用户名: 密码: 验证码:
隧道特殊大变形段初支开裂机理及二次衬砌结构可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共和隧道地质条件十分复杂,隧道施工过程中遇到了围岩破坏界于软质岩大变形和硬质岩岩爆之间的特殊地质病害。针对这一病害特点,为了弄清其病害机理,设计合理的初期支护方式,本文主要做了以下几个方面的研究工作:
     ①对共和隧道工程地质难题进行研究,分析了共和隧道病害形式;
     ②对共和隧道围岩的力学性质进行了试验研究,完成了围岩的单、三轴试验,饱水软化试验及蠕变试验;
     ③应用离散元数值计算方法对隧道开裂段施工全过程进行了研究,分析了隧道围岩应力演化过程、隧道围岩可能的破坏模式、节理参数对隧道变形的影响以及隧道锚杆支护结构的受力情况等问题;
     ④通过现场量测和试验研究,分析了隧道初期支护失稳开裂的机理;
     ⑤研究了隧道衬砌结构的长期动力可靠性问题,并计算了隧道开挖爆破地震扰动下共和隧道大变形开裂段衬砌结构的可靠度。
     通过对以上内容的研究,获得了以下一些主要成果:
     ①获得了共和隧道页岩的基本力学参数,其刚度和强度均较低,刚度为27380 MPa,单轴抗压强度为47.35MPa;
     ②得到了页岩动弹模量和抗压强度随饱水时间的变化而变化的规律,并给出了相应的软化方程;
     ③得到了页岩在15MPa、20 MPa、25 MPa和30 MPa恒压下的蠕变规律,并得到了相应的蠕变本构方程和参数取值;
     ④隧道所处区域整体应力较高,最大应力为17MPa,隧道开挖后最大应力为12MPa,形成了较大范围的应力卸荷区,隧道右上部的应力明显大于左上部,偏压明显;
     ⑤隧道破坏时层面最小厚度为0.35~0.45mm,隧道破坏位置为右拱肩,位移量为在10.8cm~14.4cm之间;
     ⑥节理参数对隧道围岩变形影响较小;
     ⑦锚杆长度为6.5m较合适,锚杆衬砌结构的受力在拱腰段处最大,右上部的锚杆结构受力大于左上部受力;
     ⑧离散元能很好的模拟非连续介质力学行为,数值模拟结果与工程实际观测情况吻合良好。
     ⑨大变形开裂段开挖初期支护后,围岩变形较为缓慢,但持续时间很长,虽然收敛速率有减小的趋势,但到最后量测时为止(50多天),试验段所有断面均处于不收敛状态,并出现纵向开裂现象,最大水平收敛达79.64mm,最大拱顶下沉值达67.45mm,试验段初期支付设计难以满足需要,且隧道偏压严重;
     ⑩隧道试验段围岩松动范围比正常隧道要大很多(正常隧道一般小于3m),试验段锚杆设计长度为3.5m,小于隧道围岩松动范围,锚杆难以起到悬吊作用;
     11共和隧道的病害是由于上覆地层自重应力、顺层地层偏压、岩体微裂隙发育、岩体蠕变、饱水软化等多种因素组合影响下而产生的一种特殊的隧道地质病害,其合理初期支护方式为Ⅲ(H1);
     12基于单侧界限的首次超越破坏准则建立了隧道衬砌结构的动力可靠度分析模型,掌子面爆破地震对共和隧道大变形开裂段衬砌结构的动态可靠度影响甚微;
     13在进行结构动力可靠性设计时,采用极值概率分布函数服从瑞雷分布的计算方法更为保险。
The geological conditions of Gonghe tunnel are very complex. It meets the special geological disease which is between the soft rock large deforming and the hard rock bursting, when the tunnel was constructing. To get the mechanism of the special geological disease and design the reasonable initial support, this paper has done research in the following areas:
     ①The engineering geological problems and the disease forms of Gonghe tunnel are analyzed.
     ②Test on the mechanical properties of the rock tunnel, and the uniaxial compaction test, the triaxial test, the water-saturated soften rock test and creep test of the surrounding rock are completed.
     ③The constructing process of the Gonghe tunnel’s cracked segment is studied by DEM. The evolution process of the stress in the surrounding rock, the possible broken mode of the surrounding rock, the impact of the joint’s parameters on the tunnel distortion and the force situation of the supporting structure in tunnel are analyzed.
     ④The initial support crack mechanism of Gonghe tunnel is analyzed by field -measurement and field -test.
     ⑤The secondary lining structure dynamic reliability is studied, and the secondary lining structure dynamic reliability in the large deformation zone of Gonghe tunnel impacted by the detonation at the heading is computed.
     The results are as follow:
     ①The basic mechanics parameters of the surrounding rock are got, the rigidity and strength are a little low, and the rigidity is 27380 MPa, the uniaxial compressive strength is 47.35MPa.
     ②The change rule of shale Dynamic elastic modulus and uniaxia compressive strength whit water-saturated time is got. The rock soften equations are got.
     ③The creep rules of Shale under the 15MPa, 20 MPa, 25 MPa and 30 MPa pressure are got. And corresponding creep constitutive equations and parameters are got.
     ④In the tunnel region the crustal stress is a little high, and the maximum stress is 17MPa. After the tunnel is caved, the maximum stress reduces to 12MPa, there is a big stress unloading zone and the stress on right upper tunnel is bigger than left upper tunnel.
     ⑤The minimum thickness of the broken stratification is 0.35 ~ 0.45mm, the broken location is the right spandrel of tunnel, and the displacement is between 10.8cm and 14.4cm.
     ⑥The parameters of joint have a little impact on the distortion of surrounding rock.
     ⑦The suitable length of anchor is 6.5m, the maximum stress of the anchor is at the spandrel of tunnel, and the stress on right upper tunnel is bigger than left upper tunnel.
     ⑧The DEM can simulate the non-continuum mechanics very well, and the numerical simulation results agree with the field maturation data.
     ⑨The surrounding rock distorts slowly but sustains for a long time after the initial support is completed. Although the convergence rate of the surrounding rock has decreased trend, in the end all the test sections are not convergent and there is vertical crack, the maximum level convergence is 79.64mm, and the maximum crown settlement is 67.45mm.
     ⑩The loose rock area in the test section is much larger than in the normal section (generally less than 3m in the normal section). The anchor length in the test section is 3.5m, which is less than the scope of loose rock, so the anchor can’t play the role of suspension.
     11 The disease of Gonghe tunnel are caused by the gravitational stress, bed-parallel bias, micro-fracture in rock, rock creep and water-saturated rock soften, which is a special tunnel geological disease, and it’s reasonable support isⅢ(H1).
     12 Based on the failure criterion of single confines exceeded at first, the analytic model for structure dynamic reliability is established. The detonation at the tunnel heading has little impact on the secondary lining structure dynamic reliability in the large deformation zone.
     13 When design the structure dynamic reliability, it’s more insurance to use the Rayleigh distribution function.
引文
[1]何满潮.软岩巷道工程概论[M].中国矿业大学出版社, 1993
    [2]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社, 2002.
    [3]吴江滨,张顶立,王梦恕.铁路运营隧道病害现状及检测评估[J].中国安全科学学报,2003,13(6):49~52
    [4] J.A.Richards, Inspection. Maintenance and Repair of Tunnels: International Lessons and Practice. Tunneling and Underground space Technology, 1998, 13:369~375
    [5] D.Diamantidis, F.Zuccarelli, A.Westhasuer. Safety of long railway tunnels [J]. Reliability Engineering and System safety, 2000, 67:135~145
    [6] AkiraInokuma, ShigeroInano. Road Tunnels in Japan: Deterioration and Counter measures [J]. Tunneling and Underground space Technology, 1996, 11:305~309
    [7]徐军,郑颖人.隧道围岩弹塑性随机有限元分析及可靠度计算[J].岩土力学, 2003, 24(1):70~74
    [8]姚耀武,申超.非线性随机有限元法及其在可靠度分析中的应用[J].岩土工程学报, 1996, 18(2): 37-46.
    [9]何满潮.岩土工程设计的新阶段——非线性大变形力学设计.岩土工程界, 1998(9):26~29.
    [10]张有天.隧道施工期变形过程分析[J].岩石力学与工程学报. 1992, 11(1):63~71.
    [11] Aydan O., Akagi T.&Kawamoto T. The Squeezing Potential of Rocks around Tunnels: Theory and Prediction [J]. Rock Mechanics and Rock Engineering, 1993, 26(4):137~163.
    [12] Ito.Y. Design and Construction by NATM. Through Fault Zone for Enasan Tunnel on Central Motorway. Tunnels and Underground. 1983(14):7~14.
    [13] John,M.& Strappler.G.. Design and installation of tube umbrellas in soft ground tunneling Progress in tunneling after 2000. Bologna, pp.253- 260.
    [14]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996
    [15]于学馥,郑颖人,刘怀恒等.地下工程围岩稳定分析[M].北京:煤炭工业出版社, 1983, 1~7.
    [16]徐干成,郑颖人.岩石工程中屈服准则的应用研究[J].岩土工程学报. 1990, (2): 93~99.
    [17]谭云亮,王泳嘉.巷道围岩塑性状态判定分析方法[J].工程地质学报. 1996, 4(2):63~68.
    [18]张志强,郑鸿泰.圆形隧道应力-应变正交关系的力学行为研究[J].岩石力学与工程学报. 2000, 19[增]: 840~844.
    [19] D.Brox and H.Hagedorn. Extreme Deformation and Damage during the Construction of Large Tunnels. Tunneling and Underground Space Technology.1994 (14):23~28.
    [20]黄清飞,袁大军,郭信君.过江双线盾构隧道横向疏散通道力学特性分析[J].岩石力学与工程学报,2007,26(增1) :2841-2846
    [21]隋修志,滕文彦.大跨连拱隧道初期支护与二次衬砌相互作用分析[J].石家庄铁道学院学报, 2003, 16(增刊):9~12
    [22]陈秋南,张永兴.偏压双连拱公路隧道围岩稳定性动态预测分析.重庆建筑大学学报, 2005, 27(1):62~66
    [23] E. Broch, S. Sorheim. Experiences from planning、Construction and Supporting of a road tunnel subjected to heavy rock bursting[J]. Rock Mechanics and Rock Engineering, 1987, 17(1).
    [24] Muirwood, A.M. Tunnels for roads and motorways [J]. Quarterly Journal of Engineering Geology, 1972,5:119~120
    [25] Anagnostou. G.A Model for Swelling Rock in Tunneling [J]. Rock Mechanics and Rock Engineering. 1993, 26 (4):307~331.
    [26] Kimura F., Okabayashi N &kavamoto T. Tunneling through Squeezing Rock in Two Large Fault Zone of Enasan Tunnel II[J]. Rock Mechanics and Rock Engineering, 1987:15l~166. a) paraschiv-Munteanu, N.D.Cristescu. Stress relaxation during creep of rock around deep boreholes [J]. International Journal of Engineering Science, 2001.
    [27]周小平,张永兴.考虑中间主应力影响时的圆筒形孔扩张问题的弹塑性解[J].重庆建筑大学学报, 2002, 24(2):35-38.
    [28]朱合华,杨林德,桥本正.深基坑工程动态施工反演分析与位移预报[J].岩土工程学报, 1998, 17(4):30-35
    [29]曹正喜.监控量测技术在暗挖单洞重叠隧道中的应用[J].现代隧道技术, 2005, 42(6):57~62
    [30]张继奎,方俊波.高地应力千枚岩大变形隧道支护参数试验研究[J].铁道工程学报, 2005, (5):66~70
    [31]陈仲先,汤雷.高地应力大型地下洞室的位移和锚杆应力特性[J].岩土工程学报, 2000,(5):294~298
    [32]陈秋南,张永兴,刘新荣.隧道塌方区加固后的施工监测与仿真分析[J].岩石力学与工程学报第, 2006, 25( 1): 158~161
    [33]李晓红.隧道新奥法及其量测技术[M].北京:科学出版社,2002.
    [34]周玉宏,赵燕明,程崇国.偏压连拱隧道施工过程的优化研究[J].岩石力学与工程学报, 2002, 21(5):679–683
    [35]靳晓光,王兰生,卫宏.公路隧道围岩变形监测及其应用[J].中国地质灾害与防治学报. 2000, 11[1]: 19~23.
    [36]吴江滨,张顶立.铁路运营隧道病害现状及检测评估[J].中国安全科学学报, 2003, 13(6):49~52
    [37]李廷春,李术才.厦门海底隧道的流固耦合分析岩[J].土工程学报, 2004, 26(3):397~401
    [38] DahloTS, NilsenB. Stability and rock cover of hard rock subsea tunnels [J]. Tunneling and Underground Space Technology, 1994, 9(2):151-158
    [39] EinarBroch, etal. Support of large rock caverns in Norway [J]. Tunneling and Underground Space Technology, 1996, 11(1):11
    [40]赵阳升,杨栋,郑少河.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑) , 1999, 29(1):82~86
    [41]蒋忠信.隧道工程与水环境的相互作用[J].岩石力学与工程学报, 2005, 24(1):121~127
    [42] Dahlo T, Evans K F, Halvorsen A, et al. Adverse effects of pore-pressure drainage on stress measurements performed in deep tunnel:an example from the Lower Kihansi hydroelectric power project of Tanzania[J]. International Journal of Rock and Mining Sciences,2003,(40):65~93
    [43] Jorge Molinero, Javier Samper, Ruben Juanes. Numerical modeling of the transient hydro geological response produced by tunnel construction in fractured bedrocks [J]. Engineering Geology, 2002, (64):369~386
    [44]白明洲,许兆义.复杂岩溶地区隧道施工突水地质灾害研究[J],中国安全科学学报, 2006, 16(1):114~118
    [45]朱合华,闫治国.饱和软土地层中管幕法隧道施工风险分析[J].岩石力学与工程学报, 2005, 24(A02): 5549~5554
    [46]王建宇.对隧道工程技术问题的质疑[J].现代隧道技术,2002(增刊):11~17
    [47]李兴高,刘维宁.对公路隧道防排水的建议[J].现代隧道技术, 2002(增刊):69~73
    [48] Lunardi P, Focaracci A. Action to reduce the hydro-geological impact produced by underground works [A]. Proc of the AITES-ITA 2001 World Tunnel Congress[C]. Italy: Milan, 2001,509~515
    [49]王挥云,李忠华.基于岩石细观损伤机制的岩爆机理研究[J].辽宁工程技术大学学报(自然科学版), 2004, 23(2):188~190
    [50]李晓红,靳晓光.采动下卧煤层对深埋隧道结构稳定性的影响[J].岩土力学, 2005, 26( 9):1448~1451
    [51]王祥秋,杨林德,高文华.高速公路偏压隧道施工动态监测与有限元仿真模拟[J].岩石力学与工程学报, 2005, 24(2):284~289
    [52]周玉宏,程崇国.偏压连拱隧道施工过程的优化研究[J].岩石力学与工程学报, 2002, 21( 5):679~683
    [53]张永兴,阳军生.某浅埋偏压连拱隧道二衬开裂原因分析[J].长沙理工大学学报:自然科学版, 2007, 4( 3):44~48
    [54]吴波,高波等.城市地铁隧道施工对管线的影响研究[J].岩土力学. 2004, 25(4):657~662
    [55]师金锋,张应龙.超大断面隧道围岩的稳定性分析[J].地下空间与工程学报. 2005, 1(2):227~231
    [56]吴从师,吴其苏.爆破地震模拟初探[J].爆炸与冲击. 1990, 10(2):170-175
    [57]徐全军.深孔微差爆破震动预报浅析[J].爆炸与冲击. 1998,18(2):182~186
    [58]卢文波,王进攻.爆破中远区的爆破振动场模拟[J].爆破. 1996, 13(3):811
    [59]钟放庆,等.地下爆炸地震波的数值模拟及震源函数的研究[J].爆破与冲击. 2001, 21(1):5355
    [60]魏晓林,等.浅眼爆破地震波传播规律[J].工程爆破. 2002 8(4):5661
    [61]龙源,等.爆破地震波在岩石介质中传播特性与数值计算研究[J].工程爆破. 2000, 6(3):1-70
    [62]谭忠盛,杨小林,王梦恕.复线隧道施工爆破对既有隧道的影响分析[J].岩石力学与工程学报. 2003, 22(2):281~285
    [63]刘新荣,孙辉,陈晓江.黄土连拱隧道二次衬砌的结构分析与监测研究[J].岩土工程学报, 2005, 27(6):695~697
    [64]赵玉光,张焕新,等.双连拱隧道施工力学数值模拟与施工方法比选[J].广西交通科技, 2003, 28(106): 25~30
    [65]周玉宏,赵燕明,程崇国.偏压连拱隧道施工过程的优化研究[J].岩石力学与工程学报, 2002, 21(5): 679~683
    [66]陈少华,李勇.联拱隧道的结构分析[J].中国公路学报,2000,13(1): 48–51.
    [67]隋修志,腾文彦.大跨连拱隧道初期支护与二次衬砌相互作用分析[J].石家庄铁道学报,2003,7: 8–11
    [68]丁勇,施斌,隋海波.隧道结构健康监测系统与光纤传感技术,防灾减灾工程学报, 2005, 25(4):375~379
    [69] HousnerGW, BergmanLA, CaugheyTK, etal. Structural Control: Past, Present, and Future [J]. Journal of Engineering Mechanics,1997,123(9):897~971
    [70] LiHN, LiDS, SongGB. Recent applications of fiber optic sensors to health monitoring in civil engineering [J]. Engineering Structures, 2004, 26(11):1647~1657
    [71] WuZS. Structural health monitoring and intelligent infra structures in Japan [A].Wu, Z.S., Abe, M. Structural Health Monitoring and Intelligent Infrastructure[C]. Tokyo, Japan:A.A.BALKEMA PUBLISHERS, 2003.153-167
    [72] ZongZH, WangTL, HuangDZ, etal. State-of-the-art report of bridge health monitoring[J].Journal of Fuzhou University (Natural Science),2002,30(2):127-152
    [73] WhelanMP, AlbrechtD, CapsoniA. Remote structural monitoring of the cathedral of Como using an op-tical fiber Bragg sensor system[A].Smart Structures and Materials and Nondestructive Evaluation for Health Monitoring and Diagnostics[C].SPIE, 2002, 242~252
    [74] InaudiD, NCasanova. SOFO: Tunnel Monitoring with Fiber Optic Sensors[J]. Reducing Risk in Tunnel Design and Construction,1998,(12):25-36
    [75] VohraS, Johnson, G.,Todd, M.etal. Distributed strain monitoring with array so fiber Bragg grating sensors on an in-construction steel box-girder bridge [J]. EICET transactions Electron, 2000. E83-C(3):454-461
    [76] ShiB, Xu, H.Z., Zhong, D.etal. A study on BOT-D Reapplication in monitoring deformation of a tunnel [A]. Wu, Z.S., Abe, M. Structural Health Monitoring and Intelligent Infrastructure [C].Tokyo,Japan:A.A.BALKEMAPUBLISHERS,2003.1025-1030
    [77]谢强,薛松涛.土木工程结构健康监测的研究现状与进展[J].中国科学基金, 2001, (5):285~288
    [78]杨智春,于哲峰.结构健康监测中的损伤监测技术研究进展[J].力学进展. 2004, 34(2)
    [79]张启伟,袁万城,范立础.大型桥梁结构安全监测的研究现状与发展[J].同济大学学报, 1997, 25(增刊):76~81
    [80]张丹,施斌,徐洪钟.基于BOTDR的隧道应变监测研究.工程地质学报, 2004, 12(4):422~426
    [81] Naruse H, Uchiyama Y, Kurashima T, Unno S. River levee change detection using distributed fiber optic strain sensor [J]. IE-ICE Trans. Electron., 2000, E83-C( 3):462~467
    [82] Kihara M, Hiramatsu K, Shima M, Ikeda S.Distributed optical fiber strain sensor for detecting river embankment collapse [J]. IE-ICE Trans. Electron., 2002, E85-C(4):952~960
    [83] Shiba K, Kumagai H, Watanabe K, Naruse H, Ohno H. Fiber optic distributed sensor for monitoring of concrete structures[C]. The 3rdinternational workshop on structural health monitoring, Stanford University,2001,459~46
    [84]吉小明.隧道开挖的围岩损伤扰动带分析.岩石力学与工程学报, 2005, 24(10):1698~1702
    [85] Kelsall P C , Case J B , Chabannes C R. Evaluation of excavation-induced changes in rock permeability[J]. Int. J. Rock Mech.Min. Sci. & Geomech. Abstr.,1984,21(3):37–46.
    [86] Pusch R. Alteration of the hydraulic conductivity of rock by tunnel excavation[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1989,26(1):79–83.
    [87] Sato T,Kikuchi T,Sugihara K. In-situ experiments on excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine , central Japan[J]. Engineering Geology,2000,56(1/2):97–108.
    [88] Bosasart P,Meier P M,Moeri A,et al. Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory [J]. Engineering Geology,2002,66(1/2):19–38.
    [89] Falls S D,Young R P. Acoustic emission and ultrasonic–velocity methods used to characterize the excavation disturbance associated with deep tunnels in hard rock[J]. Tectonophysics, 1998, 89(1/2):1~5
    [90] Kahraman S. Estimating the direct P-wave velocity value of intact rock from indirect laboratory measurements [J]. Int. J. Rock Mech. Min. Sci., 2002, 39(1):101~104
    [91] Stavropolou M, Exadaktylos G, Papamichos E, et al. Rayleigh wave propagation in intact and damaged geometrical [J]. Int. J. Rock Mech. Min. Sci., 2003, 40 (3) :377~387
    [92] Souley M, Homand F, Pepa S, et al. Damage-induced permeability changes in granite: a case example at the URL in Canada[J]. Int. J. Rock Mech. Min. Sci., 2001, 38(2):297~310
    [93]顾吟,杨建宏,梁之坚.城市隧道运行管理模糊综合评价方法[J].市政技术, 2006, 29(5)
    [94] POUYA A, GHOREYCHI M. Determination of rock mass strength properties by homogenization [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(13):1285–1303
    [95] FENNER R. A study of ground pressure [J]. Cluekanf., 1938, 74:601~605, 705~715
    [96] WITTKE W, PIERAU B. Construction and design of tunnel in swelling rocks[C]// Proceedings of the 4th ISRM Congress. Beijing: A. Balkema, 1985:328~352
    [97] PRIEST S D. Discontinuity analysis for rock engineering [M].London:Chapman and Hall,1993
    [98] Hornby B E. Experimental laboratory determination of the dynamic elastic properties of wet, drained shale. J. Geophys. Res , 1998, 103(B12) : 29945~29964
    [99]刘凯欣,高凌天.离散元法研究的评述.力学进展, 2003, 33(4):483~490
    [100] Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technology, 2000, 109:192~ 205
    [101] Tanaka H, M omozu M, Oida A, Yamazaki M. Simulation of soil deformation and resistance at bar penetration by the distinct element method.Journal of Terra mechanics, 2000, 37:41~56
    [102] Herrmann H J, Luding S. Modeling granular media on the computer. Continuum Mech. Thermodyn, 1998, 10:189~ 231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700