用户名: 密码: 验证码:
基于推倒分析法的连续梁桥地震响应简化分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的抗震设计思想,不仅受到了世界各国学术界和工程界的广泛关注,而且被美国、日本等抗震研究比较先进的国家作为结构抗震设计的未来发展方向。可以说,基于性能的抗震设计理论是21世纪桥梁抗震设计的大潮流。如何提供一种简单有效的地震响应分析方法,以方便地确定结构的地震响应,这是基于性能的抗震设计方法能否得到广泛应用的首要问题。
     在各国相继围绕基于性能抗震设计思想进行抗震规范修订的潮流下,本文以某跨江大桥北引桥第五联为工程背景,针对推倒分析法、能力谱法以及模态推倒分析法开展了研究工作。主要研究内容如下:
     系统研究了基于柔度法的纤维模型弹塑性梁柱单元,着重介绍了纤维模型和基于柔度法的弹塑性梁柱单元以及所采用的钢筋及混凝土材料本构模型。
     以某跨江大桥北引桥第五联为工程背景,对三种计算模型分别进行了500年重现期的弹性推倒分析以及2500年重现期的弹塑性推倒分析。以时程分析法计算结果为基准,详细研究了控制节点选择方法及侧向力分布模式对推倒分析法计算精度的影响。研究表明,在进行横桥向推倒分析时,采用侧向力分布模式1及控制节点选择方法B或者C得到的地震响应总体上吻合较好,误差大小受结构自身特性(白振周期、振型有效质量系数、是否考虑桩土作用以及是否设置减隔震支座等)影响较大,特别是对基本周期在2s以内较刚的结构进行横桥向弹性推倒分析时,承台底剪力及弯矩被严重高估;对于在墩梁间设置了减隔震支座—板式橡胶支座的结构,只进行横桥向弹性推倒分析即可。
     简要介绍了能力谱法的发展过程和研究现状,随后较为详细的论述了能力谱法的基本步骤、基本理论与具体求解过程;对Chopra采用的三种弹塑性体系强度折减系数与延性关系的可靠性进行研究,并介绍了Chopra的改进能力谱法及本文提出的改进的Chopra能力谱法基本步骤;介绍了Iwan优化能力谱法,并在对一系列不同周期不同延性的SDOF体系进行弹塑性地震响应分析的基础上,通过与ATC-40能力谱法的对比分析,得出了Iwan优化能力谱法可以明显提高计算精度的结论。
     在对能力谱法以及弹塑性体系强度折减系数与延性关系研究的基础上,分别提出了基于弹性推倒分析法和基于弹塑性推倒分析法的简化能力谱法;以某跨江大桥北引桥第五联为工程背景,针对三种计算模型,分别进行了弹性以及弹塑性地震响应分析。并以时程分析法计算结果为基准,对ATC-40能力谱法、Iwan优化能力谱法、改进的Chopra能力谱法以及简化能力谱法的计算精度进行了对比分析。研究表明,在进行纵桥向地震响应分析时,本文提出的简化能力谱法B(对于弹性分析,即为简化能力谱法)精度最高,是一种较好的简化分析方法,但是只能对墩梁间设置固定支座或者设置减隔震支座一板式橡胶支座的桥墩进行较为精确的评估,而对于在墩梁间设置活动支座的桥墩,误差较大;在进行横桥向弹性地震响应分析时,对于横桥向基本周期在2s以上的结构,本文提出的简化能力谱法能够给出理想的结果,是一种较好的简化分析方法;在进行横桥向弹塑性地震响应分析时,本文提出的简化能力谱法B精度最高,是一种较好的简化分析方法;Iwan优化能力谱法误差最大,改进的Chopra能力谱法及本文提出的简化能力谱法A精度相当。
     在对模态推倒分析法进行研究的基础上,分别提出了基于弹性推倒分析法和基于弹塑性推倒分析法的简化模态推倒分析法,以及适用于桥梁结构的模态推倒分析法;以某跨江大桥北引桥第五联为工程背景,对三种计算模型分别进行了500年重现期的弹性地震响应分析以及2500年重现期的弹塑性地震响应分析。并以时程分析法计算结果为基准,对比分析了基于ATC-40能力谱法的MPA法、基于Iwan优化能力谱法的MPA法、基于改进的Chopra能力谱法的MPA法、简化能力谱法以及简化MPA法的计算精度。研究表明,在进行纵桥向地震响应分析时,简化MPA法精度较高,是一种较好的简化分析方法;相对于边墩,中墩受力更为不利,因此从设计角度讲,采用简化能力谱法B进行分析即可满足设计要求;在进行横桥向地震响应分析时,简化能力谱法B得到的主梁节点位移精度最高,而对于结构的其余地震响应,各种分析方法精度差别取决于结构的动力特性;基于Iwan方优化能力谱法的MPA法误差最大,基于改进的Chopra能力谱法的MPA法及本文提出的简化能力谱法A精度相当。
Considerable Research is under way throughout the world to establish performance based seismic design theory which is treated as the future development direction in the United States and Japan at the forefont of earthquake resistant design of structures. Performance based seismic design theory is expected to be goal of bridge earthquake resistant design practise in 21th century. A simple and effective analysis method to determine seismic response of structures is needed firstly in the comprehensive application of performance based seismic design theory.
     Because modifications of earthquake resistant specifications focus on performance based seismic design theory the work presented in this dissertation is concerned with pushover analysis method (POA), capacity spectrum method (CSM) and modal pushover analysis (MPA) based on Unit 5 of north approach of Sea-Bridge.
     The main research contents are as follows:
     A fiber model nonlinear beam-column element based on flexibility approach is studied systematically. Fiber model nonlinear beam-column element based on flexibility approach and the stress-strain relation of steel and concrete used in this dissertation are described respectively.
     The elastic pushover analysis with return period about 500 years and the nonlinear pushover analysis with return period about 2500 years are carried out to three different type models which are based on Unit 5 of north approach of Sea-Bridge as the engineering background. Then the effects of the monitoring point and lateral load pattern on the calculating accuracy of POA are studied extensively. For comparison purposes time history analysis, which is considered to be the most accurate and reliable method of seismic analysis, is also performed. It can be concluded that: In the transversal direction POA with lateral load pattern 1 and monitoring joint selected method B or C predicts well seismic response of structures; while the magnitude of error depends on structural characteristics (natural period, modal participating mass ratios, soil-pile-structure interaction and pier-to-girder isolation bearings) shears and bending moments at the base of pile caps are overestimated significantly for the fundamental period less than 2s when the elastic POA is performed in the transversal direction; if plate type elastomeric pad bearing is adopted in the pier-to-girder connection only transversal elastic POA is enough.
     Basic step, basic theory and step-by-step procedures of CSM are summarized; Studies on the three type relationships between yield strength factor and ductility adopted by Chopra indicate that the inelastic design spectrum is a reliable approach to estimate the earthquake-induced deformation of yielding systems. And basic steps of improved CSM proposed by Chopra and improved CSM proposed in this dissertation are described respectively; improved CSM proposed by Iwan is introduced. Comparative with CSM developed by ATC-40 it appears that an alternative representation of improved CSM proposed by Iwan for the optimal equivalent linear period and damping parameters could result in a marked improvement in the accuracy of response results based on nonlinear SDOF systems for a seires of periods and ductilities.
     With the further study on CSM and the relationships between yield strength factor and ductility the simplified CSM based on elastic POA and nonlinear POA is proposed respectively; based on Unit 5 of north approach of Sea-Bridge as the engineering background three different type models are analyzed. Through the elastic seismic response analysis with return period about 500 years and the nonlinear seismic response analysis with return period about 2500 years the calculating accuracies of typical CSM (ATC-40 CSM, Iwan CSM, improved CSM and simplified CSM proposed in this dissertation) are compared and lead to the following conclusions: In the longitudinal seismic response analysis simplified CSM B (Simplified CSM to elstic seismic analysis), which is better in all methods mentioned above, predicts well seismic response of piers on which the fixed bearing or plate type elastomeric pad bearing is adopted, but provides a bad estimate to piers on which the sliding bearing is adopted; in the transversal elastic seismic response analysis simplified CSM proposed in this dissertation provide a good estimate of seismic response to the structure whose fundamental period is greater than 2s; in the transversal nonlinear seismic response analysis simplified CSM B proposed in this dissertation is a simple and effective method; In all methods mentioned above accuracy of CSM proposed by Iwan is relatively low; the calculating accuracy of simlified CSM A and improved CSM in this dissertation is identical.
     With the considerable research on MPA simplified MPA based on elstic POA and nonlinear POA, as well as the MPA applicable to bridge, is proposed respectively; The elastic seismic response analysis with return period about 500 years and the nonlinear seismic response analysis with return period about 2500 years are carried out to three different type models which are based on Unit 5 of north approach of Sea-Bridge as the engineering background. With the time history results as the baseline the calculating accuracy of typical analysis methods (MPA based on ATC-40 CSM, MPA based on Iwan CSM, MPA based on Chopra improved CSM, simplified CSM and simplified MPA proposed in this dissertation) are compared and lead to the following conclusions: In the longitudinal seismic response analysis the calculating accuracy of simplified MPA is better in all methods mentioned above; Because the middle piers are in worse forcing status commonly simplified CSM B provides a good estimate of structural seismic response to satisfy design requirement; in the transversal seismic response analysis simplified CSM B predicts better girder displacements in all methods mentioned above, and the accuracy of all methods to assess the other seismic response depends on the dynamic characteristics of structures; In all methods mentioned above the accuracy of MPA based on Iwan CSM is relatively low; Accuracy of simlified CSM A and MPA based on improved CSM in this dissertation is identical.
引文
[1]范立础.桥梁抗震.上海:同济大学出版社,1997:1-22
    [2]范立础等.大跨度桥梁抗震设计.北京:人民交通出版社,2001:1-7
    [3]李刚,程耿东.基于性能的结构抗震设计一理论、方法与应用.北京:科学出版社,2004:1-15
    [4]The 1999 JI-JI Earthquake Tiwan-the Investigation into the Damage to Civil Engineering Structures,Japan Society of Civil Engineering.1999,12
    [5]Moehle,J.E Displacement Based Design of RC Structures.10~(th) World Conference on Earthquake Engineering(10WCEE).Madrid,Spain.July,1992,8:4279-4302
    [6]Moehle,J.E Displacement Based Design of RC Structures Subjected to Earthquakes.Earthquake Spectra,1992,8(3):403-428
    [7]Bertero,V.V.Tri-service Manual Methods.In Vision 2000,Part2 App.J.Sacramento,California:Structural Engineers Association of California,1995
    [8]SEAOC(Structural Engineers Association of California) Vision 2000 Committee.Performance Based Seismic Engineering of Buildings.California,U.S.April,1995
    [9]Otani.Recent Developments in Seismic Codes.Proc.11~(th) World Conference on Earthquake Engineering.Acapulco,Mexico.1996
    [10]M.J.N.Priestley.Performance Based Seismic Design.12~(th) World Conference on Earthquake Engineering.Auckland,New Zealand.2000,1
    [11]Floren A.and Mohammadi J..Performance-based Design Approach in Seismic Analysis of Bridges.Journal of Bridge Engineering(ASCE).2001,6(1):37-45
    [12]王光远,吕大刚.基于最优设防烈度和损伤性能的抗震结构优化设计.哈尔滨建筑大学学报.1992,32(10):1-5
    [13]王亚勇.关于地震作用和结构抗震验算的修订动向.工程抗震,1999(2):21-28
    [14]王亚勇.我国2000年工程抗震设计模式规范基本问题研究综述.建筑结构学报.2000,21(1)
    [15]Applied Technology Council(ATC).Improved Seismic Design Guidelines for Bridges.ATC-32.Red Wood City,California,1996
    [16]Applied Technology Council(ATC).Seismic Evaluation and Retrofit of Concrete Buildings.ATC-40.Red Wood City,California,1996
    [17]Federal Emergency Management Agency(FEMA).NHERP Guildlines for the Seismic Rehabilitation of Buildings.FEMA273,FEMA274.Washington,D.C.October,1997
    [18]Yamanouchi H et al.Performance-Based Engineering for Structural Design of Buildings.Building Researth Institute.Japan,2000
    [19]Ronald O.Hamberger and Jack P.Moehle.State of Performance Based Engineering in the United States.Proceedings of Second US-Japan Workshop on Performance-Based Design Methodology for Reinforced Concrete Building Structures.Sapporo,Japan,September,2000
    [20]Shunsuke Otani."Development of Performance-Based Technology in Japan" in Fajfar,P.and Krawinkler,H.(Eds)(1997),"Seismic Design Methodologies for the Next Generationof Code".Proceedings of International Conference at Bled,Slovenia,A.A.Balkan,Rotterdam / Brookfield,1997:59-67
    [21]Hideo Fujitani.A Performance-Based Approach in New Structural Design Framework in Building Structures.Proceedings,international Workshop on Harmonization of Performance-Based Building Structural Design in Countries Surrounding the Pacific Ocean.Tsukuba,Japan,1997:57-64
    [22]Victor E.Davidovici.New Trends of Eurocode 8/ General Rules.11th world conference on earthquake engineering.Elsevier Science Ltd.1996.
    [23]谢礼立等.现代抗震设计理论的发展过程.国际地震动态.2003,10:1-8
    [24]Saiidi M,Sozen M.Simple Nonlinear Seismic Analysis of R/C Structures.Journal of Structural Division(ASCE).1981,107(ST5):937-951
    [25]Kilar V,Fajar E Simple Push-over Analysis of Asymmetric Buildings.Earthquake Engineering & Structural Dynamics.1997,26:233-249
    [26]Helmut Krawinkler,G.D.P.K.Seneviratna.Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation.Engineering Structures.1998,20(4-6):452-464
    [27]Mwafe A M,Elnashai,A S.Static Pushover versus Dynamic Collapse Analysis of RC Buildings.Engineering Structures.2001,23:407-424
    [28]Abeysinghe R.S.,Gavaise E.,Rosignoli M.and Tzaveas T..Pushover Analysis of Inelastic Seismic Behavior of Greveniotikos Bridge.Journal of Bridge Engineering (ASCE).2002,7(2):115-126
    [29]Jeffrey Get,Phillip Yen.Pushover Analysis of Bridge Intermediate Bents.Earthquake Engineering.2003:153-162
    [30]Jeffrey Get,Phillip Yen.Nonlinear Static Analysis of Bridge Bents by Finite Segment Method.Structures Congress,George E.,Blandford Eds,May,2004,Nashville,Tennessee,USA
    [31]叶燎原,潘文.结构静力弹塑性分析(Push-over)的原理和计算实例.建筑结构学报.2000,21(1):37-51
    [32]杨溥,李英民等.结构静力弹塑性分析(Push-over)方法的改进.建筑结构学报.2000,21(1):44-51
    [33]钱嫁茹,罗文斌.静力弹塑性分析一基于性能/基于位移抗震设计的分析工具.建筑结构.2000,30(6):23-26
    [34]王东升,翟桐,郭明珠.利用Push-over方法评价桥梁的抗震安全性.世界地震工程.2000,16(2):47-51
    [35]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响.建筑科学.2001,17(5):8-13
    [36]潘龙,孙利民,范立础.基于推倒分析的桥梁地震损伤评估模型与方法.同济大学学报.2001,29(1):10.14
    [37]叶献国,种迅,李康宁,周锡元.Pushover方法与循环往复加载分析的研究.合肥工业大学学报(自然科学版).2001,24(6):1019-1024
    [38]尹化伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进.工程力学.2003,20(4):45-49
    [39]汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究.土木工程学报.2003,36(11):44-49
    [40]熊学玉等.大跨预应力混凝土框架结构的静力弹塑性(Pushover)分析.地震工程与工程振动.2004,24(1):68-75
    [41]刘春光,林皋.桥梁结构Push-over方法抗震性能研究.大连理工大学学报.2005,45(3):395-400
    [42]汪梦甫,王锐.基于位移的结构静力弹塑性分析方法的研究.地震工程与工程振动.2006,26(5):73.80
    [43]王克海,李茜.基于模态分析的Push-over方法在桥梁抗震分析中的应用.铁道学报.2006,28(2):79-84
    [44]沈蒲生,龚胡广.多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用.工程力学.2006.23(8):69-73
    [45]Building Seismic Safety Council.NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures.Washington.D.C.1997:263-267
    [46]A.M.Mwafe.A.S.Elnashai.Static Pushover Versus Dynamic Collapse Analysis ot RC Buildings.Engineering Structures.2001,23:407-424
    [47]Chopra,A.K.,Goel,R.K.A Modal Pushover Analysis to Estimate Seismic Demands for Buildings:Theory and Preliminary Evaluation.University of California,Berkeley.PEER Report.University of Califomia,Berkeley,CA.2001
    [48]R Fajfar,E Gaspersic.The N2 method for the seismic.damage analysis of RC buildings.Earthquake Engineering &Structural Dynamics.1996,25(1):31-46
    [49]R Fajfar,R Gaspersic.A Simplified Nonlinear Method for Seismic Evaluation of RC Bridge.Pro.6~(th) U.S.National Conference on Earthquake Engineering.Seattle,Washington.1998
    [50]Peter Fajfar.Capacity Spectrum Method Based on Inelastic Demand Spectra.Earthquake Engineering & Structrual Dynamics.1999,28(9):979-993
    [51]E Fajfar.A Nonlinear Analysis Method for Performance Based Seismic Design.Earthquake Spectra.2000,16(3):573-592
    [52]Reinhorn,A.M.Inelastic Analysis Techniques in Seismic Evaluation.Fajfar P,Krawinkler H.Seismic Design Methodologies for the Next Generation of Codes,Bled,Slovenia,1997.A.A.Balkema,Rotterdam / Brookfield,1997:277-287
    [53]EC.Jennings.Equivalent Viscious Damping for Yielding Structures.Journal of the Engineering Mechanics Div.1968,94(EMI):103-116
    [54]A.K.Chopra,R.K.Geol.Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures:SDF Systems.University of California,Berkeley.PEER Report.1999
    [55]A.K.Chopra,R.K.Geol.Capacity-Demand-Diagram Methods Based on Inelastic Design Spectrum.Earthquake Spectra.1999,15(4):637-656
    [56]Freeman S.A.,Nicoletti,J.R,Tyrell,J.V.Evaluations of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard.Proceedings of the 1st U.S.National Conference on Earthquake Engineering.Bremerton,Washington,1975
    [57]Freeman S.A.Development and Use of Capacity Spectrum Method.Proceedings of 6~(th) U.N.National Conference on Earthquake Engineering.Seattle,Washington.1998
    [58]Freeman S.A.Review of the Development of the Capacity Spectrum Method.Journal of Earthquake Technology.2004,41(1)
    [59]叶献国.建筑结构地震反应简化分析方法的进一步改进.合肥工业大学学报(自然科学版).2000,23(2)
    [60]何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤性能设计.地震工程与工程振动.2000,20(2):31.38
    [61]潘龙.基于推倒分析方法的桥梁结构地震损伤分析与性能设计.同济大学博士学位论文.2001
    [62]汪大绥,贺军利,张凤新.静力弹塑性分析(PushoverAnalysis)的基本原理和计算实例.世界地震工程.2004,21(1):45-53
    [63]Dutta A..On Energy Based Seismic Analysis and Design of Highway Bridge.Ph.D.Dissertation.State University of New York at Buffalo,Buffalo.1999
    [64]Barton R..Spectral Evaluation of Seismic Fragility of Structures.Ph.D.Dissertation.State University of New York at Buffalo,Buffalo.2000
    [65]Shinozuka M.,Feng M.Q.,Kim H.and Kim S.Nonlinear Static Procedure for Fragility Curve Development.Journal of Structural Engineering(ASCE).2000,126(12):1287-1295
    [66]Hamed Salem A1Ayed.Seismic Analysis of Bridges Using Nonlinear Static Procedure.Ph.D.Dissertation.University of Maryland,College Park.2002
    [67]Fischinger M.Beg D.,Isokovic T.and Zarnic R.Performance Based Assessment-from General Methodologies to Specific Implementations.Proceedings of International Workshop on PBSD.Bled,Slovenia.2004
    [68]Buckle I.G.and Friedland I.M..Seismic Retrofitting Manual for Highway Bridges.Report No.FHWA-RD-94-052.Federal Highway Administration.McLean,Virginia
    [69]Whittaker A.,Constantinou M.and Tsopelas P..Displacement Estimates for Performance-Based Seismic Design.Journal of Structural Engineering(ASCE).1998,124(8):905-912
    [70]Japan Road Association(JRA).Specifications for Highway Bridges,Part V.Seismic Design.JRA.Tokyo,Japan,1996
    [71]Japan Road Association(JRA).Specifications for Highway Bridges,Part V.Seismic Design.JRA.Tokyo,Japan,2002
    [72]Gupta B.,Kunnath S.K..Adpative Spectra-based Pushover Procedure for Seismic Evaluation of Structures.Earthquake Spectra.2000,16(2):367-392
    [73]Kunnath S.K.,Gupta B..Validity of Deformation Demand Estimates Using Nonlinear Static Procedures.Proceedings of the Second U.S.Japan Workshop on Performance-Based Engineering for Reinforced Concrete Building Structures,Sapporo,Hokkaido,Japan,2000
    [74] Isakovic T., Fischinger M.. Higher Modes in Simplified Inelastic Seismic Analysis of Single Column Bent Viaducts. Earthquake Engineering & Structural Dynamics.2006, 35(1): 95-114
    [75] Applied Technology Council (ATC). Seismic Design Criteria for Bridges and Other Highway Structures: Current and Future. ATDC-18. Redwood City, California. 1997
    [76] Antoniou S., Rovithakis A., Pinho R.. Development and Verification of a Fully Adaptive Pushover Procedure. Proceedings of the 12~(th) European Conference on Earthquake Engineering, London, U.K., 2002
    [77] Antoniou S., Pinho R.. Development and Verification of a Displacement-Based Adaptive Pushover Procedure. Journal of earthquake Engineering. 2004, 8 (5):643-661
    [78] Kalkan E., Kunnath S.K.. Adaptive Modal Combination Procedure for Nonlinear Static Analysis of Building Structures. Journal of Structural Engineering. 2006, 132:1721-1731
    [79] Chopra A.K., Goel R.K.. A Modal Pushover Analysis Procedure for Estamating Seismic Demands for Buildings. Earthquake Engineering & Structural Dynamics.2002,31 (3): 561-582
    [80] Chintanapakdee C., Chopra A.K. Evaluation of Modal Pushover Analysis Procedure Using Vertically "Regular" and Irregular Generic Frames. Reprot No. UCB/EERC 2003-03. Earthquake Engineering Research Center. University of California,Berkeley, 2002
    [81] Chintanapakdee C, Chopra A.K. Evaluation of Modal Pushover Analysis Using Generic Frames. Earthquake Engineering & Structural Dynamics. 2003, 32 (3):417-442
    [82] Chopra A.K., Goel R.K.. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Unsymmetric-Plan Buildings: Theory and Preliminary Evaluation.Reprot No. UCB/EERC 2003-08. Earthquake Engineering Research Center.University of California, 2003
    [83] Chopra A.K., Goel R.K.. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Unsymmetric-Plan Buildings. Earthquake Engineering & Structural Dynamics. 2004, 33 (8): 903-927
    [84] Goel R.K., Chopra A.K.. Evaluation of Modal and FEMA Pushover Analysis: SAC Buildings. Earthquake Spectra. 2004, 20 (1): 225-254
    [85]Goel R.K.,Chopra A.K..Extension of Modal Pushover Analysis to Compute Member-Forces.Earthquake Spectra.2005,21(1):125-139
    [86]Amecican Society of Civil Engineers.Prestandard and Commentary for the Seismic Rehabilitation of Buildings,FEMA356,Federal Emergency Management Agency,Washington,D.C.,2000
    [87]Joseph Penzien,Charles E Scheffey and Richard A.Parmelee.Seismic Analysis of Bridge on Long Piles.Journal of the Engineering Mechanics Division(ASCE).1964,90(3):223-254
    [88]Ettouney M.M.,Brennan J.A.and Forte M.E.Dynamic Behavior of Pile Groups.Journal of Geotechnical Engineering(ASCE).1983,109(3):301-317
    [89]Sen R.,Davis T.G.and Banerjee E K..Dynamic Analysis of Piles and Pile Groups Embeded in Homogeneous Soils.Earthquake Engineering & Structural Dynamics.1985,13(1):53-65
    [90]江见鲸,陆新征等.混凝土结构有限元分析.北京:清华大学出版社,2004:47-48
    [91]Saenz L.P..Discussion of Equation for the Stress-Strain Curve of Concrete.American Concrete Institute.1964,9:1229-1235
    [92]CEB-FIE Model Code for Concrete Structures.Paris:CEB-FIE 1990
    [93]D.C.Kent and R.Park.Flexural Members with Confined Concrete.Journal of the Structural Division.1971,97(7):1969-1990
    [94]R.Park,D.C.Kent and R.A.Sampson.Reinforced Concrete Members with Cyclic Loading.Journal of Structural Division(ASCE).1972,98(7):1341-1360
    [95]R.Park,M.J.N Priestley and W.D.Gill.Ductility of Square-confined Concrete Column.Journal of Structural Division(ASCE).1982,108(4):929-950
    [96]B.D.Scott,R.Park and M.J.N.Priestley.Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates.Journal of ACI.1982,79(1):13-27
    [97]张秀敏,过镇海,王传志.反复荷载下箍筋约束混凝土的应力.应变全曲线方程.建筑结构学报.1982,(9):16-20
    [98]Shamim A.Sheikh and S.M.Uzumeri.Analytical Model for Concrete Confinement in Tied Columns.Journal of the Structural Division(ASCE).1982,108(12):2703-2722
    [99]J.B.Mander,M.J.N Priestley and R.Park.Theoretical Stress-Strain Model for Confined Concrete.Journal of the Structural Division(ASCE).1988,114(8):1804-1826
    [100]S.M.Saatcioglu and S.R.Razvi.Strength and Ductility of Confined Concrete.Journal of Structural Engineering(ASCE).1992,118(6):1590-1607
    [101]W.Ramberg and W.R.Osgood.Description of Steel Strain Curve by Three Parameters.Tech.Note 902,National Advisory Committee for Aeronantics.1943
    [102]D.C.Kent and R.Park.Cyclic Load Behavior of Reinforcing Steel.Strain.1973,3(3)
    [103]Menegotto M.and Pinto,P.E..Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Non-Elastic Behavior of Element under Combined Normal Force and Bending.Proceedings,IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by well Defined Repeated Loads,Lisbon.1973:15-22
    [104]Filippou,F.C.,Popov,E.P.and Bertero V.V..Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints.EERC Reprot 83-19.Earthquake Engineering Research Center,Berkeley.
    [105]Fischinger M.,Beg D.,Isakovic T.,Tomazevic M.,Zamic R..Performance based Assessment-from General Methodologies to Specific Implementations.International Workshop on Performance-Based Seismic Design Concepts and Implementation,Bled,Slovenia,2004
    [106]Zhihao Lu,Tshtomu Usami,Hanbin Ge.Seismic Performance Evaluation of Steel Arch Bridges against Major Earthquake,part 2:Simlified Verification Procedure.Earthquake Engineering & Structural Dynamics.2004,33(14):1355-1372
    [107]T.S.Paraskeva,A.J.Kappos,A.G.Sextos.Extension of Modal Pushover Analysis to Seismic Assessment of Bridges.Earthquake Engineering & Structural Dynamics.2006,35(10):1269-1293
    [108]卢文生,吕西林.模态静力非线性分析中模态选择的研究.地震工程与工程振动.2004,24(6):32-38
    [109]毛建猛,谢礼立,翟长海.模态Pushover分析方法的研究及改进.地震工程与工程振动.2006,26(6):50-55
    [110]Reinhom AM.Inelastic Analysis Techniques in Seismic Evaluation.Proceedings of the International Workshop of Seismic Design Methodologies for the next Generation of Codes.Bled,Slovenia,1997:277-288
    [111]E.Spacone,EC.Filippou and EE.Taucer.Fiber Beam-Column Model for Nonlinear Analysis of R/C Frames:Partl.Formulation.Earthquake Engineering and Structural Dynamics.1996,25(7):711-725
    [112]Menegotto M.and Pinto EE..Slender RC Compressed Members in Biaxial Bending.Journal of Structural Engineering(ASCE).1977,103(ST3):587-605
    [113]Karsan I.D.and Jirsa J.O..Behavior of Concrete under Compressive Loadirigs.Journal of the Structural Division(ASCE).1969,95(ST12)
    [114]Neuenhofer A.and Filippou F.C..Evaluation of Nonlinear Frame Finite-Element Models.Journal of Structural Engineering(ASCE).1997,123(7):958-966
    [115]R.S.Lawson,V.Vance,H.Krawinkler.Nonlinear Static Push-over Analysis--Why,When,and How? Proceedings of 5~(th) US National Conference on Earthquake Enginering.Chicago,IL,1994:283-292
    [116]K.K.Sasaki,S.A.Freeman,T.E Paret.Multi-Mode Pushover Procedure(MMP)-A Method to Identify the Effects of Higher Modes in a Pushover Analysis.Proceedings of 6~(th) U.S.National Conference on Earthquake Engineering.Seattle,Washington.1998
    [117]ATC/MCEER Joint Venture.Recommended LRFD Guidelines for the Seismic Design of Highway Bridges,Based on NCHRP12-49.2001
    [118]中华人民共和国标准.建筑抗震设计规范(GB5001-2001).中国建筑工业出版社,2001
    [119]Imbsen R.A.,Penzien J..Evaluation of Energy Absorbing Characteristics of Highway Bridge under Seismic Conditions.UBC/EERC-84/17,Earthquake Engineering Research Center,University of California,Berkley.1986-09,2
    [120]中华人民共和国行业标准.公路桥梁抗震设计规范(征求意见稿)(JTJ2004-2005).2004
    [121]何度心、黄龙生、路干文、周雍年.桥梁抗震计算.北京:地震出版社,1991
    [122]江苏省地震工程研究院.苏通长江公路大桥施工图设计阶段-设计地震动工程参数研究补充工作主要成果.南京,2004
    [123]US Army.Seismic Design Guidelines for Essential Buildings.Department of the Army(TM 5-809-10-1),Navy(NAVFAC P355.1),Air Force(AFM88-3,Chapter 13,Section A),Washington,D.C.,1988
    [124]US Army.Seismic Design Guidelines for Upgrading Existing Buildings.Department of the Army(TM 5-809-10-2),Navy(NAVFAC P355.2),Air Force (AFM88-3, Chapter 13, Section B), Washington, D. C, 1988
    [125] ATC-10. An Investigation of the Correlation between Earthquake Ground Motion and Building Performance. Redwood City, California, 1982
    [126] US Army. Seismic Design for Buildings. Department of the Army (TM 5-809-10),Navy (NAVFAC P355), Air Force (AFM88, Chapter 13), Washington, D. C, 1992
    [127] S.A. Freeman. The Capacity Spectrum Method as a Tool for Seismic Design. 11~(th) European Conference on Earthquake Engineering. Rotterdam. 1998
    [128] T Nagao, H Mvkai, A Nishikawa. Case Studies on Performance Based Seismic Design Using Capacity Spectrum Method. Proceedings of 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000
    [129] W.D.Iwan, A.C. Guyader. A Study of the Accuracy of the Capacity Spectrum Method in Engineering Analysis. PEER, The Third U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Strudtures. Seattle, Washington, USA. August, 2001
    [130] H. Krawinkler. New Trends in Seismic Design Methodology. Proceedings of 10~(th) European Conference on Earthquake Engineering. Vienna, Austria, 1994 8
    [131] J.M. Bracci, S.K. Kunnath, A.M. Reinhorn. Seismic Performance and Retrofit Evaluation of Reinforced Concrete Structures. Journal of Structural Engineering.1997, 123 (1): 3-10
    [132] California Department of Transportation (Caltrans). Seismic Design Methodology.Memo to Designers 20-1. California. 1999
    [133] Elnashai A.S.. Advanced Inelastic Static (Pushover) Analysis for Earthquake Applications. Structural Engineering and Mechanics. 2001,12 (1): 51-69
    [134] Huson, D.E.. Equivalent Viscous Friction for Hysteretic Systems with Earthquake-like Excitations. Proceedings of 3th World Conference on Earthquake Engineering II: 185-202
    [135] Iwan, W.D., Gates, N.C.. Estimating Earthquake Response of Simple Hysteretic Structures. Journal of the Engineering Mechanics Div. ASCE 1979, 105(EM3):391-405
    [136] Iwan, W.D., Gates, N.C.. The Effective Period and Damping of a Class of Hysteretic Structures. Earthquake Engineering & Structural Dynamics. 1979, 7(3):199-212
    [137] Freeman S.A.. Prediction of Response of Concrete Buildings to Severe Earthquake Motion. Publication SP-55, 589-605. Detroit, Mich.: American Concrete Inst.
    [138] Reinhorn, A.M., Li, C, Constantinou, M.C.. Experimental and Analytical Investigations of Seismic Retrofit of Structures with Supplemental Damping. Report No. NCEER-95-0001. State Univ. of New York at Buffalo.
    [139] Shibata, A., Sozen M.A.. Substitute Structure Method for Seismic Design in R/C.Journal of the Structural Division ASCE. 1976, 102(ST1): 1-18
    [140] Moehle J.P.. Displacement-Based Design of R/C Structures Subjected to Earthquakes. Earthquake Spectra. 1992, 8(3): 403-427
    [141] Kowalsky M.J., Priestley M.J.N., Macrae G.A.. Displacement-Based Design of RC Bridge Columns in Seismic Regions. Earthquake Engineering & Structural Dynamics. 1995, 24 (12): 1623-1643
    [142] Kowalsky M.J.. A Displacement-Based Approach for the Seismic Design of Continuous Concrete Bridges. Earthquake Engineering & Structural Dynamics. 2002,31(3): 719-747
    [143] Chopra A.K.. Dynamics of Structures: Theory and Applications to Earthquake Engineering(Second Edition). 北京:清华大学出版社, 2005
    [144] Paret T.F., Sasaki K.K., Eilbekc D.H., Freeman S.A.. Approximate Inelastic Procedures to Identify Failure Mechanisms from Higher Mode Effects. Pcoceedings of 11th World Conference on Earthquake Engineering. Acapulco, Mexico. 1996
    [145] Fajfar P.. Capacity Spectrum Method based on Inelastic Demand Spectra. IkIPR Report EE3/98. September. Ljubljana, Slovenia: University of Ljubljana.
    [146] Veletsos A.S., Newmark N.M.. Effects of Inelastic Behavior on the Response of Simple System to Earthquake Motions. Proceedings of the 2nd World Conference on Earthquake Engineering. Japan, 1960, 2: 895-912
    [147] Newmark N.M., Hall W.J.. Earthquake Spectra and Design. Berkeley, California:EERI, 1982
    [148] Iwan W.D.. Estimating Inelastic Response Spectra from Elastic Spectra.Earthquaek Engineering & Structural Dynamics. 1980, 8(4): 376-388
    [149] Krawinkler H., Nassar A.A.. Seismic Design based on Ductility and Cumulative Damage Demands and Capacities. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, Eds P. Fajfar and H. Krawinkler. New York:Elservier Applied Science. 1992
    [150] Miranda E.. Evaluation of Site-Dependent Inelastic Seismic Design Spectra. Journal of Structural Engineering.1993,119(5):1219-1338
    [151]Miranda E..Site-Dependent Strength-Reduction Factors.Journal of Structural Engineering ASCE.1993,119(12):3503-3519
    [152]Miranda E.,Bertero V.V..Evaluation of Strength Reduction Factors for Earthquake-Resistant Design.Earthquake Spectra.1994,10(2):357-379
    [153]Vidic T.,Fajfar P.,Fischinger M..Consistent Inelastic Design Spectra:Strength and Displacement.Earthquake Engineering & Structural Dynamics.1994,23(5):507-521
    [154]Fajfar P.,Vidic T..Consistent Inelastic Design Spectra:Hysteretic and Input Energy.Earthquake Engineering & Structural Dynamics.1994,23(5):523-537
    [155]Riddell R..Inelastic Design Spectra Accounting for Soil Conditions.Earthquaek Engineering & Structural Dynamics.1995,24(11 ):1491-1510
    [156]M.Ordaz,L.E.Perez-Rocha.Estimation of Strength-Reduction Factors for Elastoplastic Systems:a New Approach.Earthquaek Engineering & Structural Dynamics.1998,27(9):889-901
    [157]Borzi B.,Elnashai A.S.Refined force Reduction Factors for Seismic Design.Engineering Structures.2000,22(10):1244-1260
    [158]I Cuesta,M.A.Aschheirm,P Fajfar.Simplified R-Factors Relationships for Strong Ground Motions.Earthquake Spectra.2003,19(1):25-45
    [159]TNZ.Bridge Manual.Wellington:Transit New Zealand(TNZ),1994
    [160]European Committee for Standardization.Eurocode8 Design of Structures for Earthquake Resistance.EN 1998-2:2004.Brussels.2004
    [161]P.Fajfar,M.Fischinger.Non-Linear Seismic Analysis of RC Buildings:Implications of a Case Study.European Earthquake Engineering.1987,1:31-43
    [162]P.Fajfar,M.Fischinger.N2--a Method for Non-Linear Seismic Analysis of Regular Buildings.Proceedings of 9~(th) World Conference on Earthquake Engineering.Tokyo,Japan,1988,5:111-116
    [163]P.Fajfar.Structural Analysis in Earthquake Engineering-A Breakthrough of Simplified Non-linrar Methods.Proceedings of 12~(th) European Conference on Earthquake Engineering.Borbican Center London UK,2002
    [164]Dolsek M,Fajfar P.N2-A Simple Alternative for IDA.Proceedings of the 13~(th)World Conference of Earthquake Engineering.Vancouver,Canada,2004
    [165]M.Dolsek,P.Fajfar.Simplified Non-Linear Seismic Analysis of Infilled Reinforced Concrete Frames. Earthquake Engineering & Structural Dynamics. 2005,34(1): 49-66
    
    [166] Matsumori T., Otani S., Shiohara H., Kabeyasawa T.. Earthquake Member Deformation Demands in Reinforced Concrete Frame Structures. Proceedings of U.S.Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Maui, Hawaii, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700