement of superstructure, the displacement of pier top and the pier base shearing force, the Push-over analysis displacement pattern is determined by the vibrate mode and it's combination of superstructure.
     5. Based on the ductility demand spectrum and the A_y-D_y form demand spectrum, Elasto-plastic demand spectral method is proposed to calculate the non-linear displacement responded. The basic solving process of elasto-plastic demand spectral method is put forward. Firstly , the MDOF system is decomposed into several inelastic SDOF systems using modal Push-over analysis, and to determined related parameter; Secondly, the yield strength coefficient under difference vibrate mode and difference design earthquake levels are determined using A_y-D_y form demand spectrum; Thirdly, according to the ductility demand spectrum, the displacement ductility coefficient and the equivalent SDOF system displacement are obtained; Finally, the displacement of equivalent SDOF system is transformed to MDOF system, and be combined.
     6. Starting with the stress-strain constetutive relationship of confined concrete which from Mander et al., through a series of hypotheses, the deformation capacity formulas of rectangular, circular section bridge pier are proposed , which shows the relationship among mechanical stirrup reinforment ratioω_w, the axial compression ratioη_k and the curvature ductility coefficientμ_φ. At the same time , the formula is evaluated with 25 group of tentative data, and the result showsμ_φcalculated by the formula approaches to test data in the average significance.
     7. The urban viaduct design procedure based on performance seismic design theory is proposed: Firstly, the response spectrum method is used in the elastical design range, that is familiar with for everybody; Secondly, in elasto-plastic design stage, the main step is: (1) Calculating the elasto-plastic displacement under a certain design earthquake level by using the elasto-plastic demand spectral method; (2) Designing the deformation capacity of bridge pier under a certain performance objective. The completed design procedure is illustrated with a urban viaduct, and the elasto-plastic time history analysis is used to validate this method. It shows that the elasto-plastic demand spectrum method is effective and correct to calculate the nonlinear displacement.
引文
[1]李爱群,高振世.工程结构抗震与防灾.南京:东南大学出版社,2003,1-10
    [2]http://neic.usgs.gov
    [3]Applied Technology Council.Seismic evaluation and retrofit of existing concrete building.ATC-40,Redwood City(CA),1996
    [4]Federal Emergency Management Agency.NEHRP guidelines for the seismic rehabilitation of buildings.FEMA273.FEMA274.Commentary.Washington(DC),1995
    [5]Structural Engineers Association of California.SEAOC Version 2000.Performance based seismic engineering of buildings.Vols.Ⅰ and Ⅱ:Conceptual Framework.Sacramento(CA),1995
    [6]王亚勇.我国2000年抗震设计模式展望.建筑结构,1999(6):13-19
    [7]王光远,吕大刚.基于最优设防烈度和损伤性能的抗震结构优化设计.哈尔滨建筑大学学报,1999(10):1-5
    [8]谢礼立,马玉宏.基于抗震性态的设计标准研究.地震学报,2002(2):200-209
    [9]谢礼立,马玉宏.现代抗震设计理论的发展过程.国际地震动态,2003(10):1-8
    [10]张新培.基于性能的抗震结构设计理论的若干进展.四川建筑科学研究,2001(1):34-35
    [11]GB50011-2001,建筑抗震设计规范
    [12]范立础,李建中,王君杰.高架桥抗震设计.北京:人民交通出版社.2001(4):210-229
    [13]范立础.城市桥梁抗震设计规范中若干问题——第九届全国结构工程学术会议特邀报告.《工程力学》增刊,2000:074-085
    [14]高小旺,鲍霭斌.地震作用的概率模型及其统计参数.地震工程与工程振动,1985(5)
    [15]FEMA356.Pre-standard and Commentary for the Seismic Rehabilitation of Buildings.Federal Emergency Management Agency,2001(11)
    [16]K.G.Smith.Innovation in earthquake resistant concrete structure design philosophies;a century of progress since Hennebiques patent.Engineering Structures,2001(23):72-81
    [17]谢礼立,张晓志,周雍年.论工程抗震设防标准.地震工程与工程振动,1996,16,(1):1-7
    [18]洪峰,谢礼立.工程结构抗震设防水准的决策分析.地震工程与工程振动,1999(2):9-14
    [19]张令心,等.结构抗震设防标准及其决策分析.地震工程与工程振动,2002,22(2):28-32
    [20]叶爱君,范立础.大型桥梁的抗震设防标准探讨.地震工程与工程振动,2006,26(2):8-12
    [21]齐怀恩,王光远.公路桥梁抗震设防标准的研究.东北公路,1999,22(4):48-51
    [22]CECS160:2004,中国工程建设标准化协会标准.建筑工程抗震性态设计通则(试用).北京:中国计划出版社,2004
    [23]Priestley M.J.N..Performance based seismic design.12th World Conference on Earthquake Engineering,Auckland,2000,Paper No.2831
    [24]Fajfar,P.,Krawinkler,Helmut.Seismic design methodologies for the next generation of codes:Proceedings of the International Workshop on Seismic Design Methodologies for the Next Generation of codes.Bled,Slovenia,June 1997
    [25]周云,安宇,梁兴文.基于性态的抗震设计理论和方法的研究与发展.世界地震工程,2001(7):1-7
    [26]邢燕,牛荻涛.基于结构性能的抗震设计与抗震评估方法综述.西安建筑科技大学学报(自然科学版),2005(3):24-28
    [27]Priestley,M.J.N.,Seible,F,and Calvi,G.M.Seismic Desigen and Retrofit of Bridges.New York:John Wiley & Sons,1996
    [28]Mander JB,Priestley MJN,Park R.Theoretical Stress-strain Model for Confined Concrete.Struct.Engin.ASCE 1988,114(8):1804-26
    [29]Hoshikuma J.,Kawashima K.,Nagaya K.et al.Stress-strain Model for Confined Concrete in Bridge Piers.ASCE,Journal of Structural Engineering,1997,123(5):624-633
    [30]范立础,卓卫东.桥梁延性抗震设计.北京:人民交通出版社,2001
    [31]Waston,S.,Zahn,S.A.,Park,R..Confining reinforcement for concrete columns,Structural Eng.ASCE,1994,120(6):1798-1824
    [32]刘庆华.钢筋混凝土桥墩的延性分析.同济大学学报,1998,26(3):245-249
    [33]Razvi S,Saatcioglu M.Confinement Model for High Strength Concrete.ASCE,Journal of Structural Engineering,1999,125(3):281-289
    [34]Assa B,Nishiyama M,Watanabe F.New Approach for Modeling Confined Concrete 1:Circular Columns.ASCE,Journal of Structural Engineering,2001,127(7):743-750
    [35]Xiao Y,Wu H.Compressive Behavior of Confined Concrete by Carbon Fiber Composite Jackets.ASCE,Journal of Materials in Civil Engineering,2000,12(2):139-145
    [36]Shahawy M,Mirmiran A,Beitelman T.Tests and Modeling of Carbon Wrapped Concrete Columns.Composites:Part B,2000(31):471-480
    [37]Baris Binici,Khalid M.Mosalam.Analysis of Reinforced Concrete Columns Retrofitted with Fiber Reinforced Polymer Lamina.Composites:Part B,38(2007) 265-276
    [38]Zhenyu Zhua,Iftekhar Ahmadb,Amir Mirmirana.Fiber Element Modeling for Seismic Performance of Bridge Columns Made of Concrete-Filled FRP Tubes.Engineering Structures,2006(28):2023-2035
    [39]卓卫东,范立础.GFRP管-混凝土组合桥墩的概念及其抗震性能.福州大学学报(自然科学版),2005,33(1):73-79
    [40]Baris Binici.An Analytical Model for Stress-strain Behavior of Confined Concrete.Engineering Structures,2005(27):1040-1051
    [41]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨.地震工程与工程振动,2005(2):43-48
    [42]马宏旺,赵国藩.钢筋混凝土矩形柱截面曲率延性系数概率分析.大连理工大学学报,2001,41(4):485-490
    [43]王建民,朱唏.圆截面R C桥墩曲率极限状态和延性的概率分析.土木工程学报,2006,39(12):88-94
    [44]范立础.桥梁抗震.上海:同济大学出版社,1997
    [45]Caltrans seismic design criteria version 1.2
    [46]日本道路桥示方书.第五卷,耐震设计篇
    [47]Code of Practice for the Design of Concrete Structures,NZS3101:1982
    [48]Eurocode 8-Design provisions for earthquake resistance of Structures-Part 2:Bridges.
    [49]Standard Specifications for Highway Bridges,16th Edition,Division Ⅰ-A:Seismic Design.Washington:American Association of State Highway and Transportation Officials(AASHTO),Inc.,1995
    [50]Guyader,Andrew C.,Iwan,Wilfred D.User guide for AutoCSM:automated capacity spectrum method of analysis:version 1.1.EERL 2004-05,Earthquake Engineering Research Laboratory,California Institute of Technology Pasadena
    [51]FEMA 440,Applied Technology Council,Report No.FEMA 440,Federal Emergency Management Agency.(ATC-55 Project),2005
    [52]Anil K Chopra,Rakish K Goel.Capacity Demand Diagram Method for Estimating Seismic Deformation of Inelastic Structures:SDOF System.University of California,Berkeley,PEER Report1999/02
    [53]Peter Fajfar.Capacity Spectrum Method Based on Inelastic Demand Spectra.Earthquake Engineering and Structural Dynamics,1999,28(9):979-993
    [54]王东升,李宏男,赵颖华,王国新.Ay-Dy格式地震需求谱及其在结构性能抗震设计中的应用.建筑结构学报,2006,27(1):60-65
    [55]Newmark NM,Hall WJ.Seismic design criteria for nuclear reactor facilities.Building Research Series No.46,National Bureau of Standards,US Department of Commerce,Washington,DC,1973.p.209-36
    [56]Riddel R,Newmark NM.Statistical analysis of the response nonlinear systems subjected to earthquakes.Structural Research Series No.468,Department of Civil Engineering,University Illinois,Urbana,1979
    [57]Nassar A,Krawinkler H.Seismic demands for SDOF and MDOF systems.Report No.95,The John A.Blume Earthquake Engineering Center,Stanford University,Stanford,CA,1991
    [58]Vidic T,Fajfar P,Fischinger M.A procedure for determining consistent inelastic design spectra.Proceeding of Workshop nonlinear seismic analysis of RC structures,Slovenia,1992
    [59]Lee LH,Han SW,Oh YH.Determination of ductility factor considering different hysteretic models.Earthquake Eng Str-uct Dyn1999;28(9):957-977
    [60]Elghadamsi FE,Mohraz B.Inelastic earthquake spectra.Earthquake Eng Struct Dyn 1987;15(2):91-104
    [61]Krawinkler H,Rahnama M.Effects of soft soils on design spectra.In:Proceedings of the 10th World Conference on Earthquake Engineering,vol.10,Madrid,Spain,1992.p.5841-6
    [62]Miranda E.Site-dependent strength reduction factors.J Struct Eng(ASCE)1993;119(12):3503-19
    [63]卓卫东,范立础.结构抗震设计中的强度折减系数研究.地震工程与工程振动,2001,21(1):84-88
    [64]翟长海,公茂盛等.工程结构等延性地震抗力谱研究.地震工程与工程振动,2004,24(1):22-29
    [65]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震 工程与工程振动,2004,24(1):39-48
    [66]翟长海,谢礼立.多自由度体系效应对强度折减系数的影响.工程力学,2006,123(11):33-37,69
    [67]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动,2004,24(1):39-48
    [68]柳春光,包峰.基于公路工程规范地震需求谱研究.世界地震工程,2006,22(3):21-26
    [69]王东升,李宏男,王国新.双向地震动作用弹塑性反应谱研究.大连理工大学学报,2005,45(2):248-254
    [70]R.Scott Lawson.Nonlinear Static Push-over Analysis-Why,When,and How?.5th U.S.National Conference on Earthquake Engineering,1994
    [71]Krawinkler H.,Seneviratna G.D.P.K.Pros and cons of a pushover analysis of seismic performance evaluation.Engineering Structures,1998(20):452-464
    [72]Gupta B.,Kunnath S K.Adaptive spectra-based pushover procedure for seismic evaluation of structures.Earthquake Spectra,2000,16(2):367-391
    [73]Chopra A.K.,Goel R.K..A modal pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluation.Report No.PEER 2001/03,Pacific Earthquake Engineering Research Center,University of California,Berkeley,2001
    [74]Chintanapakdee Chatpan,Chopra Anil K.Evaluation of the modal pushover analysis procedure using vertically regular and irregular generic frames.Earthquake Engineering Research Center,University of California,Berkeley,2002
    [75]Chopra A.K.,Goel R.K..A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings:theory and preliminary evaluation.Earthquake Engineering Research Center,University of California,Berkeley,2003
    [76]Chintanapakdee Chatpan,Chopra Anil K.Evaluation of modal pushover analysis using vertically irregular frames.13th World Conference on Earthquake Engineering:Conference Proceedings,Vancouver,British Columbia,Canada,August 1-6,2004,Paper No.2139
    [77]王克海,李茜.基于模态分析的Push-over方法在桥梁抗震分析中的应用.铁道学报,2006(4):79-84
    [78]李琪,顾荣蓉,缪志伟,王德信.基于位移模式静力弹塑性分析方法的研究.河海大学学报(自然科学版),2005(11):688-691
    [79]潘龙.基于推倒分析方法的桥梁结构地震损伤分析与性能设计.上海同济大学博士学位论文,2001
    [80]杨溥,李英民,熊振勇,夏洪流.能力曲线折线简化方法对比研究.重庆建筑大学学报,2005(8):59-63
    [81]Krawinkler H.,Seneviratua G.D.P.K.Pros and cons of a pushover analysis of seismic performance evaluation.Engineering Structures,1998(20):452-464
    [82]Fajfar P.A nonlinear analysis method for performance-based seismic design.Earthquake Spectra,2000,16(3):573-592
    [83]Priestley M J N.Myths and Fallacies in Earthquake Engineering-Conflicts Between Design and Reality.In Proceedings of the Tom Paulay Symposium-"Recent Developments in Lateral Force Transfer in Buildings",San Diego,CA September 1993
    [84]Kowalsky M J.Priestley M J N.Macrae G A.Displacement-based design of RC bridge column in seismic regions.Earthquake Engineering and Structural Dynamics,1995,24(12):1623-1643
    [85]Chopra A K,Goel R K.Direct displacement-based design:use of inelastic vs elastic design spectra.Earthquake Spectra,2001,1(1):47-64
    [86]Qiang X.A direct displacement-based seismic design procedure of inelastic structures.Earthquake Structure,2001,23(11):1453-1460
    [87]Qiang Xue,Cheng-Chung Chen.Performance-based seismic design of structures:a direct displacement-based approach.Engineering Structures,2003(25):1803-1813
    [88]弓俊青,朱唏.以位移为基础的钢筋混凝土桥梁墩柱抗震设计方法.中国公路学报,2001,14(4):42-46
    [89]黄建文,朱唏.近场地震作用下钢筋混凝土桥墩基于位移的抗震设计.土木工程学报,2005,38(4):84-90
    [90]Calvi G.M,Kingsley G.R.Displacement-based seismic design ofmulti-degree-of-freedom bridge structures.Earthquake Engineering and Structural Dynamics,1995,24(9):1247-1266
    [91]Kowalsky M.J.Direct Displacement-Based:A Seismic Design Methodology and its Application to Concrete Bridges.San Diego:University of California,1997
    [92]Kowalsky M.J.A displacement-based approach for the seismic design of continuous concrete bridges.Earthquake Engineering and Structural Dynamics,2002,31(3):719-747
    [93]Hazim M.DWAIRI.Equivalent Damping in Support of Direct Displacement-Based Design with Applications to Multi-Span Bridges.North Carolina State University,2004
    [94]Priestley M.J.N,Kowalsky M.J.Direct displacement-based seismic design of concrete buildings.Bulletin of the New Zealand National Society for Earthquake Engineering,2000,33(4):421-444
    [95]马玉宏,谢礼立.考虑地震环境的设计常遇地震和罕遇地震的确定.建筑结构学报,2003,23(1):43-47,67
    [96]JTJ004-89,公路工程抗震设计规范.
    [97]GB50220-95,城市道路交通规划设计规范
    [98]Williams M.Suggested Improvement to Performance-based Seismic Damage Indices for Concrete Structures:State-of-art Review.Earthquake Spectra.1995,(1):319-349
    [99]Fajfar P.Equivalent ductility factors taking into account low-cycle fatigue.Earthquake Engineering and Structural Dynamics.1992,21(10):837-848
    [100]Park Y J,Ang A H-S.Mechanistic Seismic Damage Modal for Reinforced Structures.Journal of Structural Engineering,ASCE,1985,111(4):722-739
    [101]Ghobamh A,Abou-Elfath H,Biddah A.Response-based damage assessment of structures.Earthquake Engineering and Structural Dymamics.1999,28(1):79-104
    [102]Kunnath,S.K.,A E1-Bahy,A.W,Taylor,W.C.Stone.Cumulative seismic damage of reinforced concrete bridge piers.NISTIR 6075.Gaithersburg,MD:National Institute of Standards and Technology.October,1997
    [103]王赫.建筑工程事故处理手册.北京:中国建筑工业出版社.2000(12)
    [104]GB50010-2002,中华人民共和国建设部.建筑结构设计规范.
    [105]M.J.N.普瑞斯特雷,F.塞勃勒等.桥梁抗震设计与加固.袁万城等译.北京:人民交通出版社,1997
    [106]日本建筑防灾协会.震灾建筑物被灾度区分判定标准及复旧技术指南.
    [107]牛荻涛,任利杰.改进的钢筋混凝土结构地震破坏模型.地震工程与工程振动, 1996,16,(4):44-54
    [108]刘伯权,白绍良.抗震结构的等效延性破坏准则及其子结构试验验证.地震工程与工程振动,1997,17,(3):77-83
    [109]何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤性能设计.地震工程与工程振动,2000,20,(2):31-38
    [110]周定松.钢筋混凝土框架结构基于性能的抗震设计方法.同济大学博士学位论文,2004
    [111]李亚琦.中国地震危险性特征区划.哈尔滨:中国地震局工程力学研究所
    [112]《中国地震动区划图》宣贯教材(GB18306-2001).中国标准出版社,2001
    [113]Mettupalayanm V.Sivaselvan,Andrei M.Reinhom.Hysteretic models for deteriorating inelastic structure.Journal of Engineering Mechanics,ASCE,2000,126(6):633-640
    [114]Miranda E,Bertero V V.Evaluation of strength reduction factors for earthquake-resistant Design.Earthquake Spectra,1994,10(2):357-379
    [115]周雍年,周正华,于海英.设计反应谱长周期区段的研究.地震工程与工程振动,2004,24(2):15-18
    [116]龚湖广,沈蒲生.一种基于位移的改进弹塑性静力分析方法.地震工程与工程振动,2005,25(3):18-23
    [117]Antoniou A,Pinho R.Development and Verification of a displacement-based adaptive pushover procedure.Journal of Earthquake Engineering.2004,8(5):643-661
    [118]Antonious S,Pinho R.Advantage and limitation of adaptive and non-adaptive force-based pushover procedures.Journal of Earthquake Engineering.2004,8(4):497-522
    [119]刘慕清.北京西直门内部环路点支承异型弯板桥设计.《城市道桥与防洪》,2005(2):44-48
    [120]沈聚敏,翁义军.钢筋混凝土构件的刚度和延性.清华大学抗震抗爆工程研究室.科学研究报告集,第3集,钢筋混凝土的抗震性能,北京:清华大学出版社,1981:54-71
    [121]Mander,J.B.,Priestley,M.J.N.,Park,R.Theoretical stress-strain model for confined concrete in bridge piers.Structural Eng.,ASCE,1998,114(8):1804-1826
    [122]Priestly,M.J.N..Brief comments on elastic flexibility of reinforced concrete frames and significance to seismic design.Bulletin of the New Zealand National Society for Earthquake Engineering,1998,31(4):246-259
    [123]杨新宝.钢筋混凝土桥梁抗震性能评估与加固.上海同济大学博士学位论文,1997
    [124]朱伯龙,张琨联.矩形及环形截面压弯构件恢复力特性的研究.同济大学学报,1981(2):1-10
    [125]Paulay,T.,Priestley,M.J.N.Seismic design of reinforced concrete and masonry buildings,New York:John Wiley &Sons,1992
    [126]刘庆华.钢筋混凝土桥墩的延性分析.同济大学学报,1998,26(3):245-249
    [127]Priestly M.J.N..Brief comments on elastic flexibility of reinforced frames and significance to seismic design.Bulletin of the New Zealand National Society fo Earthquake Engineering.1988,31(4):246-259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700