用户名: 密码: 验证码:
非均质油气藏的储量计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储量计算是一项贯穿油气勘探、开发全过程的长期工作,随着资料的增加和对油气藏认识的不断深入,需要不断对油气储量进行重新计算。储量计算的准确性和可靠性影响勘探和开发决策。那么,如何才能进行准确地计算石油、天然气地质储量呢?关键要对地下油气藏进行客观、准确地认识,尽可能准确地确定储量计算参数。本论文以柴达木盆地油泉子油田上、下油砂山组(N_2~2、N_2~1)油藏为研究对象,综合利用岩心观察和实验室分析化验资料、薄片和铸体薄片资料、x-衍射、压汞资料、相渗资料、录井、试油资料、测井(包括常规测井和阵列感应测井、成像测井)、地震、地面细测资料、开发井生产动态等资料,从地层、沉积、构造、储层、成岩以及流体等方面研究油气藏内部非均质性,分析了油气藏内部非均质性对储量计算单元的划分、储量计算参数的求取等方面的影响,在此基础上,计算了基于“油气藏非均质单元”的石油地质储量。本论文取得以下主要成果:
     1、利用取心分析、常规测井曲线、成像测井资料,首次发现在上油砂山组(N_2~2)内部电阻率具有“双刺刀”形态的等时界面-灰岩标志层K2-1,结合上油砂山组(N_2~2)底部正星介标准化石层,按照“旋回对比,分级控制”原则自上而下将油泉子油田上油砂山组分为9个砂层组,37个小层,下油砂山组分为3个砂层组,14个小层。结合研究区油层纵向上分布分散(79~620m),单层厚度小(1~2.8m),无统一油水界面的特点,将油泉子油田上、下油砂山组(N_2~2、N_2~1)储量计算的垂向单元划分为51个。
     2、从沉积背景、物源方向、沉积构造三个方面分析了研究区的沉积特征,通过碳、氧同位素分析定量地恢复沉积环境,确定古盐度。在以上研究基础上,对沉积微相进行了细分并建立了沉积模式,通过对沉积微相细分,将湖相细分为浅湖及半深湖两个亚相,进一步划分了四种主要的沉积微相类型,即浅湖颗粒滩微相、浅湖灰坪微相、浅湖砂滩微相和半深湖泥坪微相;研究区发育的地层岩石类型主要有颗粒灰岩、藻灰岩、泥晶灰岩、粉砂岩、泥灰岩和泥岩。确定了由于沉积微相的变化而导致的平面非均质性,进而在平面上按照平面非均质单元计算了石油地质储量。
     3、利用岩心分析、常规测井曲线与阵列感应、成像测井资料相结合,分岩性利用回归分析方法建立了储层孔隙度、渗透率模型;通过对45块岩样进行岩电试验,获取了a、b、m、n值,利用阿尔奇公式计算了各单层含油饱和度值;根据侧向电阻率和感应电阻率串并联特性,利用电阻率比值法与常规交会图法相结合重建了有效厚度图版,对全区103口井目的层段进行了有效厚度精细划分,通过以上工作,准确求取了储量计算单元内有效厚度参数、有效孔隙度参数以及含油饱和度参数。
     4、通过对研究区3口井383m岩心观察,100余块薄片、铸体薄片镜下鉴定得出:油泉子油田上、下油砂山组储层主要成岩作用是压实作用、胶结作用、溶蚀作用和破裂作用,其中溶蚀作用、胶结作用最普遍,这两种作用对有效孔隙度影响最大,以上成岩作用形成了原生粒间孔、粒间残余孔和次生孔隙(如粒间溶孔、粒内溶孔、铸模孔、晶间孔等)为主的薄层湖相碳酸盐岩储层。
     5、利用实际资料,系统分析了油藏非均质对储量计算的影响,认为:①对于构造油气藏而言,油气藏构造及断裂特征是造成油气分布不均的首要原因,储集条件相同的条件下,构造高部位有利于储存油气,油气在垂向的重力分异体现了油气藏内部构造的不均一特征。每一次构造成图的变化,必然会影响到含油圈定面积的变化,断层的最终确定也影响到平面储量计算单元的划分。②沉积相控制了储层的展布,有利的储层往往发育在主力相带当中,不同的沉积方式造成层内储集体物性的差异性,这种差异性直接影响了油气在油气藏内部的分布,因此,沉积控制了储层平面非均质,进而影响平面计算单元的划分和单元内储量计算参数的求取。③在考虑构造和断层特征以及储层岩性、物性、含油气性在垂向和平面的不均一分布的基础上,进行垂向储量计算单元和平面计算单元的划分以及单元内储量计算参数的取值。④流体的不均一性分布,影响含油饱和度、密度参数、体积系数等储量计算参数的取值。⑤油气藏内部含油气储集体的性质主要受沉积微相和成岩作用控制,储层沉积微相和成岩作用影响孔隙结构和储层物性,从而影响有效孔隙度的求取精度。
     6、在上述研究的基础上提出“油气藏非均质单元”的概念并结合实例分析了不同油气藏类型非均质单元的划分方法,基于“油气藏非均质单元”进行了储量计算,计算结果表明与传统的按照砂层组或整个构造进行的储量计算结果有较大差别(原油储量分别相差-13.4%,-4.7%,气顶气储量相差14.8%)。采用本文所提“油气藏非均质单元”所计算的石油和天然气探明储量获得国家储委的审查和批准。
Reserves calculation is a long-time work throughgoing exploration and development. With the addition of the data and the knowledge of the reservoirs, reserves will be recounted. The reliability of reserves calculation influenced the exploration and development decision. And how can we calculate hydrocarbon reservoir accurately? The key is having correct knowledge and accurate parameters of hydrocarbon reservoirs. This thesis took shallow oil reservoir in Qaidam basin as the study area which was typical with abundant data of the core observation, the information of laboratory analysis, thin slices, cast thin slices, X- diffraction, mercury penetration, infiltration curve, well logging, well testing, logging (including conventional logging, array induction imaging log and FMI), seismic, surface survey, production performance, etc. Reservoir heterogeneity was studied from five aspects. They were structure, sedimentation, reservoir, diagenic metamorphism and fluid property. This paper analyzed the influences of reservoir heterogeneity in dividing reserves calculation unit and accounting parameter. On the basis of analysis,hydrocarbon reservoir has been calculated. The conclusions are as follows:
     1、Using the data of core analyses, conventional logging and FMI, the limestone marker bed(K2-1) with formal of“twin bayonet”on RT has been recognized inside N_2~2.Uniting characteristic fossil in bottom of N_2~2,the formation was divided into 9 groups and 37 sublayers in N_2~2 and 3 groups and 14 sublayers in N_2~1 according to the rule“cycle comparison, step control”. The oil layers distribute from 79m to 620m in vertical orientation and the individual bed is thin(from 1m to 2.8m)and there is no unite oil/water boundary in the region of interest. Seeing that features, the reserves in vertical have been divided in 51 calculation units.
     2、The deposition characteristics have been analyzed from depositional setting, provenance orientation, and sedimentary structure. According to analyses ofδ13c andδ18o, depositional environment has been built-up quantitatively and palaeosalinity also has been confirmed. Based on the preceding research, sedimentary microfacies have been subdivided and depositional model has been established. Lacustrine facies has been divided into meare and semi-abyss. There are three microfacies in meare included granule sands, limestone and sand bank. There is corcagh microfacies in semi-abyss. The reservoir rock types in the region of interest are grain limestone, algal limestone, cryptite, siltstone, muddy limestone and mudstone. The thesis identified as a result of changes in the deposition causing the heterogeneity in plane, and then the geological oil reserves have been calculated in accordance with the areal heterogeneity.
     3、Based on the data of core analysis, bore logging, array induction imaging log and FMI, porosity and permeability model were built using regression analysis. Through testing 45 rock samples, a, b, m, n value were obtained and used to calculate single-layer oil saturation value using the Archie formula. According to the theory of laterolog and inductolog, resistivity ratio and cross plot were used to identification effective thickness. Effective thickness was identified delicately in 103 wells. Based on the over work, active porosity and oil saturation was calculated accurately.
     4、According to observation of 100 pieces of the thin slices, cast thin slices and 383m core in three wells, the chief diagenesis in this area were compaction, cementation, denudation and cataclasis. Cementation and denudation were universally influenced active porosity this area. The intergranular pores, residual pores and secondary pores were formed in thin carbonated reservoir of lacustrine facies.
     5、The influence of reservoir heterogeneity to reservoir calculation was analyzed systematically using actual data. And the conclusions were as follows:①The principal reason leading to oil distribution unequal is interior structural feature of reservoir in structural hydrocarbon reservoir. Oil and gas was stored easily in high structure. The gravitational differentiation of oil and gas displayed the interior heterogeneity of reservoir. When structure map changed, oil area must be changed.②Sedimentary facies controlled the distribution of reservoir. The beneficial reservoir was usually developed in main facies belt. Difference depositional mode caused the difference physical property of reservoir. And the difference directly influenced the distribution of oil and gas in reservoir. So sedimentary facies is the geological source caused reservoir heterogeneity.③Structural feature, lithology, physical property must be take into account when dividing reserves calculation unit and calculating reserves parameters.④The heterogeneity of fluid affected evaluation of SO ,oil density and volume factor.⑤Sedimentary microfacies and diagenesis influenced pore structure and reservoir physical property and controlled the characteristics of hydrocarbon bearing reservoir, so that it affected the accuracy of calculation of reserves.
     6、On the basis of the above-mentioned research the conception of hydrocarbon reservoir heterogeneity unit was developed. And this paper introduced the method to divide the hydrocarbon reservoir heterogeneity unit in a case study. The result shows that using divided hydrocarbon reservoir heterogeneity unit in calculation of reserves is more accurately than normal method(oil-13.4%,-4.7%, associated gas-14.8%). Using this method successfully submit discovered reserves to reserves commission.
引文
[1]吴元燕,吴胜和,蔡正旗.油矿地质学(第三版)[M].北京:石油工业出版社,2005
    [2]杨通佑,范尚炯,陈元千,等.石油及天然气储量计算方法[M].北京:石油工业出版社,1990
    [3]吕鸣岗,等.石油天然气储量计算规范[M] (DZ/T0217-2005)
    [4]刘吉余,等.地质储量精细计算方法研究[J].海洋地质动态,2003,19(9),31-34
    [5]罗昌元,等.非均质气藏容积法储量计算方法[J].国土资源科技管理,2002,(5),41-43
    [6]国景星,等.储量精细计算方法探讨[J].油气地质与采收率,2001,8(3),31-33
    [7]裘怿楠.油藏描述[M].北京:石油工业出版社,1997
    [8]信荃麟,等.碎屑岩油气储层非均质性研究(综述)[J].1997
    [9]林承焰.剩余油形成与分布[M].石油大学出版社,1999
    [10] Jordan D W,Pryar W A. Hierarchical Levels of Heterogeneity in a Mississippi River Meander Belt and Application to Reservoir Systems[J].AAPG Bulletin,1992,10:1601-1624
    [11] Miall A .D. Reservoir Heterogeneity in Fluvial Sandstones[J].AAPG Bulletin, 1988,72(6):682-697
    [12] Miall A.D.Architectural element analysis:Anew method of facies analysis applied to fluvial deposits [J].Earth Science Review,1985,22(2):261-308
    [13] Weber W J and Van Geuns L C. Framework for Constructing Clastic Reservoir SimulationModels[J].SPE 1982-1989
    [14] Scott L.Montgomery.South Casper Creek Field:a study in reservoir heterogeneity.AAPG Bulletin,1996,80:1161-1176
    [15] Major R.P.,Mark H.Holtz.Depositionally and diagenetically controlled reservoir heterogeneity at Jordan Field.Journal of Petroleum Technology,1990,42(10):1304-1309
    [16]刘泽容著.油藏描述原理与方法技术[M].北京:石油工业出版社,1991:254-255
    [17]裘怿楠,薛叔浩,等编著.油气储层评价技术(修订版).北京:石油工业出版社,2001:1-96
    [18]韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5):55-59
    [19]焦养泉,李思田,李帧,等.碎屑岩储层物性非均质性的层次结构[J].石油与天然气地质,1998,19(2):89-92
    [20]焦养泉,李思田,杨士恭,等.湖泊三角洲前缘砂体内部构成及不均一性露头研究[J].地球科学,1993,18(4):441-451
    [21]姚光庆,马正,赵彦超.储层描述尺度与储层地质模型分级[J].石油实验地质,1994,16(4):403-408
    [22]陈永生.油田非均质对策论[M].北京:石油工业出版社,1993
    [23]戴启德,纪友亮.油气储层地质学[M].东营:石油大学出版社,1996
    [24]郑浚茂,于兴河,谢承强,等.不同沉积环境储层的层内非均质性—以黄驿拗陷为例[J].现代地质,1995,9(4):501-508
    [25]李崎.沉积方式与碎屑岩储层的层内非均质性[J].成都理工学院学报,1996,23(增刊):22-28
    [26]吕国祥.分形技术在储层非均质研究中的应用[J].西南石油学院学报,1995,17(3):61-65
    [27]刘泽容,杜庆龙,蔡忠.应用变差函数定量研究储层非均质性[J].地质评论,1993,39(4):297-301
    [28]高树新,杨少春,胡红波,等.胜坨油田坨21断块沙二段储层非均质性定量表征[J].油气地质与采收率,2004,11[5]:10-13
    [29]杨少春.储层非均质性定量研究的新方法[J].石油大学学报(自然科学版),2000,24(1):53-56
    [30]杨少春,杨兆林,胡红波.熵权非均质综合指数算法及其应用[J].石油大学学报(自然科学版),2004,28(1):18-21
    [31]陈元千,等.判断油气藏非均质性的新方法[J].中国海上油气(地质),1998,12(6):399-402
    [32]金强.用生产井信息确定储层非均质性[J].石油大学学报(自然科学版),1999,23(2):18-21
    [33]程时清,陈平中.利用试井压力描述储层非均质性[J].石油与天然气地质,1995,16(3):285-289
    [34]赵春森,翟云芳,张大为.油藏非均质性的定量描述方法[J].石油学报,1999,20(5):39-42
    [35]林承焰,谭丽娟,于翠玲.论油气分布的不均一性(Ⅱ)——非均质控油理论的由来[J].岩性油气藏,2007,19(2):16-21
    [36]林承焰,谭丽娟,于翠玲.论油气分布的不均一性(Ⅱ)——非均质控油理论探讨[J].岩性油气藏,2007,19(3):14-22
    [37]吴胜和,等.层间干扰与油气差异充注[J].石油实验地质,2003,25(3),285-289
    [38]徐守余,刘太勋.胜坨油田三角洲相储集层流动单元研究[J].石油大学学报(自然科学),2004,28(1),22-25
    [39]曾溅辉,金之钧著.油气二次运移和聚集物理模拟.北京:石油工业出版社,2000:61-113
    [40]毕海滨.提高地质储量计算精度的途径及可采资源量的预测[D].硕士论文,2001
    [41]青藏油气区石油地质志编写组..中国石油地质志,卷十四,青藏油气区[M].北京:石油工业出版社,1990
    [42]洪有密.测井原理与综合解释[M].北京:石油大学出版社,1993:23-56
    [43]孙建孟,王永刚.地球物理资料综合应用[M].石油大学出版社,2001:149-153
    [44]王贵文,郭荣坤.测井地质学[M].石油大学出版社,2000:134-150
    [45]陈一鸣,朱德怀.矿场地球物理测井技术测井资料解释[M].北京:石油工业出版社,1981:200-231
    [46] Forward工程技术手册[M].北京:石油工业出版社,1991:123-235
    [47]牛超群,安丰全.测井曲线高分辨率处理技术[M].北京:地质出版社,1999:6-50
    [48]张一伟,熊琦华,王志章,等.陆相油藏描述[M].北京:石油工业出版社,1996:178-187
    [49]徐守余.油藏描述方法原理[M].北京:石油工业出版社,2005
    [50]曾文冲.油气藏储集层测井评价技术[M].北京:石油工业出版社,1991:350-385
    [51]雍世和,张超谟.测井数据处理与综合解释[M].石油大学出版社,1996:459-464
    [52]傅海成,张承森,赵良孝,等.塔里木盆地轮南奥陶系碳酸盐岩储层类型测井识别方法[J].西安石油大学学报(自然科学版),2006,21(5):38-41
    [53]李延丽.柴达木盆地游园沟油田中浅层油藏四性关系研究[J].天然气地球科学,2006,17(3):402-406
    [54]周惠文,刘天佑.乌里雅斯太凹陷砂砾岩油气藏四性关系研究[J].天然气工业,2005,25(增刊):128-132
    [55]欧阳健.石油测井解释与储层描述[M].东营:石油大学学报,1994
    [56] Longman M W.碳酸盐岩成因作用控制的地层圈闭(以威利斯顿盆地为例)[M].李祜佑,赵幼航译.北京:石油工业出版社,1991
    [57]李汉林,赵永军.岩性识别的多元统计法[M].地质评论,1989,44(1):106-112
    [58]方开泰.实用多元统计分析[M].上海:华东师范大学出版社,1989:271-308
    [59]云美厚,高君,贺玉山,等.储层速度和密度与孔隙度、泥质含量以及含水饱和度的关系[J].勘探地球物理进展,2004,27(2):104-107
    [60]高博禹,彭仕宓,刘红岐.蒙古林砾岩油藏储层测井精细解释模型[J].测井技术,2005,29(1):55-58
    [61]张小莉,冯乔,杨懿,等.英台油田中孔隙低渗透型储层测井评价[J].石油学报,2006,27(6):51-54
    [62]宋子齐,程国建,杨立雷,等.利用测井资料精细评价特低渗透储层的方法[J].石油实验地质,2006,28(6):595-599
    [63]宋子齐,程国建,王静,等.特低渗透油层有效厚确定方法研究[J].石油学报,2006,27(6):103-106
    [64]杨洪明,谢丽,马建海,等.用侧向与感应电阻率比值识别低渗透率储层流体性质[J].测井技术,2005,29(1):49-51
    [65]张宏速.测井和岩石特征描述的最新发展[J].测井科技,1994,14(4):45-56
    [66]高楚桥,谭廷栋.常见测井测井响应参数的理论计算[J].石油地球物理勘探,2004,27(2):104-107
    [67]于兴河,郑浚茂,宋立衡,等.构造、沉积与成岩综合一体化模式的建立[J].沉积学报,1997,15(3):8-13
    [68]裘怿楠,陈子琪.中国油藏管理技术手册,油藏描述[M].北京:石油工业出版社,1996
    [69]王振奇,张昌民,等.油气储层的层次划分和对比技术[J].石油勘探与开发,2002,23(1)
    [70]郭秀蓉,程守田,刘星.油藏描述中的小层划分与对比[J].地质科技情报,2001,20(2):55-58
    [71]穆龙新.复杂断块老油田精细地层对比方法研究,中国石油勘探开发研究院,2003
    [72]赵追,陈国锋,程书香.陆相盐湖盆地层序地层学的研究综述[J].世界地质,2004,23(4):338-342
    [73]夏义平,柴桂林,汪昌贵,等.塔里木盆地轮南地区下奥陶统碳酸盐岩储层的控制因素分析[J].现代地质.2000,14(2):185-190
    [74]温志峰,钟建华,王冠民,等.柴达木盆地古近纪—新近纪湖相叠层石与藻礁的沉积组合特征与意义[J].地质学报,2005,79(4):444-451
    [75]冯增昭著.碳酸盐岩岩相古地理.北京:石油工业出版社,1989:112-113
    [76]姜在兴主编.沉积学.北京:石油工业出版社,2003:46-112
    [77]张敏,尹成明,寿建峰.柴达木盆地西部地区古近系及新近系碳酸盐岩沉积相[J].古地理学报,2004,9(4):392-398
    [78]马青,赵学钦,陈沛.轮南周缘地区奥陶系碳酸盐岩沉积相发育规律[J].西南石油大学学报,2007,25(4):26-29
    [79]强子同.碳酸盐岩储层地质学[M].石油大学出版社,1995
    [80]孙岩,沈安江,徐洋,等.柴达木盆地跃进地区下干柴沟组上段藻丘灰岩储层特征[J].沉积学报,2002,20(1):61-69
    [81]寿建锋,邵文斌,等.柴西地区第三系藻灰(云)岩的岩石类型与分布特征[J].石油勘探与开发,2003,30(4):37-40
    [82]张成君,崔彦立,孙柏年.柴达木盆地北缘第三系碎屑岩储层特征[J].甘肃地质学报,2001,10(2):46-51
    [83]杨池银,等.千米桥潜山凝析气藏流体非均质性控制因素[J].天然气工业,2004,11(4):34-37
    [84]张枝焕,等.松辽盆地新站油田碎屑岩层原油非均质性特征与成因分析[J].石油实验地质,2002,24(4):354-358
    [85]徐安娜,穆龙新,裘怿楠.我国不同沉积类型储集层中的储量和可动剩余油分布规律[J].石油勘探与开发,1998,25(5):41-44
    [86]尹伟,等.沈家铺油田枣Ⅴ油层组流体非均质性分布特征[J].石油勘探与开发,2001,28(4):76-78
    [87]尹伟,等.辽河油田千12区块储层流体非均质性研究.江汉石油学院学报,2001,3(1):14-16
    [88]熊琦华,彭仕宓,黄述旺,等.岩石物理相研究方法初探——以辽河凹陷冷东-雷家地区为例[J].石油学报,1994;15(专刊):68-74
    [89]孙玉善,申银民,许迅,等.用成岩岩相分析方法评价和预测非均质储层及其含油性[J].沉积学报,2002,20(1):55-60
    [90]尹燕义译.巴西Potiguar和Reconcavo断陷盆地河流、三角洲和浊积砂岩储层成岩非均质性与储层质量[J].世界地质,1995,14(1):93-101
    [91]钟广法,邬宁芬.成岩岩相分析:一种全新的成岩非均质性研究方法[J].石油勘探与开发,1997,10(5):62-66
    [92]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986
    [93]李阳.我国油藏开发地质研究进展[J].石油学报,2007,28(3):75-79
    [94]于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社,2002:72-77
    [95]陈德坡,王延忠,柳世成,等.孤东油田七区西馆陶组上段储层非均质性及剩余油分布[J].石油与天然气地质,2004,25(5):539-581
    [96]毛志强.非均质储层夹层控油作用初论[J].地球科学,2003,28(2):196-200
    [97]吕晓光,马福士,田东辉.隔层岩性、物性及分布特征研究[J].石油勘探与开发,1994,21(5):80-88
    [98]窦之林,董春梅,林承焰.孤东油田七区中馆4-馆6砂层组储层非均质性及其对剩余油分布的控制作用[J].石油大学学报(自然科学版),2002,26(1):8-15
    [99]汪立君,陈新军.储层非均质性对剩余油分布的影响[J].地质科技情报,2003,22(2):71-73
    [100]王朝红,李文厚.断块油藏储量计算中夹层的识别与剔除[J].海洋地质动态,2005,21(7):26-28
    [101]张绍臣,刘为付,孙立新,等.大派枣茜地区模糊理论储层综合评价[J].河南石油,2000,14(2):4-6
    [102]杨正明,张英芝,郝明强,等.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700