用户名: 密码: 验证码:
大型CFB锅炉气固流动若干关键性技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,循环流化床(CFB)锅炉以其与煤粉锅炉相当的燃烧效率、低廉的脱硫成本、较低的氮氧化物排放水平以及广泛的燃料适应性而得到迅猛发展。大容量CFB锅炉可以提高已有循环流化床发电技术的发电效率,使低成本燃煤污染控制与高效发电结合,促进循环流化床燃烧技术在发电行业中的应用。
     然而,在CFB锅炉大型化的过程中,还存在或面临着很多问题,如炉膛体积增大与二次风穿透的问题、旋风分离器容量放大与分离器效率降低的问题、渣量增加后冷渣器的处理能力及可靠性问题等。而且,其中的一些问题在现已投运的CFB锅炉中仍未得到很好的解决。
     为此,本文以国内某410t/hCFB锅炉为原型,按1:10的几何比例,用有机玻璃建立了一套循环流化床锅炉可视化冷模试验系统。在该试验系统上,首先对二次风的喷射特性和新型旋风分离器的性能进行了试验研究和数值模拟。此外,在对选择性流化床冷渣器的流动和排渣性能研究的基础上,设计开发了一种混流式流化床冷渣器。最后,本文还对引进型300MWeCFB锅炉的热平衡和物料平衡进行了初步研究。论文的主要研究内容及创新点是:
     (1)首次对CFB锅炉的二次风喷射问题进行系统的冷模研究
     在对二次风所在截面物料浓度进行测量的基础上,采用热电偶网络感知热空气射程的的方法,探寻了该截面处物料浓度随一次风速变化的趋势以及引入二次风对物料浓度分布的影响。同时,详细研究了一次风速、二次风速、物料浓度和二次风喷口直径对二次风射程的影响,并根据试验数据回归了冷态工况下二次风射程的无量纲关系式。
     (2)考察了中心筒底部缩口斜切对旋风分离器性能的影响
     对中心筒底部缩口斜切型旋风分离器的压降和效率进行了详细的试验研究和数值模拟,得到了改进型旋风分离器在不同切口朝向时压降和效率的变化规律,相关结果与传统直管型中心筒的旋风分离器进行了对比,并对该类型旋风分离器的性能进行了综合评价。
     (3)系统研究了选择性流化床冷渣器的物料流动及排渣特性,设计开发出混流式流化床冷渣器
     通过对选择性流化床冷渣器的物料流动及排渣特性进行系统的冷模试验研究,首次发现了该类型冷渣器和炉膛所组成的系统的压力分布特性对冷渣器各仓的床层压降及床料流动的影响规律。同时,在对现有各种流化床冷渣器的特点进行分析和总结的基础上,设计开发了一种对宽筛分床料具有良好分选作用的新型混流式流化床冷渣器(已获实用新型专利授权),通过冷模试验证明了该流化床冷渣器能够充分发挥现有各种流化床冷渣器的优点,避免大渣堵塞和冷渣器主排渣口排不出渣的不正常现象的出现,降低冷渣器在实际运行中发生结焦的可能性。
     (4)首次对引进型300MWeCFB锅炉的热平衡和物料平衡进行研究
     首次以引进型(也是世界第一台)300MW纯烧无烟煤循环流化床示范电站的现场运行数据为基础,采用Visual Basic进行编程,对该CFB锅炉在不同负荷下(290MW、300MW和320MW)的热平衡和物料平衡进行了初步研究,并通过计算得到了锅炉总的热平衡关系以及各部分的循环灰量。相关结果为下一步的现场试验研究奠定了基础。
Circulating fluidized bed (CFB) boiler has been more rapidly developed in recent years because of its comparative combusting efficiency with pulverized-coal (PC) boiler, cheaper desulfurization cost, lower NOx emission and wide fuel applicability. CFB with larger capacity can enhance the power generation efficiency of existing CFB technology, combine low cost pollution control of coal combustion with high power electricity generation and promote the application of CFB in power generation industry.
     However, there are some problems during the course of the large scale of CFB boiler, such as the problem of the bigger furnace’s volume with the secondary air jetting distance, the problem of the bigger cyclone separator’s capacity with the lower separating efficiency, the problems of the disposing ability and dependability of ash slag cooler with the increasing of the ash’s quantity, etc. Moreover, several problems of them in the existing CFB boilers have not been well solved.
     In the present work, we set up a set of visual cold experimental apparatus with Plexiglas according to a commercial 410t/h CFB boiler with a scale of 1:10. Experimental and simulating study on the characteristics of the secondary air (SA) injection and the cyclone separator are carried out in the set-up. Based on study of the performances of the flow and the slag discharge of selective fluidized bed ash cooler, we developed a novel mixing-type fluidized ash cooler. Furthermore, a preparatory investigation on the heat balance and the material balance of a introduced 300MWe CFB boiler is performed. The main works and innovations in this paper include as following:
     (1) Systemic cold study on the secondary air injection in CFB boiler
     Based on measuring the solid concentration in the riser cross-section at the SA injection level, we have explored the trend of solid concentration changing with the primary velocity and the effect of secondary air on the solid concentration. Besides, the influences of primary air velocity, secondary air velocity, solid concentration and jetting ports’diameter on the SA injection distance are investigated in detailed, and a dimensionless equation relation about secondary air jetting distance for general cases is obtained by the regression of experimental data.
     (2) Study on the effect of the bottom-contracted and edge-sloped vent-pipe on the performance of cyclone separators
     The cold tests and simulations on the separation efficiency and pressure drop of a modified cyclone with a bottom-contracted and edge-sloped vent-pipe are researched in detailed. The changing rules of the separation efficiency and the pressure drop are obtained under the different directions of the cut, and the results are also compared with those of the traditional linear-pipe-shaped cyclone separators. Inaddtion, we evaluated the performance of the novel separation cyclone.
     (3) Systemic study on the characteristics of material flow and ash discharge in a type selective fluidized bed bottom ash cooler and having developed of a novel mixing flow fluidized bed ash cooler
     A systemic study on the characteristics of material flow and ash discharge in a type selective fluidized bed bottom ash cooler is carried out. The influence rules of the pressure distribution characteristics of the“ash cooler– furnace”system on the pressure drop of the chambers and bed material flow is first described in this paper. Besides, based on analyzing and summarizing the characteristics of the existing fluidized bed ash coolers, we developed a novel mixing flow fluidized bed ash cooler. This mixing flow fluidized bed ash cooler has a better selective action on wide screen sized bed material. And it can make full use of the advantages of the existing fluidized bed ash coolers, avoid these abnormal phenomena of the clogging of bigger slag and no slag discharging from main slag discharged hole, which can result in decreasing the possibility of agglomeration in the fluidized bed ash cooler.
     (4) Study on the heat balance and the material balance of a introduced 300MWe CFB boiler
     Based on the operating data of the first anthracite-fired 300MW CFB boiler in the world, a preparatory study on the heat balance and material balance of the boiler under different boiler’s loads (290MW, 300MW and 320MW) were carried out by use of Visual Basic. In addition, the total heat balance and the circulated ash flux of every part of the boiler are all obtained through calculation. The results may provide a base for our further test.
引文
[1]孙孝仁,孙怡玲. 2020年世界能源前景[J].科技情报开发与经济, 2000, 10(2): 15-16, 19.
    [2]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社, 2003.
    [3]吕俊复.超临界循环流化床锅炉水冷壁热负荷及水动力研究[D].清华大学博士论文,清华大学热能工程研究所, 2004.
    [4] Chen L, Dick W A, Nelson S. Flue gas desulfurization by-products additions to acid soil: alfalfa productivity and environmental quality[J]. Environmental Pollution, 2001, 114(2): 161-168.
    [5]马金凤,陈海耿,孟广波,等.超细煤粉再燃技术及其低NOx排放分析[J].沈阳工程学院学报(自然科学版), 2005, 1(4): 21-24.
    [6]刘汉周,邹和根,郭涛,等.四角切圆煤粉炉天然气再燃烧技术的试验研究[J].热力发电, 2006, 35(1): 37-40.
    [7] Rhodes J S, Keith D W. Engineering economic analysis of biomass IGCC with carbon capture and storage[J]. Biomass and Bioenergy, 2005, 29(6): 440-450.
    [8] Elseviers W F, Mierlo T V, Van de V, et al. Thermodynamic simulations of lignite-fired IGCC with in situ desulfurization and CO2 capture[J]. Fuel, 1996, 75(12): 1449-1456.
    [9] Adams D, Dodd A, Geiling D, et al. Status of the Lakeland McIntosh Unit 4 Advanced Circulating Fluidized Bed Combined Cycle. Proceedings of the Advanced Clean Coal Technology Symposium, Tokyo, 1999: 227-235.
    [10] Nishioka A, Hirai O. Operation Results of Wakamatsu PFBC Plant. In: Preto F D S ed. Proceedings of the 14th International Conference on Fluidized Bed Combustion. Vancouver, ASME, 1997: 1193-1200.
    [11] Mareshige S, Osaki H. Development and Operation Results of Osaki 250MW Commercial PFBC Plant (Osaki 1-1 PFBC Plant). In: D W Geiling, ed. Proceedings of the 16th International Conference on Fluidized Bed Combustion, Nevada, USA, 2001 No.024.
    [12] Ningshen C. Research and Development on PFBC-CC in China and Jiawang Pilot Power Plant. Journal of Thermal Science, 1994, 3(3):205-209.
    [13]肖睿,金保升,熊源泉,等.第二代增压流化床煤部分气化炉单元中间试验研究[J].东南大学学报(自然科学版), 2005, 35(1): 24-28.
    [14] Basu P, A Fraser S. Circulating Fluidized Bed Boiler - Design and Operations[M]. USA: Butterwoths-Heinemann-Reed Publishing, 1991.
    [15]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社, 1998.
    [16] Goidich S J, Hyppanen T, Kauppinen K. CFB boiler design and operation using the INTREXTM heat exchanger[C] . Proceedings of the 6th International Conference on Circulating Fluidized Beds, Germany: Wurzburg, 1999: 22-27.
    [17] Belin F, Maryamchik M, Walker D J, et al. The Babcock and Wilcox CFB boilers - design and experience[C]. 16th International Conference on FBC, New York: ASME, 2001: 13-16.
    [18] Johnsson F, Leckner B. Vertical distribution of solids in a CFB-furnace[C]. Proceedings of the 13th International Conference on Fluidized Bed Combustion. USA: Orlando, 1995: 671-680.
    [19] Werther J. Fluid dynamics, temperature and concentration fields in large-scale CFB combustors[C]. Proceedings of the 8th International Conference on Circulating Fluidized Beds, China: Hangzhou, 2005: 1-25.
    [20] Glen J, Greg L, Nsakala ya N, et al. An Alstom vision of future CFB technology based power plant concepts[C]. Proceedings of the 18th International Conference on FBC, Canada: Toronto, 2005.
    [21] Huenchen H, Pachmayer L, Malerius O. Design and commissioning of the largest and the smallest fluidized bed incinerator ever built by Lurgi[C]. Proceedings of the 17th International Conference on FBC, USA: Jacksonville, 2003.
    [22]骆仲泱,何宏舟,王勤辉,等.循环流化床锅炉技术的现状及发展前景[J].动力工程, 2004, 24(6): 761-767.
    [23]行业报告:世界火电设备发展态势分析. [EB/01].http://ccn.mofcom.gov.cn/spbg/show.php?id=4742&ids=%BB%FA%D0%B5%B5%E7%D7%D3, 2006-11-02.
    [24]马驰,施涵.中国能源领域若干重大科技进展(之三)——国产循环流化床锅炉的大型化[J].能源研究与利用, 2002(3): 4-7.
    [25]党黎军,姚惠珍,刘剑光,等.循环流化床锅炉烟风系统的设计优化[J].电力设备, 2006, 7(4): 49-51.
    [26]卢啸风.大型循环流化床锅炉设备与运行[M].北京:中国电力出版社, 2006.
    [27]于龙.哈锅循环流化床锅炉的发展历程[J].锅炉制造, 2005(3): 1-2, 17.
    [28]牛天况,顾凯棣,朱国桢,等.上海锅炉厂有限公司循环流化床锅炉技术发展的现状[J]锅炉技术, 2000, 31(6): 1-6.
    [29]蒋茂庆,孙献斌.我国首台引进的300MW循环流化床锅炉及其关键技术[J].热力发电, 2004(9): 1-3.
    [30]孙献斌,李志伟,时正海,等.循环流化床锅炉紧凑式分流回灰换热器的试验研究[J].中国电力, 2006, 39(7): 27-30.
    [31] Robert S. Return of the Supercritical Boiler[J]. Power, 2002(7):1443-1449.
    [32] Rajaram S. Next Generation CFBC[J]. Chemical Engineering Science, 1995(54): 5565-5571.
    [33] Zhang J S, Lu J F, Li Y, et al. Performance of large scale CFB boilers in China[C]. Proceedings of 4th International Symposium on Coal Cumbustion, Beijing, 1999: 493-498.
    [34] Stephen J Goidich. Foster Wheeler Compact CFB Boilers for Utility Scale[A]. Proceedings of 16th International Conference on Fluidized Bed Combustion [C]. New York: ASME, 2001: 4-5.
    [35]张建胜,吕俊复,金晓钟,等. 75t/h水冷方型分离器循环流化床燃烧室浓度分布[J].清华大学学报(自然科学版), 1998, 38(5): 11-14.
    [36]陈继辉,杨成禹,卢啸风,等.中心筒底部缩口斜切对CFB锅炉旋风分离器性能的影响[J].动力工程, 2007, 27(2): 254-258.
    [37] Zhu J. Circulating Fluidized Beds—Recent Developments and Research Requirements in The Near Future[C]. Proceedings of 8th International Conference of CFB. Hangzhou, China. May 2005: 41-55.
    [38]郭涛,陈继辉,卢啸风,等.选择性流化床冷渣器的冷模数值模拟[J].电站系统工程, 2006, 22(1): 1-3, 7.
    [39] Victor A S, Werner F, Peter G, et al. Ukraine's first large-scale CFB 200 MWE anthracite fired Starobeshevo Power Plant[C]. Proceedings of the 18th International Conference on Fluidized Bed Combustion, Toronto, Canada. 2005, 65-74.
    [40] David P, Filip J. Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds[J]. Progress in Energy and Combustion Science, 2006, 32(5-6): 539-569.
    [41] Ommen J R, Schaaf J, Schouten J C, et al. Optimal placement of probes for dynamic pressure measurements in large-scale fluidized beds[J]. Powder Technology, 2004, 139(3): 264-276.
    [42] Lundqvist R G. Designing Large-scale Circulating Fluidised Bed Boilers[J]. Power Technology, 2003, 83(10): 41-47.
    [43]熊天柱,田子平,李俊,等.循环流化床锅炉的大型化[J].锅炉技术, 2004, 35(2): 1-6.
    [44]樊旭,张炳,赵泽光.循环流化床大型化的若干问题及解决方案的优劣比较[J].锅炉制造, 2004(4): 32-33, 36.
    [45] Ersoy L E, Golriz M R, Koksal M, et al. Circulating fluidized bed hydrodynamics with air staging: an experimental study[J]. Powder Technology, 2004, 145(1): 25-33.
    [46] Aguillon J, Shakourzadeh K, Guigon P, et al. A new method for local solid concentration measurement in circulating fluidized bed[J]. Powder Technology, 1996, 86(3): 251-255.
    [47] Kim J H, Shakourzadeh K. Analysis and modelling of solid flow in a closed loop circulating fluidized bed with secondary air injection[J]. Powder Technology, 2000, 111(3): 179-185.
    [48] Ilias S, Ying S, Mathur G D, et al. Studies on a swirling circulating fluidized bed[C]. In: Basu P, Large J F, eds. Circulating Fluidized Bed TechnologyⅡ. Toronto: Pergamon Press, 1988. 537-546.
    [49] Wang X S, Gibbs B M. Hydrodynamics of a circulating fiuidized bed with secondary air injection[C]. In: Basu P, Horio M, Hasatani M, eds. Circulating Fluidized Bed TechnologyⅢ. Oxford: Pergamon Press, 1991. 225-230.
    [50] Brereton C M H, Grace J R. End effects in circulating fluidized bed hydrodynamics[C]. In: Avidan A A, eds. Circulating Fluidized Bed Technology IV. New York: American Institute of Chemical Engineers, 1993. 137-144.
    [51] Cho Y J, Namkung W, Kim S D, et al. Effect of secondary air injection on axial solid holdup distribution in a circulating fluidized bed[J]. Journal of Chemical Engineering of Japan, 1994, 27(2): 158- 164.
    [52] Pecora A A B, Goldstein L J. A fluid dynamics study of a circulating fluidized bed with secondary air injection[C]. In: Proceedings of ASME Heat Transfer Division, HTD-334. 1996(3): 287- 292.
    [53] Marzocchella A, Arena U. Hydrodynamics of a circulating fluidized bed operated with different secondary air injection devices[J]. Powder Technology, 1996, 87(3): 185-191.
    [54] Ersoy L E. Effect of secondary air injection on the hydrodynamics of CFBs[D]. Dissertation for the Doctoral Degree. Halifax: Dalhousie University, 1998.
    [55] Kang Y, Song P S, Yun S J, et al. Effects of secondary air injection on gas-solid flow behavior in circulating fluidized beds[J]. Chemical Engineering Communications, 2000(177): 31-47.
    [56] Namkung W, Kim S D. Radial gas mixing in a circulating fluidized bed[J]. Powder Technology, 2000, 113(1-2): 23-29.
    [57] Koksal M. Gas mixing and flow dynamics in circulating fluidized beds with secondary air injection[D]. Dissertation for the Doctoral Degree. Halifax: Dalhousie University, 2001.
    [58] Ersoy L E, Militzer J, Hamdullahpur F. Effects of secondary air injection on the hydrodynamics of circulating fluidized beds[C]. In: Proceedings of the 14th International Conference on Fluidized Bed Combustion. Canada: Vancouver, 1997. 1247-1253.
    [59] Zheng Q, Wei X, Fei L. Experimental study on radial gas dispersion and its enhancement in circulating fluidized beds[C]. In: Potter O E, Nicklin D J, eds. Fluidization VII. New York: Engineering Foundation, 1992, 285-293.
    [60] Baskakov A P, Maskaev V K, Usoltsev A G, et al. Influence of secondary air on convective heat transfer between walls of riser and circulating fluidized bed (CFB)[C]. In: Avidan A A, eds. Circulating Fluidized Bed Technology IV. USA: AIChE, 1993. 324-327.
    [61] Arena U, Marzocchella A, Bruzzi V, et al. Mixing between gas-solids suspension flowing in a riser and a lateral gas stream[C]. In: Avidan A A, ed. Circulating Fluidized Bed Technology IV. New York: American Institute of Chemical Engineers, 1993. 545-550.
    [62] Patience G S, Chaouki J, Kennedy G. Solid residence time distribution in CFB reactors[C]. In: Basu P, Horio M, Hasatani M, eds. Circulating Fluidized Bed TechnologyⅢ. Oxford: Pergamon Press, 1991. 599-604.
    [63] Bader R, Findly J, Knowlton T M. Gas/solid flow patterns in a 30.5 cm diameter circulating fluidized bed[C]. In: Basu P, Large J F, eds. Circulating Fluidized Bed TechnologyⅡ. Toronto: Pergamon Press, 1988. 123-138.
    [64] Weinelt C E, Dam-Johansen K, Johnson E J. Single particle behavior in circulating fluidized beds[J]. Powder Technology, 1997, 92(3): 241-252.
    [65] Cho Y J, Namkung W, Kim S D, et al. Effect of secondary air injection on bed-to-wall heat transfer in a circulating fluidized bed[J]. Journal of Chemical Engineering of Japan, 1996, 39(1): 44-50.
    [66] Leckner B, Fluidized bed combustion: mixing and pollutant limitation[J]. Progress in Energy and Combustion Science, 1998, 24(1): 31-61.
    [67] Talukdar J. Coal combustion in a circulating fluidized bed[D]. Dissertation for the Doctoral Degree. Nova Scotia: Technical University of Nova Scotia, 1996.
    [68] Wójtowicz M A, Pels J R, Moulijn J A. Combustion of coal as a source of N2O emission[C]. Fuel Processing Technology, 1993, 34(1): 1-71.
    [69] Hiltunen M, Kilpinen P, Hupa M, et al. N2O emission from CFB boilers: Experimental results and chemical interpretation[C]. In: Proceedings of the 11th International Conference on Fluidized Bed Combustion. Cananda: Montreal, 1991. 678-694.
    [70] Lyngfelt A, Leckner B. SO2 capture and N2O reduction in a circulating fluidized-bed boiler: influence of temperature and air staging[J]. Fuel, 1993, 72(11): 1553- 1561.
    [71] Diego L F, Londono C A, Wang S X, et al. Influence of operating parameters on NOx and N2O axial profiles in a circulating fluidized bed combustor[J]. Fuel, 1996, 75(8): 971-978.
    [72] Arena U. Gas Mixing in Circulating Fluidized Beds[Z]. London: Chapman and Hall Ltd, 1997. 86-118.
    [73] Lyngfelt A, Amand L E, Leckner B. Reversed air staging-a method for reduction of N2O emissions from fluidized bed combustion of coal[J]. Fuel, 1998, 77(9/10): 953-959.
    [74] Vizel Y M, Mostinskii I L. Deflection of a jet injected into a stream[J]. Fluid Dynamics, 1965, 8(1): 127-139.
    [75] Adler D, Baron A. Prediction of three-dimensional circular turbulent jet in a crossflow[J].American Institute of Aeronautics and Astronautics Journal, 1979, 17(1):168-174.
    [76] Morton B R. On a momentum-mass flux diagram for turbulent jets plums and waks[J]. Journal of Fluid Mechanics, 1961(10): 101-108.
    [77] Fric T F, Roshko A. Views of the transverse jet near field[J]. Physics of Fluids B, 1988, 31(12): 2390-2396.
    [78] Smith S H, Mungal M G. Mixing structure and scaling of the jet in crossflow[J]. Journal of Fluid Mechanics, 1998(357): 83-122.
    [79]岑可法,樊建人,吴小华.循环流化床中加入切向二次风后气固多相流动研究[J].工程热物理学报, 1990, 11(4): 444-447.
    [80]侯祥松,杨海瑞,吕俊复,等.循环流化床中气体扩散规律的研究[J].锅炉技术, 2004, 35(5): 16-20.
    [81] Patrick M A. Experimental investigation of the mixing and penetration of a round turbulent jet injected perpendicularly into a transverse stream[J]. Transactions of the Institution of Chemical Engineers, 1967(45): 16-31.
    [82] Parker R, Jain R, Calvert S, et al. Particle collection in cyclone at high temperature and high pressure[J]. Environmental Science and Technology, 1981, 15 (4): 451-458.
    [83] Patterson P A, Munz R J. Cyclone collection efficiency at very high temperature [J]. Canadian Journal of Chemical Engineering, 1989(67): 321-328.
    [84] Zhou L X, Su S L. Gas solid flow and collection of solids in a cyclone separator[J]. Powder Technology, 1990(63): 45-53.
    [85] De S, Nag P K. Pressure drop and collection efficiency of cyclone and impact separators in a CFB[J]. International Journal of Energy Research, 1999(23): 51-60.
    [86] Scott L D. Pyroflow Compact: The next generation CFB boiler[J]. American Society of Mechanical Engineers, Environmental Control Division Publication, Environmental Control/Fuels and Combustion Technologies, 1995(1): 403-412.
    [87] Semenovker I E. Separator assemblies of supercritical boilers operating abroad[J]. Thermal Engineering (English translation of Teploenergetika), 1993, 40(9): 726.
    [88] Ireneusz L, Seeber J, Kluger F, et al. Operational experience with high efficiency cyclones: Comparison between boiler A and B in the Zeran Power Plant, Warsaw/Poland[J]. VGB Power Technology, 2003, 83(9): 90-94.
    [89] Shanmugasundaram J, Arunachalam S, Gomathinayagam S, et al. Cyclone damage to buildings and structures - a case study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(3): 369-380.
    [90]谢岩,明丽萍,王国顺.循环流化床锅炉三大主要部件的设计要点[J].锅炉制造, 2005(1):21-22.
    [91] Jablonski J, Nowak W, Ozimowski T. Rehabilitaiton of Turow Power Plant[C]. The Sixth Foster Wheeler Fluidized Bed Customers’Conference, San Diego, CA, August 18-20, 2000.
    [92] Semedard J C, Gauville P, Morin J X.. Development of Ultra Large CFB Boilers. 16th International Conference on Fluidized Bed Combustion[C]. Reno, Nevada: United States, May13-16, 2001.
    [93] Kokko A, Karvinen R, Ahlstedt H. CYMIC-Boiler Scale-Up and Full Scale Demonstration Experience[J]. American Society of Mechanical Engineers, 1995(1): 211-223.
    [94] Metso Power Company: Metso Power - Efficient Boilers for the Production of Green Power. [EB/01]. http://www.power-technology.com/contractors/boilers/kvaerner/, 2007.
    [95] Chen H P, Lin Z J, Liu D C, et al. Research for a new type of cyclone separator with downward exhaust gas[C]. Proceedings of the International Conference on Fluidized Bed Combustion, v 3, Clean Energy for the World, 1991, 1367-1371.
    [96] Chen H P, Lin Z J, Liu D C, et al. Down-exhaust cyclone separator[J]. Industrial and Engineering Chemistry Research, 1999, 38(4): 1605-1610.
    [97] Chen H P, Zhang S H, Wu Z S, et al. Research and development of product -shaped CFB boiler with down-exhaust cyclone separator[C]. Proceedings of the 17th International Conference on Fluidized Bed Combustion, 2003, 37-42.
    [98]黄盛珠,马春元,吴少华.下排气旋风分离器的改进设计[J].动力工程, 2004, 24(5): 736-738.
    [99] Yazdabadi P A, Griffiths A J, Syred N. Characterization of the PVC phenomena in the exhaust of a cyclone dust separator[J]. Experiments in Fluids, 1994(17) :84-95.
    [100] Yazdabadi P A, Griffiths A J, Syred N. Investigations into the precessing vortex core phenomenon in cyclone dust separators[J]. Proceedings of the Institution of Mechanical Engineers, 1994, 208 :147-154.
    [101] Belousov A N, Gupta A K. PVC and instability in swirl combusters[J]. Chemical Engineering Communications, 1986(47): 363-380.
    [102] John A, Roger J, Andy L, et al. Influence of entry duct bends on the performance of return-flow cyclone dust collectors[J]. Powder Technology, 2002, 123(2-3): 126-137.
    [103] Lim K S, Kim H S, Lee K W. Comparative performances of conventional cyclones and a double cyclone with and without an electric field[J]. Journal of Aerosol Science, 2004, 35(1): 103-116.
    [104] Lim K S, Kwon S B, Lee K W. Characteristics of the collection efficiency for a double inlet cyclone with clean air[J]. Journal of Aerosol Science, 2003, 34(8): 1085-1095.
    [105] Hamelin J P M, Basu P, Hamdullahpur F. A study into the operation of an impact-type gas solid separator[J]. International Journal of Energy Research, 2004, 28(11): 1023-1032.
    [106]杨金华.高温旋风分离器中心管的改进与问题探讨[J].工业锅炉. 1998(4): 29, 16.
    [107]彭雷,李军,王国鸿.排气管偏置对CFB锅炉旋风分离器性能的影响[J].热能动力工程, 2004, 19(2): 153-156.
    [108] Muschelknautz U, Muschelknautz E. Special design of inserts and short entrance ducts to recirculating cyclones[A]. Circulating Fluidized Bed Technology V[C], Beijin P R China: Science Press, 1997, 597-602.
    [109] Lee J M, Kim J S, Kim J J. Evaluation of the 200 MWe Tonghae CFB boiler performance with cyclone modification[J]. Energy, 2003, 28(6): 575-589.
    [110]白玉刚,吕俊复,岳光溪,等.入口带有加速段方形分离器结构优化的试验研究[J].中国粉体技术, 1999, 5(6): 1-4.
    [111] Kaan Y. Optimisation using prediction models: air cyclones’body diameter/pressure drop[J]. Filtration & Separation, 2005, 42(10): 32-35.
    [112] Jolius G, Chuah T G, Thomas S Y, et al. Prediction of the effects of cone tip diameter on the cyclone performance[J]. Journal of Aerosol Science, 2005, 36(8): 1056-1065.
    [113] Zhao B T, Shen H G, Kang Y M. Development of a symmetrical spiral inlet to improve cyclone separator performance[J]. Powder Technology, 2004, 145(1):47-50.
    [114] De S, Lal A K, Nag P K. Experimental investigation on pressure drop and collection efficiency of simple plate-type impact separator[J]. Powder Technology, 1999, 106(3):192-198.
    [115] Lim K S, Kim H S, Lee K W. Characteristics of the collection efficiency for a cyclone with different vortex finder shapes[J]. Journal of Aerosol Science, 2004, 35(6): 743-754.
    [116] Giulio S, Aldo C. Experimental fluid dynamic characterization of a cyclone chamber[J]. Experimental Thermal and Fluid Science, 2002, 27(1): 87-96.
    [117] Kim H T, Zhu Y, Hinds W C, et al. Experimental study of small virtual cyclones as particle concentrators[J]. Journal of Aerosol Science, 2002, 33(5): 721-733.
    [118] Xiang R B, Park S H, Lee K W. Effects of cone dimension on cyclone performance[J]. Journal of Aerosol Science, 2001, 32(4): 549-561.
    [119] Youngmin J, Chi T, Madhumita B R. Development of a post cyclone to improve the efficiency of reverse flow cyclones[J]. Powder Technology, 2000, 113(1-2): 97-108.
    [120]廖艳芬,王树荣,骆仲泱,等.方形分离器的试验研究与分析.电站系统工程[J]. 2003, 19(3): 12-14.
    [121]王玉召,吕俊复,张建胜,等. 220t/h水冷方形分离器循环流化床锅炉的性能[J].动力工程, 2005, 25(3): 343-348.
    [122] Su Y X, Mao Y R. Experimental study on the gas–solid suspension flow in a square cyclone separator[J]. Chemical Engineering Journal, 2006, 121(1): 51-58.
    [123] Su Y X. The turbulent characteristics of the gas–solid suspension in a square cyclone separator[J]. Chemical Engineering Science, 2006, 61(5): 1395-1400.
    [124] Lu J F, Jin X Z, Yue G X, et al. Gas concentration profiles in the furnace of large CFB boilers with water-cooled square separator[C]. Proceedings of the 1st International Conference on Engineering Thermophysics, 1999, 610-615.
    [125]刘守文,张衍国,目涛,等.通道式分离器的特性研究[J].动力工程, 2003, 23(6): 2461-2465.
    [126]武俊,李清海,张衍国.通道式分离器性能的优化及其应用[J].动力工程, 2004, 24(5): 732-733.
    [127]黄永军,卢啸风,刘汉周.大型循环流化床锅炉的结构布置与试验研究[J].动力工程, 2006, 26(1): 49-53, 115.
    [128] Liu Z L, Zheng Y, Jia L F, et al. Stereoscopic PIV studies on the swirling flow structure in a gas cyclone[J]. Chemical Engineering Science, 2006, 61(13): 4252-4261.
    [129] Derksen J J, Sundaresan S, Van Den Akker H E A. Simulation of mass-loading effects in gas–solid cyclone separators [J]. Powder Technology, 2006, 163(1-2): 59-68.
    [130] Chen J H, Lu X F, Liu H Z, et al. Effect of the Bottom-contracted and Edge-sloped Vent-pipe on the Cyclone Separator Performance[J]. Chemical Engineering Journal, 2007, 129(1-3): 85-90.
    [131]杨成禹.大型CFB锅炉旋风分离器的冷模试验研究[D].重庆大学硕士论文,重庆大学动力工程学院, 2006.
    [132] Li X T, Luo Z Y, Ni M J, et al. Development of New Ash Cooling Method for Atmospheric Fluidized Beds[C]. Proceedings of 13th International Conference on Fluidized Bed Combustion, ASME, 1995: 181-184.
    [133] Carrea E, Scavizzi G C, Barsin J A. Dry Bottom Ash Removal-Ash Cooling vs Boiler Efficiency Effects. ASME’s IJPGC—Baltimore, MD, August 1998.
    [134] Lu X F, Amano R S. Feasible Experimental Study on the Utilization of a 300MW CFB Desulfuration Bottom Ash for Construction Applications[C]. Proceedings of 5th International Symposium on High Temperature Air Combustion and Gasification, Japan: Yokohama, 2002.
    [135] Lucat P, Levy D. SOPROLIF 250 MW CFB in Provence: Two years of operation[J]. Power Technology, 1999, 79(19): 32-36.
    [136]郭涛. 410t/h CFB锅炉选择性流化床冷渣器气固流动特性冷态试验研究与数值模拟[D].重庆大学硕士论文,重庆大学动力工程学院, 2006.
    [137]刘升,李广平,张宏彪.风水联合式冷渣器在工程实践中的应用[J].中国电力, 2003(4): 71-73.
    [138]丁岩峰,樊泉桂.大型循环流化床锅炉选择性排灰冷渣器运行分析[J].华北电力技术, 2005(6): 22-26.
    [139]叶学民,阎维平,殷立宝,等. 450t/hCFB锅炉风水冷选择性冷渣器冷态模化试验[J].动力工程, 2004(4): 593-597.
    [140] Joseph A B, Alberto C. An Alternative Circulating Fluid Bed Bottom Ash Removal System[C]. Proceedings of 15th International Conference on Fluidized Bed Combustion, New York: ASME, 1999.
    [141] Marchetti M M. ALSTOM’s Large CFBs and Results[C]. Proceedings of 17th International Fluidized Bed Combustion Conference, ASME, New York, 2003.
    [142] Dicker J M, Gagliardi C R, Reed M R, et al. Technical challenges in the design and operation of a circulating fluidized bed combustor burning waste coal[C]. Proceedings of the American Power Conference, 1992, 54(1): 789-795.
    [143] Nowak W. Design and Operation Experience of 230MWe CFB Boilers at Turow Power Plant in Poland[C]. Proceedings of the 15th International Conference on Fluidized Bed Combustion, New York: ASME, 1999.
    [144]尹斌,章明川,卢啸风. 410t/hCFB锅炉流化床冷渣器冷模试验研究[J].华东电力, 2002(4): 5-8.
    [145]尹斌,章明川,宋玉宝,等. CFB锅炉流化床冷渣器试验研究[J].锅炉技术. 2001, 32(10): 17-20.
    [146]叶学民,李春曦,樊旭,等.非均等配风下的风水冷选择性冷渣器冷态排渣特性[J].热能动力工程, 2005(1): 73-76.
    [147] Jeff W K, Gary W S. Ash Cooling Screws-A Retrospective And Looking Ahead[C]. Proceedings of 17th International Fluidized Bed Combustion Conference, USA: Florida, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700