用户名: 密码: 验证码:
陶瓷固相烧结的同步辐射CT技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文阐述了对陶瓷固相烧结过程进行无损、实时研究的必要性和重要性,概述了陶瓷固相烧结演化过程和现象、热力学机制、理论模型和控制方程;总结了同步辐射CT(SR-CT)技术的原理以及目前国内外研究现状。在此基础上,利用相场法对陶瓷烧结过程进行了二维和三维的数值模拟,分析了利用SR-CT技术对陶瓷固相烧结过程进行实时观测的实验难点,提出了利用加窗傅立叶滤波提高SR-CT重建图像的质量的方法并进行了可行性分析,设计了实验方案,利用SR-CT技术对多种陶瓷样品固相烧结过程的微结构演化过程进行了实时的实验观测,并结合现有烧结理论和模型对实验的结果进行分析。
     本文主要研究内容如下:
     一、总结了固相烧结理论,对固相烧结过程的微观结构演化进行了二维和三维的数值模拟,其中三维的数值模拟目前国内尚未见到公开的报道,在国际上也仅见少数几篇报道。
     1、对固相烧结过程进行了分析,探讨了关于固相烧结过程的热力学驱动力和物质传输机制以及致密化过程的一些经验方程和唯象动力学方程。
     2、对固相烧结过程现有的数值模拟方法进行了综述。重点讨论了基于Cahn-Hilliard守恒参量和Ginzburg-Landau非守恒参量的扩散相场模型。
     3、利用扩散相场模型,结合Cahn-Hilliard守恒参量和Ginzburg-Landau非守恒参量控制方程,对初始颗粒四方堆积情形和初始颗粒气孔耦合拓扑情形固相烧结过程的微结构形貌演化进行了二维的数值模拟,数值模拟结果展现了固相烧结过程的诸多微观结构演化现象,如颗粒和气孔的迁移等。
     4、在二维模拟的基础上,进一步利用扩散相场模型对初始颗粒堆积情形和初始颗粒气孔耦合拓扑情形固相烧结过程的微结构形貌演化进行了三维的数值模拟,更加直观的反映了在固相烧结过程中的微观结构演化规律,通过对不同模拟时间的材料孔隙率的统计并结合烧结理论验证了模型的有效性。
     二、提出了利用加窗傅立叶滤波提高SR-CT重建图像质量的方法,为将SR-CT技术应用于陶瓷固相烧结过程的研究提供了算法和技术支持。
     1、以提高SR-CT技术重建图像质量为主线,对SR-CT技术进行了探讨,详细介绍了滤波反投影算法和加窗傅立叶变换技术。
     2、通过对滤波反投影重建算法和同步辐射光场空间非均匀性的讨论,分析了滤波反投影算法中影响重建图像质量的因素,提出了利用加窗傅立叶滤波改进重建图像质量的方案并分析了方法的可行性。
     3、利用基于加窗傅立叶变换的滤波反投影算法得到了两组实验重建图像,和未经过加窗傅立叶变换重建图像的对比,其重建图像质量有了明显提高,同步辐射光场空间非均匀性噪声得到了有效抑制。
     三、在国内率先实现了利用SR-CT技术对陶瓷固相烧结过程的实时和无损的观测,为改进烧结模型和指导烧结提供了有效的实验支持。
     1、设计实验方案并制备了系列具有代表性的陶瓷粉末和素坯样品。利用SR-CT技术完成了对几种样品固相烧结过程的观测实验,得到了样品在不同烧结时刻的内部微观结构的二维和三维重建图像,通过重建图像观测到了陶瓷固相烧结过程的三个阶段及诸多烧结现象(晶界形成、颗粒长大、气孔球化等)。
     2、利用数字图像处理方法统计了样品在不同烧结时刻的孔隙率变化,得到了孔隙率随烧结时间和烧结时间对数的变化曲线。通过曲线分析了各样品在烧结过程中的致密化规律,得到了在不同烧结阶段致密化的特点。
     3、根据孔隙率—烧结时间对数曲线得到了烧结中期孔隙率随烧结时间对数的线性关系,提出了相对致密化速率的概念,并根据一组不同初始孔隙率样品的孔隙率—烧结时间对数曲线分析了初始孔隙率对烧结开始时间、烧结中期致密化相对速率和烧结完成时间的影响。
     最后,总结全文工作,给出本文研究的主要内容和尚需进一步深入的研究课题,提出今后研究思路和方案。
In this paper, the necessity and importance of investigating ceramic sintering process in real-time and non-destructive is firstly presented. The microstructure evolution process and phenomena, thermodynamic mechanisms and theoretical models, constitutive laws and governing equations about sintering process is globally reviewed. The principle and research status of Synchrotron radiation x-ray computed tomography (SR-CT) technique is generally summarized. The microstructure evolution of the sintering process is numerical simulated by phase-field method. In order to observe the microstructure evolution of sintering process by SR-CT technique, the technical difficulties of SR-CT technique was studied and a new method which can improve the quality of reconstructed images based on the windowed Fourier filter method was proposed. The sintering process of several groups of ceramic samples was investigated by SR-CT experimental and the experimental results were discussed according the sintering theory.
     The main content is as follows:
     Firstly, by summarizes the sintering theories, the 2-D and 3-D microstructural evolution during sintering process was simulated by Phase field model while there are few reports on the 3-D results.
     1、The material transmission mechanism, densificated process, empirical densification equation and phenomelogical densification equation about sintering process were studied.
     2、A summary of the numerical simulating methods of sintering process was presented.The Phase field model based on Cahn-Hilliard equation for conserved field variables and Ginzburg-Landau equation for non-conserved variables was emphatically introduced.
     3、By solving coupled time-dependent governing equations with Cahn-Hilliard equation for conserved field variables and Ginzburg-Landau equation for non-conserved variables, the 2-D microstructural evolution during sintering process, such as aggregation and migration of pores and grains is visually simulated.
     4、The 3-D microstructural evolution during sintering process was futher simulated by the Phase field model and the Correctness of the Simulation Results was confirmed by the porosity-simulation time curves and sintering theories. Secondly, a new method of improving the quality of reconstructed images based on windowed Fourier filter method was proposed.
     1、The SR-CT technique was discussed and the filter back-projection reconstruction algorithm was emphatically introduced.
     2、By analysis the filter function of the filter back-projection reconstruction algorithm and the characteristics of the synchrotron radiation x-ray,the method of improving the quality of reconstructed images based on windowed Fourier filter method was proposed.The feasibility of the methods was analysised.
     3、The effectiveness of the method was validated by the experimental results of two kinds of samples.Compaied with the reconstructed images that did not use Windowed Fourier filter method, the reconstructed images which use the Windowed Fourier filter method shows the high reconstruction quality. In addition, the real-time and non-destructice observation of the sintering process by Synchrotron radiation computed tomography technique was firstly realized in our country.
     1、The experimental scheme was performed and several groups of sample according to different components and initial porosities were prepared, the SR-CT technique was employed to explore the microstructure evolution of the samples. From these cross-section images at different sintering time, the evolution process of grains and pores could be observed, and vertical-section and three-dimensional images could also be obtained.
     2、The porosity of the compacted samples were obtained by treating the reconstructed images using digital image processing method.The desifacation Characteristics of different sintering stages could be clearly observed by the porosity-time and porosity- time-logarithm curves.
     3、From the linear relationship between Porosity and Log time in the middle stage of sintering,the relative densification rate was performed. The beginning time of the sintering process, the relative densification rate in the middle stage of sintering and the end point of sintering was discussed by analyis the porosity- time-logarithm curve of the samples with different initial porosity.
     At last, the whole works are summarized and the further researches are proposed.
引文
[1]郝素娥,黄金祥,张巨生等.Pr,Mn多元渗对BaTiO_3陶瓷结构与电性能的影响[J].无机材料学报,2007,22(5):816-820
    [2]李波,张树人,周晓华等.Y_2O_3和ZnO共掺杂对BaTiO_3陶瓷的微观结构和介电性能的影响[J].无机材料学报,2007,22(3):451-455.
    [3]张福成,罗海辉Roberts Steve-G等.断裂方式对氧化铝基复合陶瓷耐磨性的影响[J].无机材料学报,2007,22(3):493-498.
    [4]A.Pyzalla,B.Camin,T.Buslaps,M.Di Michiel,H.Kaminski,A.Kottar,A.Pemack,W.Reimers.Simultaneous Tomography and Diffraction Analysis of Creep Damage.Science,2005,308:92-95.
    [5]Dominique Bernard,Damien Gendron,Jean-Marc Heintz,Sylvie Boredre,Jean Etournean.First Direct 3D Visualisation of Microstructural Evolutions During Sintering Through X-ray Computed Microtomography.Acta Material,2005,53:121-128.
    [6]汪敏,胡小方,伍小平,袁清习,黄万霞,朱佩平.同步辐射X射线衍射增强CT方法研究.光子学报,2006,35(8):
    [7]凤仪,朱震刚,陶宁,郑海务.闭孔泡沫铝的导热性能.金属学报,2003,39(8):817-820.
    [8]凤仪,朱震刚,陶宁,郑海务.闭孔泡沫铝的导热性能.金属学报,2003,39(8):817-820.
    [9] 庄天戈.CT原理与算法.上海:上海交通大学出版社,1992.
    [10] Yoshito Nakashima, Tsukasa Nakano, Koichi Nakamura, Kentaro Uesugi, Akira Tsuchiyama, Susumu Ikeda. Three-Dimensional Diffusion of Non-Sorbing Species in Porous Sandstone: Computer Simulation Based on X-Ray Microtomography Using Synchrotron Radiation. Journal ofContaminant Hydrology, 2004,74:253-264.
    
    [11] Sakamoto K, Suzuki Y, Hirano T, Usami K. Improvement of Spatial Resolution of Monochromatic X-ray CT Using Synchrotron Radiation. Japanese Journal of Applied Physics, 1988,27:127-132.
    [12] M. Goitein, Three-dimensional density reconstruction from a series of two dimensional projections, Nucl. Instru. Meth., 1972,101:509-518.
    [13] A.C. Thompson, J. Llacer. Computed Tomography Using Synchrotron Radiation. Nuclear Instruments and Methods in Physics Research, 1984,222:319-323.
    [14] U. Bonse, Q. Johnson, M. Nichols, R. Nusshardt, S. Krasnicki, J. Kinney. High Resolution Tomography With Chemical Specificity. Nuclear Instruments and Methods in Physics Research A, 1986,246:644-648.
    [15] Tatsumi Hirano, Katsuhisa Usami. High Resolution Monochromatic X-Ray Tomography Using Synchrotron Radiation. Japanese Journal of Applied Physics, 1989,28(2):263-266.
    [16] U. Bonse, R. Nusshardt, F. Busch, R. Pahl, Q.C. Johnson, J.H. Kinney, R.A. Saroyan, M.C. Nichols. Optimization of CCD-Based Energy-Modulated X-Ray Microtomography. Rev. Sci. Instrum. 1989,60(7):2478-2481.
    [17] Yoshio Suzuki, Katsuhisa Usami, Kozo Sakamoto, Hiroshi Kozaka, Tatsumi Hirano, Hidemi Shiono, Hideki Kohno. X-Ray Computerized Tomography Using Monochromated Synchrotron Radiation. Japanese Journal of Applied Physics, 1988,27(3):461-464.
    [18] J.H. Kinney, Q.C. Johnson, M.C. Nichols, U. Bonse, R.A. Saroyan, R. Nusshardt, R. Pahl. X-Ray Microtomography on Beamline X at SSRL. Rev. Sci. Instrum. 1989,60(7):2471-2474.
    [19] Tatsumi Hirano, Katsuhisa Usami, Kozoo Sakamoto. High Resolution Monochromatic Tomography with X-Ray Sensing Pickup Tube. Rev. Sci. Instrum. 1989, 60(7):2482-2485.
    [20] T. Takeda, Q. Yu, T. Yashiro, T. Zeniya, J. Wu, Y. Hasegawa, Thet-Thet-Lwin, K. Hyodo, T. Yuasa, F.A. Dilmanian, T. Akatsuka, Y. Itai. Iodine Imaging in Ihyroid by Fluorescent X-ray CT with 0.05mm Spatial Resolution. Nuclear Instruments and Methods in Physics Research A, 2001, 467-468:1318-1321.
    [21] R.T. Lopes, H.S. Rocha, E.F.O. de Jesus, R.C. Barroso, L.F. de Oliveira, M.J. Anjos, D. Braz, S. Moreira. X-Ray Transmission Microtomography Using Synchrotron Radiation. Nuclear Instruments and Methods in Physics Research A, 2003, 505:604-607.
    [22]景小宁,胡小方,赵建华,王亚欧,田玉莲.SXR-CT技术应用研究烧结陶瓷三维微结构拓扑形貌.材料科学与工程学报,2003,21(3):327-330.
    [23]陈志强,曾凯,张丽,刑宇翔.三维锥束扫描CT成像图像新近展.CT理论与应用研究,2004,13(4):5-8.
    [24]瞿中,周海燕,唐甜甜,徐强.ART图像重建算法在ICT窄角扇束中的研究.计算机工程与设计,2004,25(6):896-898.
    [25]沈元华.同步辐射光源及其应用.物理实验,2001,21(2):3-6.
    [26]Kozo Sakamoto,Yoshio Suzuki,Tatsumi Hirano,Katsuhisa Usami.Improvement of Spatial Resolution of Monochromatic X-Ray CT Using Synchrotron Radiation.Japanese Journal of Applied Physics,1988,27(1):127-132.
    [27]Min Wang,Xiaofang Hu,Xiaoping Wu.Internal Microstructure Evolution of Aluminum Foams under Compression.Materials Research Bulletin.41(2006)1949-58.
    [28]景晓宁,胡小方,赵建华,王亚鸥,田玉莲,SXR-CT技术应用研究烧结陶瓷三维微结构拓扑形貌,材料科学与工程,21,(2003)327-330
    [29]胡小方,景晓宁,赵建华,王亚鸥,田玉莲,应用SR—CT技术研究陶瓷材料的孔隙结构及密度分布,实验力学,18(2003)485-489
    [30]Dominique Bernard,Damien Gendron,Jean-Marc Heintz,Sylvie Boredre,Jean Etoumean.First Direct 3D Visualisation of Microstructural Evolutions During Sintering Through X-ray Computed Microtomography.Acta Material,2005,53:121-128.
    [31]Lame O,Bellet D,Di Michiel M,et al.Bulk observation of metal powder sintering by X-ray synchrotron microtomography.Acta Materialia,2004,52(4):977-984.
    [1]施剑林,固相烧结—Ⅰ气孔显微结构模型及其热力学稳定性,致密化方程,硅酸盐学报,1997,25(5):499-513.
    [2]施剑林,固相烧结—Ⅱ粗化与致密化关系及物质传输途径,硅酸盐学报,1997,25(6):657-668.
    [3]施剑林.固相烧结——Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为[J].硅酸盐学报,1998,26(1):1~12.
    [4]J.W.Cahn,J.E.Hilliard,Free energy of a nonuniform system:Ⅰ.interfacial free energy,J.Chem.Phys.,vol.28,258-267(1958)
    [5]S.M.Allen,J.W.Cahn,A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,Acta.Metall.,vol.27,1085-1095(1979)
    [6]Schattr W,Fridedrich E.Powder Metall Inter,1981,13:15
    [7]Skorohod V V.Proceeding of the lnsititute for the Science of Sintering.Ⅵ World Round Table Conference on Sintering,New York Plenum Press;Kuczynski G C,1987:81
    [8]Ogorodanikov V V.Sci Sintering,1973.5(I)59
    [9]Zagar L et al.Sintering-Theory and Practice.VoL 14,Materials Science Monographs;Pejovnik S and Ristic M M,1982:75
    [10]Burke J E.Science,1968,1961:3847
    [11]Shaler A J.Met Trans;1949,185:196
    [12]De Laplace P S,Mechanigue Celeste,Suppl to Book 10.Impr Imperiale Paris,1806,also English version,translated by Bowditch N.VollvChelsea Publishing New York,1966:685
    [13]Young T.Miscellaneous Works.VoL 1,Metal Powder Industries Federation Princeton New Jersey:.G Pouder,1980:245
    [14] F.B.Swinkels and M.F.Ashby, A second report on sintering diagrams, Acta metall., vol.29, 259-281 (1981)
    [15] Kellet B J, L ange F F. Thermodynam ics of densification, part I, sintering of simple particle arrays, equilibrium configuration, pore stability and shrinkage. J Am Ceram Soc, 1989; 72 (5): 725
    [16] Johnson D L. Recent development in the theoretical analysis of so lid state sintering. In: Ko lar D, Pejovnik S, R isticM M eds.Sintering—Theory and P ractice, Am sterdam: Elservier, 1982: 19-26
    [17] Coble R L. (a) Sintering crystalline so lids— I intermediate and final state diffusion models; (b) Sintering crystalline solids—II experimental test of diffusion models in powder compacts. J App 1 Phys, 1961; 32: (a) 787— 792; (b) 793- 799.
    [18]Bulshin M Yo. Powder Metallurgy( in Russian) Metallurgizat. 1948
    [19]Pines B Ya. Usp Fiz Nauk, 1954, 52: 501
    [20]Pines B Ya. Zh Tekh Fiz, 1953, 23: 2077
    [21]Andrievskii R A, Fedorechenko IM. Izd Au Ukrssr Kiev, 1958(6): 19
    [22]Makipirtti S A. Acta Polytechnica Scand, 1959,265(1): 1
    [23]Tikkanen M H, Maekipirtti S A. Inter J Powder Metall, 1965,1(1): 15
    [24]Ivensen V A. Densification of Metal Powders during Sintering, English Translated, New York/London Consultants Bureau, 1973
    [25]Pejovnik S et al. Powder Metall Inter, 1979,11: 22
    [26] Kingery W D,Berg M.Appl Phys,1955,26:1205
    [27] Kuczynski G C.J Appl Phys,1958.21:632
    [28] Coble R L.J Am Ceram Soc, 1958,41:55
    [29]A.C.F. Cocks, S.P.A. Gill, J. Pan, Modeling microstructure evolution in engineering materials, Adv. Appl. Mech. Vol.36, 81-162 (1999)
    
    [30]H.H.Yu, Z.Suo, An axisymmetric model of pore-grain boundary separation, J.Mech.Phys.Solids, vol.47,1131-1155 (1999)
    
    [31]Z. Suo, Motions of microscopic surfaces in materials, Adv. Appl. Mech., vol.33, 193-294 (1997)
    
    [32]B. Sun, Z. Suo, A.C.F. Cocks, A global analysis of structural evolution in a row of grains, J. Mech. Phys. Solids, volo.44, 559-581 (1996)
    
    [33]V. Tikare, J.D. Cawley, Numerical simulation of grain growth in liquid phase sintered materials -I. Model, Acta Mater., vol.46 1333-1342 (1998)
    
    [34]V. Tikare, E.A.Holm etc, Comparison of phase-field and potts models for coarsening processes, Acta Mater., vol.47, 363-371 (1999)
    [35]V.Tikare,M.A.Miodownik,E.A.Holm,Three-dimensional simulation of grain growth in the presence of mobile pores,J.Am.Ceram.Soc.,vol.84,1379-1385(2001)
    [36]景晓宁,倪勇,何陵辉,赵建华.陶瓷烧结孔隙演化的二维相场模拟,无机材料学报,2002,17(5):1079-1082
    [37]景晓宁,赵建华,何陵辉,固相烧结后期晶粒和气孔拓扑生长演化的二维相场模拟,材料科学与工程,Vol.21,(2003)170-173
    [38]R.M.German,《Sintering Theory and Practice》,John Wiley & Sons,Inc.,New York(1996)
    [39]L.Q.Chen,Y.Wang,The continuum field approach to modeling microstructureal evolution,JOM,vol.48,13-18(1996)
    [40]L.Q.Chen,J.Shen,Application of semi-implicit fourior-spectral method to phase field equations,Computer.Physics.Communication.,1998,vol.108,147-158(1998)A
    [41]J.W.Cahn,J.E.Hilliard,Free energy of a nonuniform system:Ⅰ.interfacial free energy,J.Chem.Phys.,vol.28,258-267(1958)
    [42]S.M.Allen,J.W.Cahn,A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,Acta.Metall.,vol.27,1085-1095(1979)
    [43]A.Kazaryan,Y.Wang,B.R.Patton,Generalized phase field approach for computer simulation of sintering:incorporation of rigid-body motion,Scripta.Mater.,vol.41,487-492(1999)
    [1]汪敏,胡小方,蒋锐,伍小平.多孔泡沫铝压缩过程中的微结构演化.实验力学,2005,20(3):363-369.
    [2]胡小方,景小宁,赵建华,王亚欧,田玉莲.应用SR-CT技术研究陶瓷材料的孔隙结构及密度分布.实验力学,2003,18(4):485-489.
    [3]R.T.Lopes,H.S.Rocha,E.F.O.de Jesus,R.C.Barroso,L.F.de Oliveira,M.J.Anjos,D.Braz,S.Moreira.X-Ray Transmission Microtomography Using Synchrotron Radiation.Nuclear Instruments and Methods in Physics Research A,2003,505:604-607.
    [4]A.Pyzalla,B.Camin,T.Buslaps,M.Di Michiel,H.Kaminski,A.Kottar,A.Pernack,W.Reimers.
    Simultaneous Tomography and Diffraction Analysis of Creep Damage.Science,2005,308:92-95.
    [5]景小宁,胡小方,赵建华,王亚欧,田玉莲.SXR-CT技术应用研究烧结陶瓷三维微结构拓扑形貌.材料科学与工程学报,2003,21(3):327-330.
    [6]庄天戈.CT原理与算法.上海:上海交通大学出版社,1992.
    [7]E·利弗森,《(第2A卷)材料的特征检测(第1部分)》,科学出版社,482-541,北京(1998)
    [8]美国国家无损检测手册,科学出版社,1027-1077(1991)
    [9]瞿中,陈志昌,周海燕.代数迭代图像重建算法的研究.计算机工程与设计,2004,25(7):1156-1158.
    [10]瞿中,周海燕,唐甜甜,徐强.ART图像重建算法在ICT窄角扇束中的研究.计算机工程与设计,2004,25(6):896-898.
    [11]王飞,张树生,刘晓翔.少量投影多准则CT图像重建的遗传算法研究.计算机工程与应用,2005,41(8):7-9.
    [12]李志鹏,丛鹏,邬海峰.代数迭代算法进行CT图像重建的研究.核电子学与探测技术, 2005,25(2):184-186.
    [13]赵俊,庄天戈.CT图像分块重建算法。上海交通大学学报,2004,38(2):197-199.
    [14]陈灵娜,陈增科.CT断层图像匹配插值算法的研究与实现.南华大学学报,2005,19(1):73-75.
    [15]邓开发,是度芳.光学CT检测的图像处理的矩阵算法.激光杂志,2003,24(4):57-59.
    [16]陈志强,曾凯,张丽,刑宇翔.三维锥束扫描CT成像图像新近展.CT理论与应用研究,2004,13(4):5-8.
    [17]姚红兵,贺安之.光学层析重建算法改进的研究.光学学报,2004,24(2):158-161.
    [18]刘良云,相里斌,李英才.小波分析在层析图像重构中的应用研究.光学技术,2000,26(1):19-21.
    [19]庞彦伟,王召巴.大型试件的X射线CT检测方法探讨.光学技术,2002,28(2):99-101.
    [20]Yoshito Nakashima,Tsukasa Nakano,Koichi Nakamura,Kentaro Uesugi,Akira Tsuchiyama,Susumu Ikeda.Three-Dimensional Diffusion of Non-Sorbing Species in Porous Sandstone:Computer Simulation Based on X-Ray Microtomography Using Synchrotron Radiation.Journal of Contaminant Hydrology,2004,74:253-264.
    [21]潘建寿,高宝健.信号与系统[M].北京:清华大学出版社,2006.Pan J S,Gao B J,signal and system[M],Tinghua university press,2006.
    [22]Kemao Q.Two-dimensional windowed Fourier transform for fringe pattern analysis:Principles,applications and implementations[J].Optics and Lasers in Engineering,2007,45(2):304-317
    [23]Kemao Q.Windowed Fourier transform for fringe pattem analysis:addendum[J].Applied Optics,2004,43(13):2695-2701
    [24]Kemao Q,Seah Hock Soon.Two-dimensional windowed Fourier frames for noise reduction in fringe pattem analysis.Optical Engineering 2005,44(7)
    [25]王召巴.CT扫描系统中成像系统响应的不一致性对重建图像质量的影响[J].光学技术,2001,27(2):100-102.Wang Z B.The effect of the imaging unit with non—uniform response on the reconstructed image in the CT system[J],optical technique,2001,27(2):100-102.
    [26]刘良云,相里斌,李英才.X射线对CCD噪声影响的分析及滤波方法研究[J].光学技术,2000,26(5):459-461.Liu L Y,Xiang L B,Li Y C.Study of CCD noise of X-ray adiation and its filtering method,optical technique,2000,26(5):459-461.
    [27]M.Chukalina,B.Golosio,A.Simionovici,H.Funke.X-Ray Tomography:How to Evaluate the Reconstruction Quality? Spectrochimica Acta Part B,2004,59:1755-1758.
    [28]P.Munshi,M.Maisl,H.Reiter.An Experimental Study of Tomographic Contrast Resolution.Nuclear Instruments and Methods in Physics Research B,1995,95:402-406.
    [29] P. Munshi, M. Maisl, H. Reiter. A New Method of Characterizing Patterns in X-Ray Tomographic Images of a Composite Specimen. Nuclear Instruments and Methods in Physics Research B, 1996,108:205-212.
    [1]施剑林,固相烧结—Ⅰ气孔显微结构模型及其热力学稳定性,致密化方程,硅酸盐学报,1997,25(5):499-513.
    [2]施剑林,固相烧结—Ⅱ粗化与致密化关系及物质传输途径,硅酸盐学报,1997,25(6):657-668.
    [3]施剑林.固相烧结——Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为[J].硅酸盐学报,1998,25(1):1-12.
    [4]Pejovnik S et al.Powder Metall Inter,1979,11:22
    [5]王全兆,刘越,陈志亮,毕敬.TriC/NiCrMoAlTi金属陶瓷的微观结构与力学性能[J].材料研究学报,2005,19(4):354-360.
    [6]Ivensen V A.Densification of Metal Powders during Sintering,English Translated,New York/London Consultants Bureau,1973[9]Kovacik J,Simancik F.Aluminum Foams-Modulus of Elasticity and Electrical Conductivity According to Percolation Theory.Scripta Materialia,1998,32(2):239-246.
    [7]Coble R L.(a)Sintering crystalline so lids—Ⅰ intermediate and final state diffusion models;(b)Sintering crystalline solids—Ⅱ experimental test of diffusion models in powder compacts.J Appl Phys,1961;32:(a)787-792;(b)793-799.
    [8]A.C.F.Cocks,S.P.A.Gill,J.Pan,Modeling microstructure evolution in engineering materials,Adv.Appl.Mech.Vol.36,81-162(1999)
    [9]Z.Suo,Motions of microscopic surfaces in materials,Adv.Appl.Mech.,vol.33,193-294(1997)
    [10]B.Sun,Z.Suo,A.C.F.Cocks,A global analysis of structural evolution in a row of grains,J.Mech.Phys.Solids,volo.44,559-581(1996)
    [11]V.Tikare,J.D.Cawley,Numerical simulation of grain growth in liquid phase sintered materials-Ⅰ.Model,Acta Mater.,vol.46 1333-1342(1998)
    [12]V.Tikare,E.A.Holm etc,Coraparison of phase-field and potts models for coarsening processes,Acta Mater.,vol.47,363-371(1999)
    [13]V.Tikare,M.A.Miodownik,E.A.Holm,Three-dimensional simulation of grain growth in the presence of mobile pores,J.Am.Ceram.Soc.,vol.84,1379-1385(2001)
    [14]汪敏,胡小方,蒋锐,伍小平.多孔泡沫铝压缩过程中微结构演化.实验力学,2005,20(3):363-369.
    [15]Min Wang,Xiaofang Hu,Xiaoping Wu.Internal Microstructure Evolution of Aluminum Foams under Compression.Materials Research Bulletin,2006;41(10):1949-58.
    [16]Dominique Bernard,Damien Gendron,Jean-Marc Heintz,Sylvie Boredre,Jean Etournean.First Direct 3D Visualisation of Microstructural Evolutions During Sintering Through X-ray Computed Microtomography.Acta Material,2005;53:121-8.
    [17]Lame O,Bellet D,Di Michiel M,et al.Bulk observation of metal powder sintering by X-ray synchrotron microtomography.Acta Materialia,2004,52(4):977-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700