用户名: 密码: 验证码:
磨料射流油井割缝技术与理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井下磨料射流割缝技术是一项油井增产、水井增注、提高原油采收率的高新技术。已在大庆、胜利、辽河等油田推广使用,效果良好。本文是对磨料射流割缝机理及力学模型进行研究,从而建立油(水)井磨料射流割缝理论,为该项技术不断改进及工艺参数选择提供理论支撑。井下割缝需要对金属和岩层两类不同性质材料进行切割,因而本项研究对于普遍的磨料射流切割也有指导意义和参考价值。
     磨料射流是少量磨料颗粒与水组成的混合物形成的射流,根据磨料颗粒粒径小、质量及容积浓度低、均匀分布、水流速高、磨料颗粒能随水一道流动的特点,可以视为平衡稀疏流的固液两相流。采用连续介质双流体模型,在建立了固液两相流基本微分方程的基础上,得到了与固液两相流等效的单相流体的基本方程组。从而可以应用单相流体力学原理和方法研究固液两相流体流动问题。本文采用了极坐标、时间平均方法建立紊流方程。通过量级比较法,将紊流方程简化为相应边界层方程,即紊动圆形断面的自由磨料射流微分方程。求得了磨料圆形紊流自由射流的微分方程相似解和动量积分解,得到了圆形自由磨料射流流速分布,轴线上轴向流速和断面面积沿程变化规律。
     根据地面模拟试验研究和理论分析,磨料射流对金属套管的切割,主要是由磨料射流中的磨料颗粒,与金属套管内表面接触,产生的作用力而实现的。由于磨料颗粒与金属套管接触面积很小,即使产生作用力不大,在接触区域内产生的接触应力将很大,由于套管是金属材料,当接触剪应力超过材料接触剪强度,接触区材料破坏,从母体上剥落形成凹陷,材料表面在大量磨料颗粒连续不断地作用下,凹陷不断产生,积累形成割缝,因而磨料射流对金属套管的切割是磨料颗粒高速与套管接触产生的剪应力作用的结果。实质上是弹性力学理论中的接触问题,从而建立了磨料射流切割金属套管的力学模型。
     在磨料射流通过被切开的缝隙对岩层进行切割的过程中,受缝隙底部及缝隙两侧的限制,被卷吸进入射流中的周围流体大幅度减少,因而射流流速降低减缓。因而考虑了其固壁摩擦阻力建立了磨料射流运动的微分方程,通过微分方程相似解和量纲分析解相结合,得到了通过缝隙的磨料射流轴线上轴向速度沿程变化规律。岩层是脆性物质,其抗拉强度仅为抗剪强度的几分之一,更是为抗压强度的十几分之一,因此岩层是在射流中大量磨料颗粒高速连续冲击岩层表面时,卸载引起的拉伸波作用下破坏,产生碎粒不断从岩层表面剥落而被切割。在岩石动力学、流体力学、波传播理论的基础上建立了磨料射流切割岩层力学模型。与磨料射流切割套管力学模型构成了油井磨料射流割缝理论。并进行了实例计算,计算结果与地面模拟割缝试验进行对比基本吻合,可以在工程中应用。最后对割缝增产的机理及磨料射流割缝工艺参数的选择进行了分析。
Oil well downhole abrasive jet slotting technology is a highly new technology for oil well production increasing, injection increasing of water injector and improving oilfield recovery which has been used in Daqing Oilfield, Shengli Oilfield and Liaohe Oilfield, etc. with very good results. Mechanism and mechanical model of abrasive jet slotting are studied in the paper so that theory of abrasive jet slotting for oil (water) well is established and theoretical support is provided for continuous improving and technical parameter selection of the technology. In downhole slotting, two kinds of materials with different properties of metal and rock need to be slotted, so this research is also suitable for common abrasive jet slotting.
     Abrasive jet is a jet formed by the mixer of a small amount of abrasive particles and water. In view of small grain diameter, low mass and volumetric concentration, even distribution and high flow rate and flowing with water for abrasive particles, it can be regarded as solid-liquid two phase flow of balanced sparse flow. Based on basic differential equation of solid-liquid two phase, basic equations for equivalent monophasic fluid of solid-liquid two phase flow are obtained with continuous medium dual fluid model so that solid-liquid two phase fluid flowing can be studied with mechanism and method for monophasic fluid mechanics. Turbulent equations are established with methods of polar coordinates and averaging time and turbulent equation is simplified as correspondent boundary layer equation, that is, free abrasive jet differential equation of turbulent circular section through magnitude comparison. Similar solution and momentum integral solution for differential equation of free jet of abrasive circular turbulent are derived and flow rate distribution for circular free abrasive jet, axial flow rate on axial line and on way variation for cross section are obtained.
     According to surface simulation test and theoretical analysis, slotting of metallic casing by abrasive jet is realized by the acting force caused by contact of abrasive particles in abrasive jet and internal surface of metallic casing. As contacting area for abrasive particles and metallic casing is small, even the acting force is not large, contacting stress formed in contacting region is still large. Since casing is made of metallics, as contacting stress exceeds contact shear strength, material in contacting region is damaged and scaled to form depression. Depressed areas are formed continuously by the action of a large amount of abrasive particles on the material surface to form slots. Therefore, metallic casing is slotted by abrasive jet when shear stress formed by contact of high-speed of abrasive particles and casing is damaged. As a matter of fact, mechanical model for slotting of metallic casing by abrasive jet is established due to contacting problem in elastic mechanics.
     Rock is slotted by abrasive jet through slots. Restricted by the bottom and two sides of slots, surrounding fluid indrafted into the jet is reduced greatly, so flow rate of the jet slows down. Differential equation for abrasive jet motion is established by considering solid-wall frictional resistance and on way variation of axial speed on axial line for abrasive jet through slots is obtained by combination of similar solution of differential equation and dimensional analytical solution. Rock is fragile material with tensile strength only one fraction of shear strength and compressive strength. So rock is damaged by tensile wave caused by unloading of a large amount of abrasive particles which impact rock surface continuously at a high speed and slotted by debris scaled from rock surface. Mechanical model of rock slotting by abrasive jet is established on the basis of rock dynamics, fluid mechanics and wave propagation theory. And oil well abrasive jet slotting theory is formed by combination of mechanical model of rock slotting by abrasive jet and mechanical model of casing slotting by abrasive jet. Calculation of the example is similar to surface simulation slotting test which can be applied in engineering. Finally, mechanism of slotting simulation and selection of technical parameters for abrasive jet slotting are analyzed.
引文
[1] Summers . Water Jetting Tehnology[M],London:E&Enspon,1995
    [2] Alxire T. D. Developmental Trends of Three-Dimensional Abrasive Waterjet Cutting Systems for Production Application[A]. In:Proceedings of the 13th International Conference on Jetting Technology,Cagliari:1996-10-29 to 31:Bedfordshire:BHRG,1996:629-641
    [3]崔漠慎.高压水射流技术[M] .北京:煤碳工业出版社,1992.
    [4]张永利,郜英楼,章梦涛.水力喷砂割缝增产增注技术的试验研究[J].石油钻采工艺,1997,(6)
    [5]张永利,李忠华,李成全.井下磨料射流割缝技术的试验研究[J].东北大学学报,2001,(3)
    [6] Boussinesq J. Essai sur la Théorie des Eaux Courantes[A]. Paris :Mém.Prés. Acad. Sci. XIII,46,1877
    [7] Marble F.E. Dynamics of a Gas Containing Small Solid Particles[A]. In:Proceedings of 5th AGARD Combustion and Propulsion Colloquim. New York: Pergamon Press,1963
    [8]Murray J.O. On the Mathematics of Fluidization and Fundamental Equations and Wave Propagation[J]. Journal of Fluid Mech. 1965,V21
    [9] Soo S.L. Fluid Dynamics of Multiphase Systems[M]. Waltham Mass:Blaisdell Publishing Co.,1967
    [10] Vasiliev O.F. Problems of Two-Phase Flow Theory[A]. Kyoto:Lecture of 13th Congress of International Assoc.for Hydraulic Res.,1969
    [11]Drew D.A. Average Field Equations for Two-Phase Media[A]. Stud. Appl. Math[C]. 1971.
    [12]Ishii M.,Mishima K. Two-Fluid Model and Hydrodynamic Constitutive Relations[A]. Nuclear Engineering and Design[C],1975
    [13]Deily F.H.,Heilhecker J.K.,Maurer W.C.et al. A Study of High Pressure Drilling[A]. New Orleans,LA :Drilling Technology Conference,1977
    [14]柏存义.两相流动[M].北京:国防工业出版社,1985
    [15]Trüpel T. Ueber die Einwirkung eines Luftstrahles auf die umgobende Luft[A],Zeitschrit fürdas gesammte Turbinenwesen[C],1915
    [16]Zimm W. Ueber die Stromungsvorgange in freien Luftstrahl[A]. Forschung a.d.Gebiete d.Ingenieurwesens[C]. 1921
    [17]Gottingen Z. Ergebnisse der aerodynamischen Versuchsanstalt[M]. 1923
    [18]TуркусB.A.структуравоздущногоприточногфакепавъLXодящегоиэпрямоуголъногоотверстияомоиленцецеенмцлялля,No.5,11,1933
    [19] Forthmann E. Uber Turbulente Strahlausbreitung. Diss. Gottingen,1933;Ing. Arch. 5,1934;NACA TM739,1934
    [20]сыркинA.п.ляховскиид.нАэродинамикаэлементарнотофакеласообщениецкти[M],1936
    [21]Aбрамовичг.и.теорцятурбулентныхструü[A].фиэматгиз[M],1940
    [22]Albertson M.L.,Dai Y.B.,Iensen R.A.,et al. Diffusion of Submerged Jets[A]. Proceedings of the ASCE,74,1751,1948
    [23]Tollmien W. Berechnung Turbulenter Ausbreitungsvorgange[M]. ZAMM,6(6),1926
    [24]Prandtl. Applied Hydro and Aeromechanics Mcgraw Hilleo[M],1934
    [25]谢象春.射流理论与计算[M].北京:科学出版社,1975
    [26] Schliching Lansinar Strahlenausbreitung ,EAMM,1933
    [27]Aбрамовичг.и.теорцятурбулентныхструü[A].физматгизм[M],1960
    [28]Schliching H. Boundary Layer Theory[M]. New York:Mcgraw-Hill Book Company,Nic.,1968
    [29]张永利.磨料两相圆形射流紊流方程的建立及求解[M].地质灾害与环境保护,2001.
    [30]O. Rajaratnans. Three Dimensional Turbulent Well Jets[J]. Journal of the Hydraulic Division,1974
    [31] A.I.momber. A Generalized Abrasive Water Jet Cut Model[A]. In:Proceeding of the 6th American Water Jet Conference,Houston 1999-08-26to29 St. Louis WJTA2001 359-503
    [32] Hashish M. Machining of Hard Materials with Abrasive Suspension Jets.in:Proceedings of the 9th American Waterjet Conterence. Dearborn,1997
    [33] Rajaratnam N. Turbulent Jets. Amsterdam, Elsevier,1976
    [34] Nanduri M.. Abrasive Water Jet Turning of Diamond Grinding Wheels[A]. In:Proceedings of the 9th American Waterjet Conference,Dearborn, 1997-08-23 to 26:St.Louis:WJTA,1997:61-76
    [35] Ansari A.I.. On the Modeling of Abrasive Waterjet Turning[A]. In:Proceedings of 11th International Conference on Jet Cutting Technology, St. Andrew,1992-09:Bedfordshire BHRG,1992:555-576
    [36] Holmqvist Gustav. Process Development and Apparatus for Discretized Abrasive Waterjet Milling[A]. In:Proceedings of the 9th American Waterjet Conference,Dearborn,1997-08-23to26:St.Louis:WJ-TA,1997:77-91
    [37]金国栋.高水压破岩-水爆[A].高压水射流[M],1988
    [38] Tikhomirov. High-Pressure Jet Cutting[M]. New York: ASME,1992
    [39]孙家俊.水射流切割技术[M].北京:中国矿业大学出版社,1992
    [40] Singh M.M., Hartman H.L. Hypothesis for the Mechanism of Rock Failure under Impact[A]. 4th Symposium on Rock Mechanics,Pennsylvania State University,PA,1961:221-228
    [41] Leach S.J.,Walker G.L. Application of High Speed Liquid Jets to Cutting[A]. Philosophical Transactions[M]. London:Royal Society of London,260A,July,1966:295-308
    [42] Farmer I.W.,Attewell P.B. Rock Penetration by High Velocity Water Jets[J]. International Journal of Rock Mechanics and Mining Science. July,1965,V2,(2):135-153
    [43] Daniel I.M.,Rowlands R.E., Labus T.J. Photoelastic Study of Water Jet Impact[A]. Paper A1,Proc.2nd Int.Symp.Jet Cutting Tech., Cambridge,UK,April,1974:A1-1~A1-18
    [44] Powell J.H.,Simpson S.P. Theoretical Study of the Mechanical Effects of Water Jets Impinging on a Semi-Infinite Elastic Solid[J]. International Journal of Rock Mechanics and Mining Science,July,1969,V6:353-364
    [45] Bieniawski Z.T. Mechanism of Brittle Failure of Rock[J]. International Journal ofRock Mechanics and Mining Science,1973,V4(4):395-430
    [46] Cooley.W.C. Workshop on the Application of High Pressure Water Jet Cutting Techonlogy[A]. University of Missouri-Rollon,1975
    [47] Foreman S.E.,Secor G.A. Mechanics of Rock Failure due to Water Jet Impact[A]. Sixth Conference on Drilling and Rock Mechanics, Society of Petroleum Engineers,Austin,TX,1973,SPE4247
    [48] Crow S.C. A Theory of Hydraulic Rock Cutting[J]. Internationl Journal of Rock Mechanics and Mining Science,1973,V10:567~584
    [49] Rehbinder G. Some Aspects of the Mechanism of Erosion of Rock with a High Speed Water Jet[A]. Paper E1,3rd International Symposium on Jet Cutting Technology,Chicago,IL,May,1976:E1-1~E1-20
    [50] Bresee J.C.,Cristy G.A. , Mclain W.C. Some Comparisons of Continuous and Pulsed Jets for Excavation[A]. Paper B9,1st International Symposium on Jet Cutting Technology,Coventry,UK,April,1972:B9-125~B9-132
    [51] Deily F.H.,Heilhecker J.K.,Maurer W.C.,et al. A Study of High Pressure Drilling[A]. Drilling Technology Conference,New Orleans,LA,1977
    [52]薛胜雄.高压水射流技术及应用[M].北京:机械工业出版社,1995
    [53]周卫东,王福和,杨永印,等.水力参数和磨料参数对前混式磨料射流切割套管的影响研究[J].石油钻探技术,2001,(4)
    [54] Merber. A Generalized Abrasive Water Jet Model[A]. In Proceeding of the 8th American Water Jet Conference,1995
    [55]张永利.磨料两相射流理论及在油井增产(注)中的应用[D].沈阳:辽宁工程技术大学,2001
    [56]刘大有.建立两相流方程的动力论方法[J].力学学报,1987
    [57] Ishii M. Thermo-Fluid Dynamic Theory of Two-Phase Fluid[M]. Paris: Eyrolles,1975
    [58]刘大有,王伯馨.推导悬浮体两相流基本方程的一种新方法[J].力学学报,1992.
    [59]刘大有.两相流体动力学[M].北京:高等教育出版社,1993
    [60] Wegener P. Pyedby Nonequilibrium Flows[M]. Marcel Dekker ,Newyork,1970
    [61]常梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998
    [62]吴望一.流体力学[M].北京:北京大学出版社,1983
    [63] Basset A.B. Hydrodynamics[M]. V2,Dover,Newyork,1961
    [64]普朗特.流体力学概论[M].郭永怀,陆士嘉,译.北京:科学出版社
    [65] Saffman P.G. The lift on a Small Sphere in a Slow Shear Flow J[A]. Fluid of Mech[C],1965
    [66] Rudiuger.G,Chang.A. Analysis of Non-Steady Two-Phase Flow Physics of Fluid[M]. V7(11),Patl,1964
    [67] White F.M. Various Fluid Flow[M]. Mcrow-Hill Book company,1974
    [68]张祥麟.高等流体力学M].西安:西安交通大学出版社,1989
    [69] Boussinesg.J. ,Dssoi Sarla. Theorie Deseaux Courautes[A]. Mompres Acat sci xxill 46,Paris,1877
    [70] Prandtl L. uber die ausgebildete Turbulent[M]. AMMS,1925:136-139
    [71] Prandtl.L. Uber Flussigkeiten beisehr kleiner reibung[A]. Vehr 3 lnternat Math.Math kougr Heidelberg,1904
    [72] Nikuradse J. Lawimare Reibungsschichten an der langang estramten Platte Monograph zentrale f[M]. Berlin :Wiss Berichtswesem,1942
    [73]夏震寰.紊动力学[M].高等教育出版社,1992
    [74] Reichardt H. Gesetem assigkeiten der freien Turbulent VDI-Forschungsheft[M]. 1951:414
    [75]王允良,王福材.射流对于水泥环损伤的试验研究[C].弹性动力学新进展.科学出版社,1985
    [76]李忠华.流体力学[M].沈阳:东北大学出版社,2004
    [77]刘大有.两相速度平衡条件下的两相流声速[J].力学学报,1990
    [78]张永利.油气井水力喷砂割缝增产增注技术作用原理及展望[J].钻采工艺,1997
    [79] Timoshenko S.P. Theory of Elasticity[M]. New york:Megraw Hill,1970
    [80]щтаерман.и.я.контакеная.эаgаtаTeopuu ynpyrocTu a rus-рестехцзат[M]. 1949
    [81]钟万勰.弹性力学求解新体系[M].大连:大连理工大学出版社,1997
    [82]耶格·廉克.岩石力学基础[M].中科院工程力学研究所译.北京:科学出版社,1985
    [83]张永利,郜英楼,王来贵,等.水力喷砂割缝增产增注技术的试验研究[J].石油钻采工艺,1998
    [84]李成全,郜英楼,张永利.磨料射流油井割缝增产增注技术研究总结[R].沈阳:辽宁工程技术大学,2004
    [85]谢道夫.力学中的相似方法和量纲理论[M].北京:科学出版社,1982
    [86]杨桓通.塑性动力学[M].北京:清华大学出版社,1982
    [87]殷祝平.高压条件下金属动力性能的实验与理论研究[C].力学进展,1980.
    [88]章梦涛,潘一山.煤岩流体力学[M].北京:科学出版社,1995
    [89] A W Momber. A Generalized Abrasive Water Jet Cutting Model[A]. In:Proceedings of the 8th American Water Jet Conference,Houston 1995-08-26to29:St.Louis:WJTA,1995:359-376
    [90] Hashish M. Advances in Fluid Beam Processing[A]. In:Proceedings of the 8th American Waterjet Conference,Houston,1995-08-26to29:St.Louis:WJTA,1995:487~503
    [91] Ansari A I. On The Modeling of Abrasive Waterjet Turning[A]. In:Proceedings of 11th International Conference on Jet Cutting Technology,St.Andrew,1992-09:Bedfordshire BHRG,1992:555~576
    [92] Zeng J. Milling Ceramics with Abrasive Waterjets-An Experimental Investigation[A]. In:Proceedings of the 9th American Waterjet Conference,Dearborn, 1997-08-23 to 26:St.Louis:WJTA,1997:92~107
    [93] M Ramulu. An Experimental and Numerical Study of Abrasive Waterjet Generated Stress Fields[A]. In:Proceedings of the 9th American Waterjet Conference,Dearborn,1997-08-23 to 26: St.Louis:WJTA,1997:173~188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700