用户名: 密码: 验证码:
爆破振动作用下顺层岩质边坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步、国民经济的发展,在公路、铁路、水利水电、露天矿山等建设中经常遇到顺层边坡,同时顺层边坡也是危害性最大、治理最难的边坡。采用拟静力法时,如何合理选择拟静力系数,以评价和研究爆破震动效应对顺层边坡的影响已成为当前岩土工程界、爆破工程界亟待解决的一项重要课题。结合峨嵋水泥厂石灰石露天矿山的工程实际,以及爆破的特点,设计小型爆破振动试验台,采用理论推导、实验室模拟试验、现场实际爆破设计相结合的手段,较为系统地研究了爆破荷载作用下顺层边坡的稳定性问题。
     (1)分析了影响顺层岩质边坡变形破坏的主要因素。鉴于滑坡体系统的静力稳定性分析方法已经成熟,而滑坡体系统在爆破荷载作用下的稳定性问题尚处于探讨之中。所以,拟静力法常被采用来分析研究边坡的稳定性安全系数。
     (2)采用极限平衡法,按照摩尔一库仑准则,建立了顺层岩质边坡在作用于条块质心爆破荷载、边坡表面卸荷载作用下稳定性安全系数的数学表达式。
     ①从爆破荷载作用方向看,水平向外爆破荷载、垂直向下爆破荷载以及水平方向夹角较大的水平向外爆破荷载和垂直向下爆破荷载的联合爆破荷载不利于顺层边坡稳定。
     ②天然状态的潜在滑坡体受水平向外爆破荷载作用时,顺层岩质边坡体的稳定性安全系数与水平向外爆破荷载拟静力系数间呈负指数关系:水平向外爆破荷载拟静力系数每从0起增加0.05,存在层裂长度的顺层边坡稳定性安全系数减少7.786%-10.665%,不存在层裂长度的顺层边坡稳定性安全系数减少7.61%-10.546%。
     ③当潜在滑坡体处于天然状态时,顺层岩质边坡体的稳定性安全系数与垂直向下爆破荷载拟静力系数间呈S曲线关系:垂直向上爆破荷载拟静力系数从0起每增加0.05,顺层边坡稳定性安全系数将增加2%-3.5%。所以,垂直向上爆破荷载对顺层边坡稳定的影响很小。
     ④潜在滑坡体受到垂直向下或水平向外联合爆破荷载作用时,当潜在滑坡体处于饱水状态时,随着联合爆破荷载拟静力系数不断增加,处于失稳状态边坡的稳定性系数不断减少;当垂直向下爆破荷载一定时,顺层边坡稳定性安全系数与水平向外爆破荷载拟静力系数间呈负指数关系,顺层边坡稳定性安全系数与垂直向下爆破荷载拟静力系数间呈S曲线关系。
     ⑤爆破层裂效应对顺层边坡的稳定起着劣化作用,减低了顺层边坡的稳定性。在其它相同条件下,天然状态顺层边坡安全系数随着爆破层裂长度的增加而线性减少,尤其是在滑移面长度小于20m时最明显:在其它相同条件下,顺层边坡安全系数随着滑移面粘结力的增加而明显增大,当滑移面粘结力小于60kPa时影响最明显;在其它相同条件下,顺层边坡安全系数随着滑移面内摩擦角的增加而明显增大,当滑移面内摩擦角小于20°时影响最明显。
     ⑥当潜在滑坡体处于天然状态时,爆破荷载对顺层边坡稳定性的影响,不仅体现在爆破荷载的大小上,而且体现在爆破荷载的作用方向上。当潜在顺层岩质滑坡体受到振动垂直向下、水平向外联合爆破荷载联合作用时,联合爆破荷载与水平方向夹角较大者有利于顺层岩质边坡的稳定。
     (3)建立了顺层岩质边坡运动的简单力学模型。只有加速度为负时,潜在滑坡体系统才可能处于稳定状态。但影响潜在滑坡体系统处于稳定状态的因素很多,这些因素的变化及其作用,促使Fcos(α-β)+wsinα、T(v_0)之间平衡关系发生变化,从而造成滑坡体系统稳定性的变化。
     (4)根据相似模拟原理,设计的爆破振动模拟装置可模拟垂直方向、水平方向以及垂直和水平联合作用任意方向时的爆破振动试验台。爆破振动试验台与模拟对象无关,可模拟顺层岩质边坡在爆破荷载作用下的爆破振动。
     ①在垂直向下爆破荷载作用下,垂直振动速度与处于极限平衡状态顺层边坡潜在破坏面倾角呈对数关系而与潜在滑移面内摩擦角弱化值间呈线性关系。
     ②在相同垂直振动速度、频率条件下,潜在滑移面静摩擦角与静摩擦角弱化值间呈线性关系,潜在滑移面静摩擦弱化值与垂直向下爆破振动频率间呈幂函数关系。
     ③在水平向外爆破荷载作用下,不同潜在滑移面强度条件下,一方面垂直振动速度与潜在滑移面坡面角间呈对数关系,垂直振动速度与潜在滑移面坡面内摩擦角弱化值间呈线性关系。
     ④在水平向外爆破荷载作用时垂直振动速度一定时,顺层边坡潜在滑移面粘结力与垂直振动速度呈对数关系,内摩擦角与潜在滑移面坡面角间呈线性关系。
     ⑤当不同状态顺层边坡受到不同垂直振动速度的水平向外爆破荷载作用时,处于极限平衡状态顺层边坡潜在滑坡体承受的水平向外爆破荷载拟静力系数高达数十倍到数百倍,即不同状态的顺层边坡受到不同垂直振动速度的水平向外爆破荷载作用时,其水平向外爆破荷载是顺层边坡潜在滑坡体重量的数十倍到数百倍。在一定顺层边坡坡面角条件下,当顺层边坡在一定垂直振动速度的水平向外爆破荷载作用时,其水平向外爆破荷载拟静力系数与顺层边坡潜在坡移面内摩擦角间呈线性关系:随着顺层边坡潜在坡移面内摩擦角的不断增加,水平向外爆破荷载拟静力系数不断减少。
     (5)当顺层岩质边坡受到水平向外爆破荷载作用而产生7、8 cm/s的垂直振动速度时,其爆破荷载拟静力系数不超过0.3,即采用强度弱化法时爆破动力折算系数5.25‰、3.28‰,采用等效安全系数法时爆破动力折算系数0.242‰、0.154‰,顺层岩质边坡将处于稳定状态。同时,得出爆破动力折算系数与垂直振动速度间相互关系,从而确定不同垂直振动速度下水平向外爆破荷载拟静力系数。采用相同爆破动力折算系数,这样可能造成随垂直振动速度不同而顺层边坡稳定性安全系数、边坡状态出现差异很大。说明必须考虑爆破动力折算系数,以修正爆破荷载拟静力系数。
With the rapid progress of the society and with the rapid development of our national economy, the infrastructure industry, such as highway, railway, water conservancy and hydropower engineering, and strip mine always meet layered slope, which is the most hazardous and the most difficult to be treated. Using the pseudo-static method, how to select the reasonable pseudo-static coefficient to evaluate and research the influence of blasting vibration on the layered slope becomes a hot problem concerned by rock mass field and blasting engineering field. Combining with the practical engineering of limestone strip mine of Emei cement plant and the characteristic of blasting, the mini-type blasting vibration test-bed was designed. The stability of layered slope with weak intercalation caused by blasting was systemically analyzed based on the theory deductions, experiments in laboratory and the in-site blasting test.
     1. Analyzed the main factors effected the deformation and failure of the layered rock slope. Because the static analysis methods of landslide system had been fully developed, and the stability analysis methods under blasting were still at a stage of exploration, the pseudo-static analysis method was often used to calculate the safety factor of slope stability.
     2. Based on the Mohr-Column criteria, the explicit expression of the safety factor of layered slope stability was deduced by method of limit analysis under the blasting load acting on the center of slice mass and the unload of surface of slope.
     (1) From the viewpoint of the direction of blasting load, the outwards horizontal blasting load, the downwards vertical one as well as their combined one were disadvantageous to the stability of layered slope.
     (2) There was a negative exponential relationship between the safety factor of layered slope stability and the pseudo-static coefficient of the outwards horizontal blasting load, when the potential landslide under the nature condition was acted on the outwards horizontal blasting load. When the pseudo-static coefficient of the horizontal load was added 0.05 from 0 to 0.3, the safety coefficient of layered slope with or without stratification cracking was reduced 7.786% to 10.665% and 7.61% to 10.546%, respectively.
     (3) When the potential landslide was under the nature condition, the relationship between the safety factor of layered slope stability and the downwards vertical blasting load submitted to the curve of s. When the pseudo-static coefficient of the upwards vertical load was added 0.05 from 0 to 0.3, the safety coefficient of layered slope was reduced 2% to 3.5%. So, the upwards vertical blasting load influenced little on the stability of layered slope.
     (4) When the potential landslide under the nature condition was acted on the outwards horizontal and downwards vertical blasting loads, with the increase of the pseudo-static coefficient of the combined blasting load of outwards horizontal one and the downwards vertical one, the safety factor of layered slope in instability condition reduced continuously. When the downwards vertical blasting load was invariable, the relationship between the safety factor of layered slope stability and the pseudo-static coefficient of the outwards horizontal blasting load and downwards vertical one submitted to the curve of negative exponential and s, respectively.
     (5) The stratification cracking effect had a bad influence on the stability of layered slope and reduced its stability. Under the same other terms, the stability of layered slope linearly reduced with the increase of length of stratification cracking, and especially, the reduction was the most obvious when the length was less than 20m. Under the same other terms, the stability of layered slope clearly increased with the increase of cohesive force of sliding interfaces, and especially, the influence was the most obvious when the cohesive force was less than 60KPa. Under the same other terms, the stability of layered slope clearly increased with the increase of internal friction angle of sliding interfaces, and especially, the influence was the most obvious when the internal friction angle was less than 20°.
     (6) When the potential landslide was under the nature condition, the influence of blasting load on the stability of layered slope not only related to the level of blasting load, but also related to the action direction. When the potential layered rock slope was acted on the outwards horizontal and downwards vertical blasting loads, the angle between the direction of load and the horizontal direction was beneficial to the stability of layered rock slope.
     3.The simple motion mechanics model of layered rock slope was established. Only when the acceleration was less than zero, the potential landslide system could be in a stable state. But there were various factors that could affect the stability of the potential landslide system, and the change of factors and theirs effects induced the change of equilibrium between F cos(α-β) + w sinαand T (v_0), even induced the change of stability of the potential landslide system.
     4. According to the similarity principle of the simulation, the mini-type blasting vibration test-bed was designed, which could simulate the blasting vibration of vertical direction, horizontal direction and arbitrary direction. The blasting vibration test-bed was independent on the simulation objects, and could simulate the vibration of layered rock slope under blasting.
     (1) When the potential landslide was acted on the downwards vertical blasting load, the relationship between velocity of vertical vibration and obliquity and decrement of internal friction angle of sliding interfaces of layered slope in limit equilibrium state obeyed the logarithm law and linearity law, respectively.
     (2) When the velocity and the frequency of vertical vibration were invariable, the relationship between the angle of static friction and its decrement obeyed linearity law, and the relationship between the frequency of vertical vibration and the decrement of static friction angle submitted to the curve of power function.
     (3) When the potential interface under different intensity condition was acted on the outwards horizontal blasting loads, the relationship between the velocity of vertical vibration and the of obliquity of potential interface and the decrement of the internal friction angle submitted to the curve of logarithm function and linearity, respectively.
     (4) When the velocity of vertical vibration acted on the outwards horizontal blasting loads were invariable, the relationship between the velocity of vertical vibration and the cohesive force of potential interface submitted to the curve of logarithm function, and the relationship between the obliquity of potential interface and the internal friction angle submitted to the curve of linearity function.
     (5) When the layered slope in different condition was acted on the outwards horizontal blasting load with different velocity of vertical vibration, the pseudo-static coefficient of the potential landslide system in limit equilibrium state was tens times to hundreds times. When the layered slope with the obliquity invariable was acted on the outwards horizontal blasting load, the relationship between the pseudo-static coefficient of the outwards horizontal blasting load and the internal friction angle of sliding interfaces of layered slope obeyed the linearity law, that was to say, the pseudo-static coefficient of the outwards horizontal blasting load decreased with the increase of internal friction angle.
     5. When the velocity of vertical vibration of the layered rock slope was 7or 8 cm/s, the pseudo-static coefficient of the blasting load was less than 0.3, that was to say, blasting dynamic reduction coefficient was 5.25‰or 3.28‰when strength reduction method was accepted, blasting dynamic reduction coefficient was 0.242‰or 0.154‰when equivalent safety coefficient method was accepted, and the slope was in stabile condition. Meantime the relation between the velocity of vertical vibration and blasting dynamic reduction coefficient was obtained, therefore the pseudo-static coefficient of the outwards horizontal blasting load was determined under different velocity of vertical vibration. Generally, using the same blasting dynamic reduction factor would lead to the safety factor of layered slope stability much difference with the difference of the velocity of vertical vibration, which indicated that the blasting dynamic reduction factor must be taken into account to modified the pseudo-static coefficient of the blasting load.
引文
[1] 谷德振.岩体工程地质力学基础[M].北京:科学技术出版社;1979
    [2] 孙广忠.工程地质与地质工程[M].北京:地震出版社;1993
    [3] 孙广忠.论岩体结构控制论[J].工程地质学报,1993;1(1):339-379
    [4] 赵明阶,何光春,王多垠.边坡工程治理技术[M].北京:人民交通出版社;2003
    [5] 张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社;1990
    [6] 陈祖煜,汪小刚,杨健,等.岩质边坡稳定分析-原理.方法.程序[M].北京:中国水利水电出版社,2005
    [7] 李天斌.岩质工程高边坡稳定性及其控制的系统研究[D].成都理工大学博士学位论文,2002
    [8] 孙玉科,杨志法,丁恩宝等.中国露天矿边坡稳定性研究[M].北京:中国科学技术出版社;1999
    [9] 孙玉科,李建国.岩质边坡稳定性的工程地质研究[J].地质科学,4,1965
    [10] 孙广忠.岩体结构力学[M].北京:科学出版社:1988
    [11] 孙玉科,古迅.赤平极投影在岩体工程地质力学的应用[M].北京:科学技术出版社;1980
    [12] 秦四清,张倬元,王士天等.非线性工程地质学导引[M].成都:西南交通大学出版社;1993
    [13] 胡聿贤.地震安全性评价技术教程[M].北京:地震出版社,1999.
    [14] 李海波,蒋会军,赵坚等.动载荷作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003;22(21):1887-1891
    [15] Duncan.J.M,Goodman.R.E..Finite Element Analyses of Slope in Jointed Rock.U.S.Army Corps of Engineering,Contra-ct Rep.S-68-3,273:1968
    [16] 许兵,李毓瑞,张汝源.金川露天矿边破稳定性的岩体工程地质力学研究[M].岩体工程地质力学研究(六).北京:科学技术出版社;1985
    [17] Hook.E.,Bray.J.W..岩石边坡工程[M].卢世宗译.北京:冶金工业出版社;1983
    [18] 加拿大矿物和能源技术中心.岩石边坡工程[M].祝玉学、邢修祥译.北京:冶金工业出版社;1984
    [19] 孙玉科,姚宝魁.我国岩质边坡变形破坏的主要地质模型[J].岩石力学与 工程学报,1983:2(1):67-76
    [20] 何满潮.露天矿高边坡工程[M].北京:煤炭工业出版社,1991
    [21] 李忠生.地震危险区黄土滑坡稳定性研究[M].北京:科学出版社,2004
    [22] Anderson,M.G.,Richards K.S.Slope Stability.Geotechnical Engineering and Geomorphology,John Wiley & Sons,1986
    [23] 晏鄂川,唐辉明.工程岩体稳定性评价与利用[M].武汉:中国地质大学出版社:2002
    [24] Aleotti P.,Chowdhury R..Landslide hazard assessment:Summary review and new perspectives[J].Bull Eng.Env.,1999;58(1):21-44
    [25] Stewart R,Kennedy B A.The role of slope stability in the economics,design and operation of open pit mines.Proc.1th Symposium on stability in open pit mining,Vancouver 1970.Published by A.I.M.E.New York,1971:5-21
    [26] 胡广韬.滑坡动力学[M].西安:陕西科学技术出版社;1991
    [27] Sarma S.K..Stability Analysis of Embankments and Slope.Geotechnique.23(4).1973,23(11):423-433
    [28] 孙玉科,姚宝魁,牟会宠.边坡岩体稳定性分析[M].北京:科学技术出版社;1988
    [29] 张子新、孙钧.分形块体力学及其在三峡船闸高边坡岩土工程中的应用[J].岩石力学与工程学报,1996;15(1):167-173297-305
    [30] 哈秋林.岩石边坡工程与非线形岩石(体)力学[J].岩石力学与工程学报,1997:16(4):297-305
    [31] 孙涛,顾波.边坡稳定性分析方法评述[J].边坡工程,1995;5(11):48-50
    [32] 刘小丽,周德培.岩土边坡稳定性评价初探[J].岩石力学与工程学报,2002;21(9):1378-1382
    [33] 胡军,周昌寿.露天矿层状岩体边坡组合滑动面分析[J].煤炭学报,1989;2:91-98
    [34] Douglas R.Piteau,Dennis C.Martin.Mechanics of rock slope failure.3RD Stability in surface mining,113-129,1987
    [35] 杨天鸿,芮勇勤,唐春安等.阜新海洲露天矿顺层边坡变形破坏机理分析[J].水文地质与工程地质,2001;4:36-39
    [36] 王芝银,杨志法,李云鹏等.顺层边坡岩体结构分叉灾变特性研究[J].西安矿业学院学报,1999;19(3):203-207
    [37] 李荣强.突变理论在顺层边坡稳定性分析中的应用[J].同济大学学报,1993;21(3):379-386
    [38] 李云鹏,杨治林,王芝银.顺层边坡岩体结构稳定性位移分析[J].岩石力学与工程学报,2002;19(6):747-750
    [39] 蒋良潍,黄润秋.层状结构岩体顺层斜坡滑移-弯曲失稳计算探讨[J].山地学报,2006;24(1):88-94.
    [40] 肖远,王思敬.边坡岩体弯曲破坏研究[J].岩石力学与工程学报,1991;10(4):331-338
    [41] 阮怀宁,徐志英.复杂岩体边坡工程极限平衡理论[J].岩石力学与工程学报,1993;12(1):11-19
    [42] 李维光,张继春.基于弹性理论的顺层边坡失稳破坏力学模型分析[J].工程地质学报,2004;21(3):218-221
    [43] 刘钧.顺层边坡溃层问题的计算方法[J].水文地质工程地质,1997(6):37-41
    [44] 刘钧.顺层边坡弯曲破坏的力学分析[J].工程地质学报,1997;5(4):335-339
    [45] 邓荣贵,周德培,李安洪等.顺层岩质边坡不稳定临界长度分析[J].岩土工程学报,2002;24(2):178-182
    [46] 朱玉平,莫海鸿.顺层边坡岩层滑移弯曲临界长度及其影响因素分析[J].岩土力学,2004;25(2):283-286
    [47] 张四维.我国露天矿边坡工程研究成果与进展[J].地质灾害与环境保护,2000;11(2):98-101
    [48] 刘小丽,周德培.用弹性板理论分析顺层岩质边坡的失稳[J].岩土力学,2002;23(2):162-165
    [49] 李桂荣,余成学,陈胜宏.层状岩体边坡的弯曲变形破坏试验与有限元分析[J].岩石力学与工程学报,1997;16(4):305-311
    [50] 芮勇勤,贺春宁,王惠勇等.层状渐进破裂与失稳过程的数值模拟探讨[J].长沙交通学院学报,2002;
    [51] 杨治林.顺层边坡岩体结构的稳定幅值研究[J].岩土力学,2003;24(5):764-767
    [52] 蒋斌松,蔡美峰,都浩.平面滑动边坡稳定性的解析计算[J].岩石力学与工程学报,2004:23(1):91-94
    [53] 冯君,周德培,李安洪.顺层岩质边坡开挖稳定性研究[J].岩石力学与 工程学报,2005;24(9):1474-1478
    [54] 时卫民,叶晓明,郑颖人.阶梯形边坡的稳定性分析[J].岩石力学与工程学报,2002;21(5):698-701
    [55] 罗文强.斜坡稳定性概率理论和方法研究[J].岩石力学与工程学报,1999;18(2):579-584
    [56] 刘宁,卓家寿.节理岩体的三维随机有限元及可靠度计算[J].岩石力学与工程学报,1995;14(4):297-305
    [57] 谭晓慧.多滑面边坡的可靠性分析[J].岩石力学与工程学报,2001;20(6):822-825
    [58] 李维光,李茂竹,张占海.水对边坡稳定性影响的分析[A].第八届全国岩石力学与工程学会年会论文集[C],北京:科学出版社,355-358
    [59] 王辉,罗国煜,李宵昭等.顺层岩坡优势面水力学作用研究[J].自然灾害学报,1998:7(4):81-87
    [60] 程谦恭,胡厚田,彭建兵.侧冀锁固平面旋转式滑坡动力学机理分析[J].岩石力学与工程学报,2000:19(5):634-639
    [61] Hovland H.J.,Three-dimensional slope stability analysis methods[J].ASCE journal ofthe Geotechnical Engineering Division.1977;103(GT9):971-986
    [62] Chen.R.H.,Chameau.J.L..Three-dimensional limit equilibrium analysis of slope[J].Geotechnigue.1982(33):31-40
    [63] Hutchinson J.N,Sarma S.K..Discussion on three-dimensional limit equilibrium analysis of slope[J].Geotechnigue.1985(35):215-216
    [64] Oldrich Hunger.A general limit equilibrium mode for three-dimensional slope stability analysis[J].Canadian Geotechnical journal.1994;31(7):905-919
    [65] Leshchisky D.,Huang Ching-Chang.Generalized three-dimensional slope stability analysis[J].Journal of Canadian Geotechnical Engineering.1992;118(11):1748-1763
    [66] Cavounidis S..Three-dimensional slope stability analysis by simplified Janbu's method[J].Journal of Japan Landslid Society.1987;24(3):8-14
    [67] Keizo Ugai..Discussion of an extension of Bishop's simplified method of slope stability analysis to three-dimension[J].Geotechnigue.1988(38):155-156
    [68] 冯树仁,丰定祥,葛修润等.边坡稳定性的三维极限平衡分析方法及应用[J].岩土工程学报,1999;21(6):657-661
    [69] 祝玉学.边坡稳定性的三维方法[J].金属矿山,1994;222(12):6-21
    [70] 弥宏亮,陈祖煜,张发明等.边坡稳定三维极限分析方法及工程应用[J].岩土力学,2002;23(5):649-653
    [71] 戴俊.爆破工程[M].北京:机械工业出版社;2005
    [72] 高尔新,杨仁树.爆破工程[M].徐州:中国矿业大学出版社;1999
    [73] Hustrulid W.Blasting principle for open pit mining,Volume 1-General design concepts.A.A.Balkema/Rotterrad/Brookfield;1999
    [74] 赵学亮.爆破震动对岩质边坡稳定性影响的研究及工程应用[M].成都理工大学;2001
    [74] 张时忠,张天锡,吴立.爆破施工对边坡稳定性影响初探[J].中国地质灾害与防治学报,1996;7(1):39-43
    [75] 崔政权,李宁.边坡工程-理论与实践最新发展[M].北京:中国水利水电出版社;1999
    [76] 戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社;2002
    [77] Hustrulid W.and Lu.2002.Some general design concept regarding the control of blast-induced damage during rock slope excavation.Proc.7th Rock Fragmentation by blasting.Beijing
    [78] Holmberg,R.1984.Improved stability through optimized rock blasting.Proc.10th conf.Explosive and Blasting Tech.Orlando,Florida.234-248
    [79] 刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报,2001:20(3):83-87
    [80] 刘红帅.岩质边坡地震稳定性分析方法研究[D].中国地震局工程力学研究所博士学位论文,2006
    [81] 陈华腾.爆破计算手册[M].沈阳:辽宁科学技术出版社,1991
    [82] 中华人民共和国建设部.岩土工程勘测规范[GB 50021-2001][S].北京:中国建筑工业出版社,1995
    [83] 张雪亮,黄树棠.爆破地震效应[M].地震出版社,1981
    [84] 孟吉复,惠鸣斌.爆破测试技术[M].冶金工业出版社,1992
    [85] 汪旭光,于亚伦,刘殿中.爆破安全规程实施手册[M].人民交通出版社,2004
    [86] I.D.Isaac,C.Bubb.A study of blast vibrations[J] Part1.Tunnels & Tunnelling.1981,13(6):35-41
    [87] G.Lande,et al.Controlled tunnel blasting[J].Tunnels & Tunnelling.1982, 14(10):
    [88] 刘慧.邻近爆破对隧道影响的研究进展[J].爆破.1999,16(1):57-63
    [89] 熊代余,顾毅成.岩石爆破理论与技术新进展[M].冶金工业出版社,2002
    [90] 徐全军,刘强,聂渝军等.爆破地震峰值预报神经网络研究[J].爆炸与冲击.1999,19(2):133-138
    [91] 张继春.三峡工程基岩爆破振动特性的试验研究.爆炸与冲击.2001,21(2):131-137
    [92] 曹孝君.浅埋隧道爆破的地表震动效应研究[D].西南交通大学博士学位论文.2004
    [93] 刘慧,王中黔.爆破振动的分形特征初探.第六届全国工程爆破学术会议论文集.1997:762-764
    [94] 叶海旺,房泽法,彭志刚.爆破地震对结构的影响.爆破.2000,17(1):86-91
    [95] 阳生权,廖先葵,刘宝琛.爆破地震安全判据的缺陷与改进.爆破与冲击.2001,21(3):223-227
    [96] 陈昌富,朱朝银,刘跃鹏.爆破震动试验对边坡稳定性的影响[J].新疆有色金属,1995:2:4-8
    [97] 吴德伦,叶晓明.工程爆破安全振动速度综合研究.岩石力学与工程学报.1997,16(3):266-273
    [98] 黄俊.爆破对贵定石灰石露天矿边坡稳定性的影响[J],武汉化工学院学报,1997:19(6):15-49
    [99] 张继春.三峡工程基岩爆破震动的试验研究[J].爆炸与冲击,2001;21(2):131-137
    [100] 汪旭光,于亚伦.岩质边坡爆破振动安全判据综述[J].工程爆破.2001,7(2):88-91
    [101] 曹孝君,吴青山,张继春等.顺层岩质边坡的爆破振动控制标准试验研究[J].岩石力学与工程学报,2003;22(11):1924-1928
    [102] 谢全敏,朱瑞赓,程康.城市爆破震动强度的灰色评定[A].第六届全国工程爆破学术议论文集[C].深圳:海天出版社,1997,335-338
    [103] 娄建武,龙源,方向等.基于反应谱分析的爆破震动破坏评估研究[J].爆炸与冲击.2003,23(1):41-46
    [104] 丁海平,李亚娥,韩淼.工程结构抗震[M].人民交通出版社,2006
    [105] 杨茀康,李家宝.结构力学[M].高等教育出版社,1983
    [106] 吴其苏.建筑物在爆破地震波作用下的振动特性[J].爆破与冲击.1987,7(1):77-79
    [107] 李孝林.井下深孔爆破对地面建筑物的影响[J].爆破.1997,14(4):29-31
    [108] 霍永基,王湘钧,费骥明.爆破地震效应及安全评定方法探讨[A].土岩爆破文集(第二集)[C].北京:冶金工业出版社,1985:184-187
    [109] 霍永基.建筑结构爆破地荷载反应分析法[A].第六届全国工程爆破学术会议论文集[C].深圳:海天出版社,1997;719-724
    [110] 钱胜国.工程结构的爆破地震力计算[A].土岩爆破文集(第二集)[C].北京:冶金工业出版社,1985:271-277
    [111] 吴新霞,钱胜国.三峡碾压混凝土围堰爆破地震响应计算[A].第七届全国工程爆破学术会议论文集[C].乌鲁木齐:新疆青少年出版社,2001:718-724
    [112] 何娇云,吴新霞,钱胜国等.大坝爆破地震的动力响应计算.爆破[J].2002,19(4):1-3
    [113] 阳生权.小线间距施工隧道爆破地震影响下既有隧道围岩线性动力分析[J].工程爆破.1998,4(1):1-6
    [114] 刘慧.近距侧爆情况下马蹄形隧道动态响应特点的研究.爆炸与冲击[J].2000,20(2):175-179
    [115] 谭忠盛,杨小林,王梦恕.复线隧道施工爆破对既有隧道的影响分析[J].岩石力学与工程学报.2003,22(2):281-285
    [116] 阳生权.小线间距施工隧道爆破地震影响下既有隧道围岩线性动力分析[J].工程爆破.1998,4(1):1-6
    [117] 王在泉.复杂边坡工程系统稳定性研究[M].徐州:中国矿业大学出版社,1999
    [118] 卢文波,赖世镶,朱传云.岩石高边坡爆破震动动力稳定分析[J].矿冶工程,1996:16(1):1-7
    [119] 王思敬.边坡岩体动力稳定研究[A].岩体工程地质力学问题(二)[C].北京:科学出版社,1978,193-216
    [120] 许强,黄润秋,巨能攀等.边坡岩体块体稳定性分析系统的开发与研究[J].工程地质学报,2001;9(4):408-413
    [121] 亚南,赵其华,王兰生等.边坡工程的爆破效应分析[J].地质灾害与环境保护,1995;6(1):18-24
    [122] Crespellani T,Madiai C,Vannucchi G.Earthquake Destructiveness Potential Factor and Slope Stability[J].Geotechnigue,1998:48(3):411-419
    [123] Ling HOE I,Cheng,Alexander H D.Rock Sliding Induced by Seismic Force[J].International Joural of Rock Mechanics and Mining Science.Elsevier Science Ltd 1997,34(6):1021-1029
    [124] 李启发.爆破地震波对岩质边坡稳定性的影响[J].爆破,1995:2:1-4
    [125] 蔡继发,周昌达,黄明权.露天边坡爆破震动的动态有限元研究[J].昆明工学院学报,199:16(2):9-14
    [126] 田洁,王克成,刘恭忍等.复杂岩质边坡开挖爆破下的动力响应分析[J].水利学报,1998;1(增刊):38-43
    [127] Griffiths D V,Madiai C,Lane P A.Slope Stability Analysis[J].Geotechnigue,1999;49(3):387-403
    [128] 颜昌武,邓安福,高大水等.重庆某厂区边坡工程稳定性分析与综合治理[J].岩石力学与工程学报,2002;21(5):693-697
    [129] 杨天鸿,芮勇勤,李连崇等.顺层蠕动边坡变形破坏机理及稳定性动态分析[J].工程地质学报,2003;11(2):155-161
    [130] 赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩石力学与工程学报,2002;21(3):343-346
    [131] 何蕴龙,陆述远,段亚辉.岩石边坡地震作用计算方法研究[J].长江科学院院报,1998;15(4):35-38
    [132] 夏远发,熊传治.边坡稳定的三维变分分析[J].岩石力学与工程学报,1990:2:120-133
    [133] 张菊明,王思敬.层状边坡岩体滑动稳定的三维动力学分析[J].工程地质学报,1994;2(3):1-12
    [134] Aihomoud A.S.,TahtamoniW.W..Reliability Analysis of Three-dimensional Dynamic Slope Stability and Earthquake-induced Permanent Displacement[J].Soil Dynamics and Earthquake Engineering,2000;19(2):91-114
    [135] 姚爱军,何满潮.MSarma法在边坡稳态概率分析中的应用[J].岩石力学与工程学报,2002;21(12):1839-1842
    [136] 陈蜀俊,党晓英,曾心传等.奉节长江大桥北岸边坡在地震荷载作用下稳定性分析[J].岩石力学与工程学报,2004;23(4):657-662
    [137] Halatchey Rossen A..Probability Stability Analysis of Embankments and Slopes[A].Proceeding of 11th International Conference on Ground Control in Mining Jul 7-10 1992,432-437
    [138] Kumsar.H.,Aydan R..Dynamic And Static Stability Assessment of Rock Slope against Wedge Failure[J].Soil Dynamics and Earthquake Engineering,2000;33(1):31-51
    [139] 卢文波.三峡工程岩石基础开挖爆破震动控制安全标准[J].爆炸与冲击,2001;21(1):67-71
    [140] 宋光明,史秀志,陈寿如.露天矿边爆破震动破坏判据新方法及其应用[J].中南工业大学学报,2000;31(6):485-488
    [141] Wartman Joseph Rimer Michael F.,Bray,Jonathan D.et al.Newmark Analysis of a Shaking Table Slope Stability Experiment[J].Geotechnical Special Publishion,1998;1(3-6):778-779
    [142] jinggang Cao.Neural Network and Analytical Modeling of Slope Stability[D].University of Okllahoma 2002
    [143] Sah N K,Sheorey P R,Upadhyaya L N.Maximum Likelihood Estimation of Slope Stability[J].Int.J.Rock Mechanics and Mining Science,1994;31(1):47-53
    [144] A.Ghosh and W.Haupt.Computation of the seismic stability of rock wedges[J].Rock Mechanics and Rock Engineering,1989;109-125
    [145] 丁家寿,张溪常,尘振雷.岩质边坡的仿真模型和稳定准则[J].岩石力学与工程学报,1992;11(1):53-62
    [146] Dawson E M,Lane P,ADrescher A.Slope Stability Analysis By Strength Reduction[J].Geotechnique,1999;49(3):835-840
    [147] 周维垣.高等岩石力学[M].北京:水利电力出版社,1999
    [148] 钱胜国,陈玲玲,吴新霞等.爆破地震工程结构动力分析[M].北京:中国水利水电版社;2006
    [149] 张林,林从谋.爆破震动对土质边坡动力稳定性影响研究[J].岩土力学,2005;26(9):1499-1501
    [150] 周昌寿,杜竟中,郭增涛等.露天矿边坡稳定[M].徐州:中国矿业大学出版社,1990
    [151] 白云峰.顺层岩质边坡稳定性及工程设计研究[D].西南交通大学博士学位论文,2005
    [152] 郭学彬,张继春,刘泉等.爆破振动对顺层岩质边坡稳定性的影响[J].矿业研究与开发,2006;26(2):77-80
    [153] 李维光,张继春.爆破振动作用下顺层岩质边坡稳定性分析[J].爆炸与冲 击,2007,27(5),P426-430
    [154] 李维光,张继春.地震作用下顺层岩质边坡稳定性的拟静力分析[J].山地学报,2007,25(2),P184-189
    [155] 程谦恭,彭建兵,胡广韬等.高速岩质滑坡动力学[M],成都:西南交通大学出版社;1999
    [156] 张仲培,王清辰.断层滑动分析与古应力恢复研究综述[J].地球科学进展,2004:19(4):605-613
    [157] 王边锋.滑坡稳定性系统的力学分析[R].中国科学院力学研究所博士后研究工作报告,2001
    [158] 钱家欢,殷宗泽.土工原理与计算[M].上海:同济大学出版社,1996
    [159] 邢爱国,胡厚田,杨明.大型高速滑坡滑动过程中摩擦特性的试验研究[J].岩石力学与工程学报,2002:21(4):522-525
    [160] 张平,吴德伦.动荷载下边坡滑动的试验研究[J].重庆建筑大学学报,1997,19(2):80-86.
    [161] 黄润秋,许强,陶连金等.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002
    [162] 水利电力部第五工程局,水利电力部东北勘测设计院.土坝设计[M].北京:水利电力出版社,1983.
    [163] 郑明新.论滑带土强度特征及强度参数的反算法[J].岩土力学,2003:24(4):528-532
    [164] 许传华,房定旺,朱绳武.边坡稳定性分析中工程岩体抗剪强度参数选取的神经网络方法[J].岩石力学与工程学报,2002;21(6):858-862
    [165] 杨英杰,张清.岩石工程稳定性控制参数的直觉分折[J].岩石力学与工程学报,1998;17(3):336-340
    [166] 徐建平,胡厚田,张安松等.边坡岩体物理力学参数的统计特性研究[J].岩石力学与工程学报,1999;18(4):382-386
    [167] 左启东,王世夏,刘大恺等.模型试验的理论和方法.北京:水利电力出版社,1983
    [168] 《地震工程概论》编写组.地震工程概论.北京:科学出版社,1985
    [169] 翟阳,韩国城.边坡对土坝稳定影响的振动台模型试验研究[J].烟台大学学报(自然科学与工程技术版),1996,(4):67-71.
    [170] 刘小生,王钟宁,汪小刚等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,知识产权出版社,2005
    [171] 刘鸿文.材料力学[M].北京:高等教育出版社,1985
    [172] 四川省地质工程勘察院.峨眉水泥厂石灰石矿山边坡(滑坡)及危岩稳定性和治理对策的岩土工程勘察报告(R),2002
    [173] 李维光,楼建国.降雨条件下顺层边坡稳定性的影响因素分析[J].采矿与安全学报,2006,21(4),P184-189
    [174] 马鞍山冶金矿山设计研究院.西采区3.15滑坡后壁三角矿体峒室、危岩深孔爆破设计(R),2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700