用户名: 密码: 验证码:
掺杂AlN的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化铝(AlN)是直接带隙宽禁带(~6.2 eV)Ⅲ-Ⅴ族半导体材料,在短波长光电子器件领域具有重要应用价值。但是,实现AlN材料在光电器件上的广泛应用还面临重大挑战—难以获得有效的p型层。利用第一性原理的全势—线性缀加平面波(FP-LAPW)方法,我们研究了纤锌矿AlN材料的本征缺陷及ⅡA族元素(Be,Mg和Ca)掺杂AlN的p型效率。结果表明氮空位(V_N)在AlN材料中具有低的形成能并引入较深的施主能级,而在闪锌矿AlN和GaN中,V_N引入浅施主能级。计算得到的Be_(Al),Mg_(Al)和Ca_(Al)在AlN中引入的受主能级深度分别为0.48,0.58和0.95 eV。在p型AlN中,处于间隙位置的Be(Be_i)表现为施主且具有较低的形成能,这使得它们很可能成为p型AlN中空穴的复合中心,然而,在富氮(N-rich)生长条件下Be_i的形成能明显提高。研究结果表明,Be,Mg和Ca在AlN中的p型掺杂效率受到杂质本身原子尺寸和电负性的影响;三种杂质中,Be可能是制备p型AlN更有效的杂质;N-rich生长条件有助于提高杂质在AlN中的含量。
     近年来,稀磁半导体受到越来越多的注意。本论文运用FP-LAPW方法研究了6.25%含量的Mg和Ca掺杂AlN(Al_(15)XN_(16),X=Ca/Mg)的磁性质。Ca掺杂AlN的电子态密度在费米能级附近100%自旋极化,具有半金属磁性质。磁矩主要分布在由杂质Ca和其最近邻的四个N构成的CaN_4四面体内部,得到的总磁矩为1μ_B/Ca。对12.5%掺杂量的AlN(Al_(14)Ca_2N_(16))总能量计算结果表明晶胞的铁磁态总能量比反铁磁态总能量低约32.6 eV,由此估算出的铁磁居里温度在300 K附近。Mg掺杂AlN的性质与AlN:Ca很相似,但是后者具有更大的半金属带隙和更稳定的铁磁基态,这表明AlN:Ca比AlN:Mg更适合作为自旋注入材料。既然杂质本身没有磁性,用Mg/Ca掺杂AlN将可避免通常用磁性杂质掺杂所带来的磁沉积问题,在自旋电子学领域将具有潜在应用价值。
     已有的研究结果表明,稀土掺杂半导体发光材料的温度淬灭效应严重受基体材料禁带宽度的影响—在宽带隙能的基体材料中稀土发光的温度淬灭效应更小。因此,稀土掺杂宽禁带的AlN半导体有望可以得到高效、受温度影响小的发光器件。在本论文中,我们重点研究了AlN及稀土(Er,Eu和Tm)掺杂AlN的结构和光学性质。薄膜制备采用通常的磁控溅射。对于制备的Er掺杂AlN薄膜,X-射线衍射测试表明所制备的样品为无定型薄膜,样品展示了强烈的室温光致发光光谱,可见光范围最强的绿光发射(~539和560 nm)源自Er~(3+) 4f~n轨道的~2H_(12)和~S_(3/2)到~4I_(15/2)能级的跃迁;对于AlN:Eu,我们研究了不同生长条件和退火温度下样品的PL光谱。在激励光辐射下,样品不仅发出了红光(~613 nm),还出现了波峰位于~407 nm附近的紫光发射。红光对应于Eu~(3+) 4f~n轨道内部能级跃迁,而紫光可能与Eu~(2+)离子的5d-4f能级跃迁有关。用磁控溅射我们还制备了夹层结构的Tm掺杂AlN薄膜。XRD测试表明制备的样品经退火处理后出现了六方AlN的衍射峰。光致发光测试观察到了源自Tm~(3+1)D_2-~3F_4能级跃迁的光(~460 nm)发射,该发射峰强度受退火温度影响。
AlN is a direct wide-bandgap(~6.2 eV)Ⅲ-Ⅴ-semiconductor material,which have important application in optoelectronic devices using short wavelength light.However,a significant challenge to the widespread exploitation of AlN-related materials in photelectronic applications is the difficulty in achieving effective p-type layers.Using the first-principles full-potential linearized augmented plane-wave(FP-LAPW) method,we have investigated the native defect properties and p-type doping efficiency in AlN doped with group-ⅡA elements such as Be,Mg,and Ca.It is shown that nitrogen vacancies(V_N) have low formation energies and introduce deep donor levels in wurtzite AlN,while in zinc blende AlN and GaN,these levels are reported to be shallow.The calculated acceptor levelsε(0/-) for substitutional Be(Be_(Al)),Mg(Mg_(Al)),and Ca(Ca_(Al)) are 0.48,0.58,and 0.95 eV, respectively.In p-type AlN,Be interstitials(Be_i),which act as donors,have low formation energies,making them a likely compensating center in the case of acceptor doping.Whereas, when N-rich growth conditions are applied,Be_i are energetically not favorable.It is found that p-type doping efficiency of substitutional Be,Mg,and Ca impurities in w-AlN is affected by atomic size and electronegativity of dopants.Among the three dopants,Be may be the best candidate for p-type w-AlN.N-rich growth conditions help to increase the concentration of Be_(Al),Mg_(Al),and Ca_(Al).
     Recently dilute magnetic semiconductors(DMS) have attracted intense interest.In this thesis,we study the magnetic properties of 6.25%Mg and Ca substituted AlN(Al_(15)XN_(16), X=Ca/Mg) using FP-LAPW method.The Ca-doped AlN is found to be a half-metallic ferromagnet with 100%carrier spin polarization at the Fermi level.The magnetic moments are localized within the CaN_4 tetrahedron,and a net magnetic moment of 1μB is found per Ca.At a Ca concentration of 12.5%(Al_(14)Ca_2N_(16)),total energy calculations show that the ferromagnetic state is 32.6 meV lower than that of antiferromagnetic state,and Curie temperature around 300 K is estimated.Mg doped AlN has very similar properties to Ca doped AlN,but the latter has a larger half-metallic gap and more stable FM phase,which indicate Ca-doped AlN is more suitable for spin injection applications.Since there is no magnetic element,Mg/Ca-doped AlN appears to be a promising dilute magnetic semiconductor free from magnetic precipitate and may have potential applications in the field of spintronics.
     Previous studies have show that luminescence temperature quenching of rare-earth (RE) doped semiconductor strongly depends on the band gap of the host materials.It was found that for larger band gap energy,there is less temperature quenching of RE~(3+) luminescence occurring.Therefore,RE doped AlN semiconductors offer the prospect of efficient,temperature-insensitive luminescence device.In Chapter 5,we focus on the optical and structural properties of AlN and AlN doped with Er,Eu and Tm films.The films were deposited by conventional magnetron sputtering in a mixed atmosphere of pure nitrogen and argon.For Er doped AlN,X-ray diffraction indicates that the films are amorphous.The films exhibit strong room-temperature Er~(3+)-related photoluminescence(PL).The strongest green emissions(~539 and 560 nm) from the AlN:Eu films are due to the intra-4f~n transition of Er~(3+) from ~2H_(12) and ~4S_(3/2) to ~4I_(15/2) transitions.For Eu doped AlN,the photoluminescence spectra of samples prepared under different growth and thermal treatment condition were investigated.Phototexcitation resulted in not only red(~613 nm) but also violet(~407 nm) emission.The red emissions correspond to the intra-4f~n transition of Eu~(3+),while the violet emission is identified as 5d-4f transition of Eu~(2+).AlN doped with Tm sandwich films are also prepared by magnetron sputtering.The XRD data reveal that the annealed AlN:Tm films are hexagonal wurtzite structure.The blue light emissions(~460 nm) from ~1D_2-~3F_4,which are considerably enchanced after thermal annealing,are observed on all the films.
引文
[1]Litimein F.,Bouhafs B.,Dridi Z.,et al.The electronic structure of wurtzite and zincblende AlN:an ab initio comparative study.New J.Phys.,2002,64(4):1-12
    [2]Amano H.,Kito M.,and Hiramatsu K.P-Type conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation(LEEBI).Jpn.J.Appl.Phys.,1989,28(12):L2112-L2114
    [3]Nakamura S.,Mukai T.,and Senoh M.Thermal annealing effects on p-type Mg-doped GaN films.Jpn.J.Appl.Phys.,1992,31:L139-L142
    [4]Mooney P.Deep Centers in Semiconductors,,ed.S.T.Pantelides.New York:Gordon and Breach,1992.643
    [5]Chadi D.J.and Chang K.J.Theory of the Atomic and Electronic Structure of DX Centers in GaAs and Al_xGa_(1-x)As Alloys.Phys.Rev.B,1988,61(7):873-876
    [6]Chris.G.Van de Walle.DX-center formation in wurtzite and zinc-blende Al_xGa_(1-x)N.Phys.Rev.B,1998,57(4):R2033-R2036
    [7]McCluskey M.D.,Johnson N.M.,Van.de.Walle C.G.,et al.Metastability of Oxygen Donors in AlGaN.Phys.Rev.Lett.,1998,80:4008-4001
    [8]Laks D.B.,Van de Walle C.G.,and Neumark G.F.Native defects and self-compensation in ZnSe.Phys.Rev.B,1992,45(19):10965-10978
    [9]Neugebauer J.and Van.de.Walle C.J.Atomic geometry and electronic structure of native defects in GaN.Phys.Rev.B,1994,50(11):8067-8070
    [10]Taniyasu Y.,Kasu M.,and Makimoto T.An aluminum nitride light-emitting diode with a wavelength of 210 nanometres,nature,2006,441:325-328
    [11]Latham C.D.and Nieminen R.M.Calculated properties of point defects in Be-doped GaN.Phys.Rev.B,2003,67:205206-205213
    [12]Limpijumnong S.and Chris.G.Van.de.Walle.Diffusivity of native defects in GaN.Phys.Rev.B,2004,69(3):035207-035218
    [13]Mattila T.and Nieminen R.M.Point-defect complexes and broadband luminescence in GaN and AlN.Phys.Rev.B,1997,55(15):9571-9576
    [14]Gorczyca I.,Svane A.,and Christensen N.E.Theory of point defects in GaN,AIN,and BN: Relaxation and pressure effects. Phys. Rev. B, 1999, 60(11): 8147-8157
    [15] Fara A., Bernardini F., and Fiorentini V. Theoretical evidence for the semi-insulating character of A1N. J. Appl. Phys., 1999, 85(3): 2001-2003
    [16] Stampfl C. and Van de Walle C.G. Theoretical investigation of native defects, impurities, and complexes in aluminum nitride. Phys. Rev. B, 2002, 65: 155212(1-10)
    [17] Stampfl C. and Van de Walle C.G. Doping of Al_xGa_(1-x)N. Appl. Phys. Lett., 1998,72(4): 459-461
    [18] Mattila T. and Nieminen R.M. Ab initio study of oxygen point defects in GaAs, GaN,and A1N. Phys. Rev. B, 1996, 54(23): 16676-16682
    [19] Bour D.P., Chung H.F., W. Gotz, L., et al. Mater. Res. Soc. Symp. Proa, 1997, 449:509
    [20] Limpijumnong S. and Van de Walle C.G. Passivation and Doping due to Hydrogen in III-Nitrides. Phys. Status Solidi, 2001, 228: 303-307
    [21] Neugebauer J. and Van de Walle C.G. Chemical trends for acceptor impurities in GaN.J. Appl. Phys., 1999, 85(5): 3003-3005
    [22] Van de Walle C.J., Limpijumnong S., and Neugebauer J. First-principles studies of beryllium doping of GaN. Phys. Rev. B, 2001, 63: 245205(1-17)
    [23] Mireles F. and Ulloa S.E. Acceptor binding energies in GaN and AlN. Phys. Rev. B,1998, 58(7): 3879-3887
    [24] Sanchez F. J., Calle F., Sanchez-Garcia, et al. Experimental evidence for a Be shallow acceptor in GaN grown on Si (111) by molecular beam epitaxy. Semicond. Sci.Technol., 1998,13: 1130-1133
    [25] Dewsnip D.J., Andrianov A.V., Harrison I., et al. Photoluminescence of MBE grown wurtzite Be-doped GaN. Semicond. Sci. Technol., 1998,13: 500-504
    [26] Fiorentini V., Bernardini F., Bosin A., et al. in Proceedings of the 23rd International Conference on the Physics of Semiconductors, M.S.a.R. Zimmermann, Editor. World Scientific: Singapore, 1996
    [27] Wang H. and Chen A.B. Calculations of acceptor ionization energies in GaN. Phys.Rev.B,2001, 63: 125212(1-7)
    [28] Ronning C, Carlson E.P., Thomson D.B., et al. Optical activation of Be implanted into GaN. Appl. Phys. Lett., 1998, 73(12): 1622-1624
    [29] Cheng T. S., Hooper S.E., Jenkins L.C. et al. Optical properties of doped GaN grown by a modified molecular beam epitaxial (MBE) process on GaAs substrates. J. Cryst.Growth, 1996,166: 597-600
    [30] Salvador A., Kim W., Aktas O., et al. Near ultraviolet luminescence of Be doped GaN grown by reactive molecular beam epitaxy using ammonia. Appl. Phys. Lett., 1996, 69:2692-2694
    [31] Wrignt A.F. Substitutional and interstitial carbon in wurtzite GaN. J. Appl. Phys.,2002,92(5): 2575-2585
    [32] Fischer S., Wetzel C, Haller E.E., et al. On p-type doping in GaN-acceptor binding energies. Appl. Phys. Lett., 1995, 67(9): 1298-1300
    [33] Ramos L.E., Furthmuller J., Scolfaro L.M.R., et al. Substitutional carbon in group-III nitrides: Ab initio description of shallow and deep levels. Phys. Rev. B, 2002, 66:075209
    [34] As D.J., Kohler U., and Lishka K., Optical Properties of Carbon Doped Cubic GaN Epilayers Grown on GaAs (001) Substrate by Molecular Beam Epitaxy. Mater. Res.Soc. Symp. Proa, 2002, 693:12.3.1
    [35] Boguslawski P., Briggs E.L., and Bernholc J. Amphoteric properties of substitutional carbon impurity in GaN and A1N. Appl. Phys. Lett., 1996, 69: 233-235
    [36] Neugebauer J. and Van de Walle C.G. Role of hydrogen in doping of GaN. Appl. Phys.Lett., 1996, 68(13): 1829-1831
    [37] Gotz W., Kern R.S., Liu H., et al. Hall-effect characterization of III-V nitride semiconductors for high efficiency light emitting diodes. Mater. Sci. Eng. B, 1999, 59:211-217
    [38] Monemar B., Gislason H.P., and Lagerstedt O. Properties of Zn-doped VPE-grown GaN. II. Optical cross sections J. Appl. Phys., 1980, 51: 640-649
    [39] Ilegems M., Dingle R., and Logan R.A. Luminescence of Zn- and Cd-doped GaN. J.Appl. Phys., 1972, 43: 3797-3800
    [40] Wolf S.A., Awschalom D.D., Buhrman R.A., et al. Spintronics: A Spin-Based Electronics Vision for the Future. Science, 2001,294: 1488-1495
    [41] Ohno H., Mastsukura F., and Ohno Y. Spin-dependent phenomena in ferromagnetic/nonmagnetic III-V heterostructures. Solid State Commun., 2001,119: 281-289
    [42]Akinaga H.and Ohno H.Semiconductor spintronics.IEEE Tran.Nanotech,2002,1:19-31
    [43]Holub M.,Shin J.,Chakrabarti S.,et al.Electrically injected spin-polarized vertical-cavity surface-emitting lasers.Appl.Phys.Lett.,2005,87:91108(1-3)
    [44]Ohno H.Making Nonmagnetic Semiconductors Ferromagnetic.Science,1998,281:951-956
    [45]Ohno Y.,Young D.K.,Beschoten B.,et al.Electrical spin injection in a ferromagnetic semiconductor heterostructure.Nature(London),1999,402:790-792
    [46]Ohno H.,Chiba D.,Matsukura F.,et al.Electric-field control of ferromagnetism.Nature(London),2000,408:944
    [47]Dietl T.,Ohno H.,Matsukura F.,et al.Zener Model Description of Ferromagnetism in Zinc-Blende magnetic semiconductors.Science,2000,287:1019-1122
    [48]Sato K.and Katayama Y.H.Ferromagnetism in a transition metal atom doped ZnO.Physica E,2001,111:251-255
    [49]Wang Q.,Sun Q.,Jena P.,et al.Carrier-mediated ferromagnetism in N codoped (Zn,Mn)O(10-10) thin films.Phys.Rev.B,2004,70:052408(1-4)
    [50]Frazier R.M.,Stapleton J.,Thaler G.T.,et al.Properties of Co-,Cr-,or Mn-implanted AlN.J.Appl.Phys.,2003,94(3):1592-1596
    [51]Polyakov A.Y.,Smirnov N.B.,Govorkov A.V.,et al.Properties of highly Cr-doped AlN.Appl.Phys.Lett.,2004,85(18):4067-4069
    [52]Litvinov V.I.and Dugaev V.K.Ferromagnetism in Magnetically Doped Ⅲ-ⅤSemiconductors.Phys.Rev.Lett.,2001,86(24):5593-5596
    [53]Liu H.X.,Stephen Y.W.,Singh R.K.,et al.Observation of ferromagnetism above 900K in Cr-GaN and Cr-AlN.Appl.Phys.Lett.,2004,85(18):4076-4078
    [54]Kumar D.,Antifakos J.,Blamire M.G.,et al.High Curie temperatures in ferromagnetic Cr-doped AlN thin films.Appl.Phys.Lett.,2004,84(24):5004-5006
    [55]Yang S.G.,Pakhomov A.B.,Hung S.T.,et al.Room-temperature magnetism in Cr-doped AlN semiconductor films.Appl.Phys.Lett.,2002,81(13):2418-2420
    [56]Frazier R.,Thaler G.,Overberg M.,et al.Indication of hysteresis in AlMnN.Appl.Phys.Lett.,2003,83(9):1758-1760
    [57]Sato K.and Katayama-Yoshida H.Material Design of GaN-Based Ferromagnetic Diluted Magnetic Semiconductors. Jpn. J. Appl. Phys., 2001,40: L485-L487
    [58] Theodoropoulou N., Hebard A.F., Overberg M.E., et al., Magnetic and structural properties of Mn-implanted GaN. Appl. Phys. Lett., 2001, 78: 3475-3477
    [59] Zajac M., Gosk J., and Grzanka E. Possible origin of ferromagnetism in (Ga,Mn)N. J.Appl. Phys., 2003,93: 4715-4717
    [60] Ando K. Magneto-optical studies of s,p-d exchange interactions in GaN:Mn with room-temperature ferromagnetism. Appl. Phys. Lett., 2003, 82: 100-102
    [61] Lou X. and Martin R.M. Jahn-Teller distortion and ferromagnetism in the dilute magnetic semiconductors GaAs:Mn and cubic GaN:Mn. Phys. Rev. B, 2005, 72:035212(1-6)
    [62] awski P.B. and Bernholc J. Properties of wurtzite w-MnN and of w-MnN inclusions in (Ga,Mn)N. Appl. Phys. Lett., 2006,88: 092502(1-3)
    [63] Mahadevan P. and Mahalakshmi S. Suitability of p-type conditions for ferromagnetism in GaN:Mn. Phys. Rev. B, 2006, 73: 153201(1-4)
    [64] Sato K., Dederichs P.H., Katayama-Yoshida H., et al. Magnetic impurities and materials design for semiconductor spintronics. Phys. B, 2003,340-342: 863-869
    [65] Pearton S.J., Abernathy C.R., Thaler G.T., et al. Effects of defects and doping on wide band gap ferromagnetic semiconductors. Physica B, 2003,340-342: 39-47
    [66] Cui X.Y., Delley B., Freeman A.J., et al. Magnetic Metastability in Tetrahedrally Bonded Magnetic Ill-Nitride Semiconductors. Phys. Rev. Lett., 2006, 97: 016402(1-4)
    [67] Cui X.Y., Fermandez-Hevia D., Delley B., et al. Embedded clustering in Cr-doped A1N: Evidence for general behavior in dilute magnetic Ill-nitride semiconductors. J.Appl. Phys., 2007,101: 103917(1-6)
    [68] Wu H., Poitras C.B., Lipson M., et al. Green emission from Er-doped GaN powder.Appl. Phys. Lett., 2005, 86: 191918(1-3)
    [69] Lozykowski H.J. Visible cathodoluminescence of GaN doped with Dy, Er, and Tm.Appl. Phys. Lett., 1999, 74(8): 1129-1131
    [70] Pearton S J., Abernathy C.R., MacKenzie J.D., et al. Effect of atomic hydrogen on Er luminescence from A1N. J. Vac. Sci. Technol. A, 1998,16(3): 1627-1630
    [71] Wolff.G.A, Adams.I, and Mellichamp.J.W Electroluminescence of A1N. Phys. Rev.,1959,114:1262-1264
    [72]Rutz.R.F.Ultraviolet electroluminescence in AlN Appl.Phys.Lett.,1976,28:379
    [73]Wilson R.G.,Schwartz R.N.,Abernathy C.R.,et al.1.54-μm photoluminescence from Er-implanted GaN and AlN.Appl.Phys.Lett.,1994,65(8):992-994
    [74]Gurumurugan K.,Chen H.,and Harp G.R.Visible cathodoluminescence of Er-doped amorphous AlN thin films.Appl.Phys.Lett.,1999,74:3008-3010
    [75]Dimitrova V.I.,Patten P.G.V.,Richardson H.H.,et al.Visible emission from electroluminescent devices using an amorphous AlN:Er~(3+) thin-film phosphor.Appl.Phys.Lett.,2000,77(4):478-479
    [76]Martin A.L.,Spalding C.M.,Dimitrova V.I.,et al.Visible emission from amorphous AlN thin-film phosphors with Cu,Mn,or Cr.J.Vac.Sci.Technol.A,2001,19(4):1894-1897
    [77]宋淑芳,陈维德,陈长勇.掺铒GaN薄膜光致发光的研究.中国稀土学报,2002,20(6):535-539
    [78]宋淑芳,周生强,陈维德.掺铒GaN薄膜的背散射沟道分析和光致发光研究.物理学报,2003,52(10):2558-2562
    [79]赵炎立,钟国柱,范希武.氮化铝薄膜及其掺Mn的光致发光.光电子.激光,1999,10(4):372-374
    [80]赵炎立,钟国柱,范希武.AlN:TbF_3薄膜的电致发光.发光学报,1999,20(4):320-324
    [81]Liu F.S.,Ma W.J.,Liu Q.L.,et al.Photoluminescence and characteristics of terbium-doped AlN film prepared by magnetron sputtering.Appl.Surf.Sci.,2005,245:391-399
    [82]Blaha P.,Schwarz K.,Madsen G.K.H.,et al.computer code WIEN2K(Vienna University of Technology,2002),improved and updated Unix version of the original.P.Blaha,K.Schwarz,P.Sorantin,and S.B.Trickey,Comput.Phys.Commun,1990.59,399
    [83]Vosko S.H.,Wilk L.,Nusair M.,et al.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis.Can.J.Phys.,1980,58:1200-1211
    [84]Molnar R.J.,Singh R.,and Moustakas T.D.Blue-violet light emitting gallium nitride p-n junctions grown by electron cyclotron resonance-assisted molecular beam epitaxy.Appl.Phys.Lett.,1995,66(3):268-270
    [85]Nakamura S.,Senoh M.,Nagahama S.,et al.InGaN-Based Multi-Quantum-Well-Structure Laser Diodes.Jpn.J.Appl.Phys.,1995,35:L74-L76
    [86]Lim B.W.,Chen Q.C.,and Yang J.Y.High responsitivity intrinsic photoconductors based on Al_xGa_(1-x)N.Appl.Phys.Lett.,1996,68(26):3761-3762
    [87]Nam K.B.and Nakarmi M.L.Photoluminescence studies of Si-doped AlN epilayers.Appl.Phys.Lett.,2003,83(14):2787-2789
    [88]Kuokstis E.,Zhang J.,and Fareed Q.Near-band-edge photoluminescence of wurtzite-type AlN.Appl.Phys.Lett.,2002,81(15):2755-2757
    [89]Vurgaftman I.and Meyer J.R.Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys.J.Appl.Phys.,2001,89(11):5815-5875
    [90]Zhang S.B.,Wei S.-H.,and Zunger A.A phenomenological model for systematization and prediction of doping limits in Ⅱ-Ⅵ and Ⅰ-Ⅲ-Ⅵ_2 compounds.J.Appl.Phys.,1998,83(6):3192-3196
    [91]Liu C.Electronic structures of substitutional C and O impurities in wurtzite GaN.Opt.Mater.,2003,23:169-174
    [92]Zhi-hua X.,Feng-yi J.,and Qi-xin W.Influence of crystal structure and formation energies of impurities(Mg,Zn and Ca) in zinc blende GaN.Trans.Nonferrous Met.Soc.China,2006,16:s854-s857
    [93]Ramos L.E.,Furthmüller J.,Leite J.R.,et al.Group-Ⅳ and group-Ⅴ substitutional impurities in cubic group-Ⅲ nitrides.Phys.Rev.B,2003,68:085209(1-12)
    [94]Perdew J.P.,Burke K.,and Ernzerhof M.Generalized Gradient Approximation Made Simple.Phys.Rev.Lett.,1996,77(18):3865-3868
    [95]Petit S.and Jones R.Electronic behavior of rare-earth dopants in AlN:A density-functional study.2005,72:073205(1-4)
    [96]Van de Walle C.J.and Neugebauer J.First-principles calculations for defects and impurities:Applications to Ⅲ-nitrides.J.Appl.Phys.,2004,95(8):3851-3879
    [97]Sherwin.M.E and Drummond.T.J.Predicted elastic constants and critical layer thicknesses for cubic phase AlN,GaN,and InN on β-SiC.J.Appl.Phys.,1991,69:8423-8425
    [98] Rubio.A, Corkill.J.L, Cohen.M.L, et al. Quasiparticle band structure of A1N and GaN.Phys.Rev. B, 1993, 48: 11810-11816
    [99] Park C.H. and Chadi D.J. Stability of deep donor and acceptor centers in GaN, A1N, and BN. Phys. Rev. B, 1997, 55(19): 12995-13001
    [100] Van de Walle C.G., Stampfl C, and Neugebauer J. Theory of doping and defects in III-V nitrides. J. Cryst. Growth, 1998, 189/190: 505-510
    [101] Lee W.-J., Kang J., and Chang K.J. Defect properties and p-type doping efficiency in phosphorus-doped ZnO. Phys. Rev. B, 2006, 73(024117): 024117-1
    [102] Nam K.B., Nakarmi M.L., and Li J. Mg acceptor level in A1N probed by deep ultraviolet photoluminescence. Appl. Phys. Lett., 2003, 83: 878-880
    [103] http://www.webelements.com/webelements/elements/text/periodic-table/radii.htrnl.
    [104] Garcia A. and Cohen M.L. First-principles ionicity scales. II. Structural coordinates from atomic calculations Phys. Rev. B, 1993, 47(8): 4221-4225
    [105] Wu S.Y., Liu H.X., Gu L., et al. Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped A1N thin films. Appl. Phys. Lett., 2003, 82(18):3047-3049
    [106] Frazier R.M., Thaler G.T., Leifer J.Y., et al. Role of growth conditions on magnetic properties of AlCrN grown by molecular beam epitaxy. Appl. Phys. Lett., 2005, 86:052101(1-3)
    [107] Jun Z., Li X.Z., Xu B., et al. Influence of nitrogen growth pressure on the ferromagnetic properties of Cr-doped A1N thin films. Appl. Phys. Lett., 2005, 86(21):212504(1-3)
    [108] Cui X.Y., Medvedeva J.E., Delley B., et al. Role of Embedded Clustering in Dilute Magnetic Semiconductors: Cr Doped GaN. Phys. Rev. Lett., 2005, 95(25):256404(1-4)
    [109] Cho J.H., Zhang S.B., and Zunger A. Indium-Indium Pair Correlation and Surface Segregation in InGaAs Alloys. Phys. Rev. Lett., 2000, 84: 3654-3657
    [110] Zunger A. and Wood D.M. Sturctural phenomena in coherent epitaxial solids. J. Cryst.Growth, 1989, 98(2): 1-17
    [111] Park M.S. and Min B.I. Ferromagnetism in ZnO codoped with transition metals:Zn_(1-x)(FeCo)_xO and Zn_(1-x)(FeCu)_ XO. Phys. Rev. B, 2003, 68(22): 224436(1-6)
    [112]Chien C.-H.,Chiou S.H.,Guo G.Y.,et al.Electronic structure and magnetic moments of 3d transition metal-doped ZnO.J.Magnetism and Magnetic Materials,2004,282:275-278
    [113]Ye L.H.,Freeman A.J.,and Delley B.Half-metallic ferromagnetism in Cu-doped ZnO:Density functional calculations.Phys.Rev.B,2006,73(3):033203(1-4)
    [114]Feng X.Electronic structures and ferromagnetism of Cu- and Mn-doped ZnO.J.Phys.:Condens.Matter,2004,16:4251-4259
    [115]Buchholz D.B.,Chang R.P.H.,Song J.H.,et al.Room-temperature ferromagnetism in Cu-doped ZnO thin films.Appl.Phys.Lett.,2005,87:082504(1-3)
    [116]Osuch K.,Lombardi E.B.,and Adamowicz L.Palladium in GaN:A 4d metal ordering ferromagnetically in a semiconductor.Phys.Rev.B,2005,71(16):165213(1-5)
    [117]Wu R.Q.,Peng G.W.,Liu L.,et al.Ferromagnetism in Mg-doped AlN from ab initio study.Appl.Phys.Lett.,2006,89:142501(1-3)
    [118]Sato K.,Schweika W.,Dederichs P.H.,et al.Low-temperature ferromagnetism in(Ga,Mn)N:Ab initio calculations.Phys.Rev.B,2004,70(20):201202
    [119]Sato K.,Schweika W.,Dederichs P.H.,et al.Low-temperature ferromagnetism in(Ga,Mn)N:Ab initio calculations Phys.Rev.B,2004,70:201202(1-4)
    [120]Sato K.,Dederichs P.H.,and Katayama-Yoshida H.Curie temperatures of Ⅲ-Ⅴdiluted magnetic semiconductors calculated from first principles.Europhys.Lett.,2003,61:403-408
    [121]Sato K.,Dederichs P.H.,Katayama-Yoshida H.,et al.Exchange interactions in diluted magnetic semiconductors.J.Phys.:Condens.Matter,2004,16:S5491-S497
    [122]Huang L.M.,Rosa A.L.,and Ahuja R.Ferromagnetism in Cu-doped ZnO from first-principles theory.Phys.Rev.B,2006,74:075206(1-6)
    [123]Zhang Y.,Liu W.,and Niu H.B.Native defect properties and p-type doping efficiency in group-ⅡA doped wurtzite AlN.Phys.Rev.B,2008,77:035201(1-5)
    [124]Luo S.J.and Yao K.L.Electronic structure of the organic half-metallic magnet 2-(4-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-N-oxide.Phys.Rev.B,2003,67:214429(1-4)
    [125]Li M.K.,Li C.B.,Liu C.S.,et al.Optical and magnetic measurements of Mn~+-implanted AlN.J.Appl.Phys.,2004,95(2):755-757
    [126] Slupinski T., Oiwa A., Yanagi S., et al. Preparation of ferromagnetic (In,Mn)As with relatively low hole concentration and Curie temperature 50 K. J. Cryst. Growth, 2002,237-239: 1236-1330
    [127] Ku K.C., Potashnik J., Wang R.F., et al. Highly enhanced Curie temperature in low-temperature annealed. Ga,Mn.As epilayers. Appl. Phys. Lett., 2003, 82: 2302-2304
    [128] Munekata H., Ohno H., Molnar S.v., et al. Diluted magnetic III-V semiconductors.Phys. Rev. Lett., 1998, 63(17): 1849-1852
    [129] Ohno H., Shen A., Matsukura F., et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett., 1996, 69(3): 363-365
    [130] Sato K., Dedeerichs P.H., Araki K., et al. Ab initio materials design and Curie temperature of GaN-based ferromagnetic semiconductors. phys. stat. sol. (c), 2003,0(7): 2855-2859
    [131] Kronik L., Jain M., and Chelikowsky J.R. Electronic structure and spin polarization of Mn_xGa_(1-x)N. Phys. Rev. B, 2002, 66: 041203(1-4)
    [132] Ohno H., Matsukura F., Omiya T., et al. Spin-dependent tunneling and properties of ferromagnetic (Ga,Mn)As (invited). J. Appl. Phys., 1999, 85(8): 4277-4282
    [133] Katayama-Yoshida H. and Sato K. Materials design for semiconductor spintronics by ab initio electronic-structure calculation. Phys. B, 2003, 327(2-4): 337-343
    [134] Semtsiv M.P., Dressier S., Masselink W.T., et al. Symmetry of the conduction-band minimum in AlP-GaP quantum wells. Phys. Rev. B, 2006, 74: 041303(1-4)
    [135] Rodriguez-Hernadez P. and Munoz A. Ab initio calculations of electronic structure and elastic constants in A1P. Semicond. Sci. Technol., 1992, 7: 1437-1440
    [136] Zhang Y., Liu W., and Niu H.B. Half-metallic ferromagnetism in Cr-doped AlP-density functional calculations. Solid State Commun., 2008,145: 590-593
    [137] Das G.P., Rao B.K., and Jena P. Ferromagnetism in Cr-doped GaN: A first-principles calculation. Phys. Rev. B, 2004, 69: 214422(1-6)
    
    [138] Dietl T. Ferromagnetic semiconductors. Semicond. Sci. Technol., 2002,17: 377-392.
    [139] Gruber J.B., Zandi B., Lozykowsk H.J., et al. Spectroscopic properties of Sm~(3+) (4f5) in GaN. J. Appl. Phys., 2002, 91(5): 2929-2935
    [140] Wahl U., Vantomme A., Langouche G., et al. Emission channeling studies of Pr in GaN. J. Appl. Phys., 2000,88(3): 1319-1324
    [141] Steckl A.J., Heikenfeld J., and Lee D.S. Rare-Earth-Doped GaN Phosphors for Electroluminescent Displays. 2001 Emissive Displays Conference/San Diego, 2001,12-14: 1-4
    [142] Hommerich U., Nyein E.E., Lee D.S., et al. Photoluminescence properties of in situ Tm-doped Al_xGa_(1-x)N. Appl. Phys. Lett., 2003, 83(22): 4556-4558
    [143] MacKenzie J.D., Abernathy C.R., Pearton S.J., et al. Er doping of A1N during growth by metalorganic molecular beam epitaxy. Appl. Phys. Lett., 1996, 69: 2083-2085
    [144] Wu X., Hommerich U., MacKenzie J.D., et al. Photoluminescence study of Er-doped A1N. Joural of Luminescence, 1997, 72-74: 284-286
    [145] Andreev T., Hori Y., Biquard X., et al. Optical and morphological properties of GaN quantum dots doped with Tm. Phys. Rev. B, 2005, 71: 115310(1-8)
    [146] Nakata J., Taniguchi M., and Takahei K. Direct evidence of Er atoms occupying an interstitial site in metalorganic chemical vapor deposition-grown GaAs:Er. Appl. Phys.Lett., 1992,61:2665-2667
    [147] Gong H. and Jiang X. c-Axis oriented A1N films prepared on diamond film substrate by electron cyclotron resonance plasma-enhanced chemical vapor deposition. J. Crys.Growth, 2002,235: 333-339
    [148] Manova D., Dimitrova V., Fukarek W., et al. Investigation of d.c.-reactive magnet ron-sputtered A1N thin films by elect ron microprobe analysis , X-ray photoelect ron spect roscopy and polarised inf ra-red re flection. Surf. Coat. Technol, 1998, 106:205-208
    [149] Mahmood A., Machorro R., Muhl S., et al. Optical and surface analysis of DC2reactive sputtered A1N films. Diamond and Related Materials, 2003,12: 1315-1321
    [150] Schoser S., Brauchle G., and Forget J. XPS investigation of A1N formation in aluminum alloys using plasma source ion implantation. Surf. Coat. Technol, 1998,103-104: 222-226
    [151] Laidani N., Vanzetti L., Anderle M., et al. Chemical structure of films grown by A1N laser ablation : an X-ray photoelectron spectroscopy study. Surf. Coat. Technol, 1999,122: 242-246
    [152] Weich F., Widany J., and Frauenheim Th. Paracyanogenlike Structures in High- Density Amorphous Carbon Nitride.Phys.Rev.Lett.,1997,78:3326-3329
    [153]Soto G.,Samano E.C.,Machorro R.,et al.Study of composition and bonding character of CN_x films.Appl.Surf.Sci.,2001,183:246-258
    [154]Wagner C.D.,Passoja D.E.,Hillery H.F.,et al.Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds.J.Vac.Sci.Technol.,1982,21:933-944
    [155]Moulder J.F.,Stickle W.F.,and Sobol P.E.,Handbook of X-Ray photoelectron spectroscopy.1992:Perkin-Elmer Corporation,Eden Prairie
    [156]Tang H.,Webb J.B.,Moisa S.,et al.Structure characterization of AlN buffer layers grown on(0 0 0 1) sapphire by magnetron sputter epitaxy.J.Crys.Growth,2002,244:1-5
    [157]Xu X.H.,Wu H.S.,Zhang C.J.,et al.Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering.Thin Solid Films,2001,388:62-67
    [158]李世普.特种陶瓷工艺学.武汉:武汉工业大学出版社,1995.144
    [159]S.F.Song,W.D.Chen,and Zhang C.Appl.Phys.Lett.,2005,86:152111
    [160]宋淑芳,陈维德,许振嘉.掺Er/Pr的GaN薄膜深能级的研究.物理学报,2006,55:1407-1412
    [161]Heikenfeld J.,Garter M.,Lee D.S.,et al.Red light emission by photoluminescence and electroluminescence from Eu-doped GaN.Appl.Phys.Lett.,1999,75:1189-1191
    [162]Kim J.H.and Holloway P.H.Room-temperature photoluminescence and electroluminescence properties of sputter-grown gallium nitride doped with europium.J.Appl.Phys.,2004,95:4787-4790
    [163]Ursaki V.,Rusu E.,Zalamai V.,et al.Photoluminescence of Eu-doped ZnO structures.Proc.SPIE,2005,5822:148-155
    [164]W.Kong S.A.,J.Ferguson,and R.Solanki.Violet light emitting SrS/SrCl:Eu thin-film electroluminescent devices.Appl.Phys.Lett.,1995,67:7
    [165]Vercaemst R.,Poelman D.,Van Meirhaeghe R.L.,et al.An XPS study of the dopants'valence states and the composition of CaS_(1-x)Se_x:Eu and SrS_(1-x)Se_x:Ce thin film electroluminescent devices.Journal of Luminescence,1995,63:19-30
    [166]Liu F.S.,Dong H.W.,Liu Q.L.,et al.Characterization and photoluminescence of AlN:Eu films. Optical Materials, 2006,28: 1029-1036
    
    [167] Zeisel R., Bayerl M.W., Goennenwein S.T.B., et al. DX-behavior of Si in AIN. Phys.Rev. B, 2000, 61(24): R16283-16286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700