用户名: 密码: 验证码:
基于计算机视觉的破片参数精密测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
破片参数测量是武器研发与定型时不可缺少的环节。弹丸爆炸后产生的破片数量大,待测参数多,测量任务非常繁重。传统的人工测量法和光电测量法效率低、人为误差大、自动化程度低,难以满足不断发展的测量需求。计算机视觉检测技术是以现代光学为基础,融光电子学、计算机图像学、信息处理、计算机视觉等科学技术为一体的现代检测技术,具有非接触、全视场、速度快、精度高等优点,具备在线检测、实时分析、实时控制的能力,在军工、机械、电子、农业、医学等领域得到了广泛的应用。计算机视觉检测技术的相关原理与算法可用于破片参数测量系统,从而有效提高系统的测量速度和测量精度。
     本研究论文根据南京理工大学机械工程学院实验室建设项目“破片参数测量系统的研制”立题,旨在研制一套高速度、高精度的破片参数测量系统。本文通过对计算机视觉检测技术的研究,将该技术中的先进算法与原理用于破片参数测量系统中,以达到系统对测量速度和测量精度的要求。
     研究过程中参阅了大量文献,对破片参数测量系统的国内外研究状况进行了调研,深入分析了研制该系统的难点,提出了将计算机视觉检测技术的先进算法和原理用于破片参数测量系统的研制思路。概述了计算机视觉检测技术的发展历程、国内外研究现状及发展趋势,明确了检测精度和检测速度两大关键因素对视觉检测系统的重要影响。论文内容主要涉及破片参数测量模型、测量方法、系统组成、精度分析,以及计算机视觉检测中的图像处理、系统标定等关键技术。
     本文建立了破片迎风面积的测量模型,以正二十面半空间的16个特定方向模拟破片飞行过程中迎风面的取样方向,分别测量破片在这16个方向的投影面积。根据测量模型,构建了基于计算机视觉的破片参数测量系统,该系统由目标照明单元、载物台单元、机械传动单元、光学成像单元、电控单元、软件单元六大模块组成。摄像机在取样方向上采集破片的投影图像,经图像处理求得图像面积,最后根据像素的面积当量将图像面积换算成破片的迎风面积。为了达到单个破片测量时间小于35秒的技术要求,本文采用了四台摄像机并行工作的方式,大大节省了摄像机移动时间。系统软件中采用了多线程技术,使系统主线程与图像处理线程并行,大幅提高了测量速度。
     数字图像处理是计算机视觉检测的核心内容,对系统的测量精度和测量速度具有决定性的作用。本文着重论述了图像处理中的滤波、阈值分割和边缘检测三方面的内容,提出了适用于破片参数测量系统的图像处理方法。由于景深的限制,系统所采集的图像普遍存在离焦模糊现象,此模糊量会引起较大的面积测量误差。本文提出了两种图像处理方法用来修正离焦图像引起的面积测量误差,一种基于图像梯度最大值,另一种基于边缘检测。实验结果表明,两种修正方法均能达到系统要求的测量精度。
     在计算机视觉检测中,摄像机标定是一项非常关键的内容。由于摄像机光学系统并不是精确地按小孔成像模型工作,存在着图像畸变。在高精度测量时,需要对图像畸变进行校正。本文分析了镜头畸变产生的原因,介绍了用网格法校正图像畸变的原理。传统摄像机标定方法实时性差,在实际应用中较难实现。本文针对待测物的特点,提出了一种简便、实用而又不失精度的标定方法——特征参照物标定法。该方法不需要标定摄像机内外13个参数,只需标定CCD像元的物理面积当量。实验结果表明,该标定方法具有很高的精度,且不增加图像处理的时间。
     测量精度是破片参数测量系统最重要的技术指标之一。本文采用不确定度理论对系统精度进行了分析。系统的随机误差主要有系统噪声、测量模型原理误差、旋转台定位误差、离焦成像引起的误差和图像分割误差。对上述各随机误差进行了详细分析,计算了各种误差的不确定度,通过不确定度的合成得到了系统的总不确定度。
     本文采用实验的方法对系统的测量精度和重复精度进行了验证。按不同的长细比和不同的最大迎风面积设计了四个实验。实验结果表明:平均迎风面积的最大误差小于1.38%,重复测量的最大偏差小于0.03%,测量精度符合并优于技术指标要求。测量结果还表明:破片长细比越小,测量精度越高。
     最后总结了本课题的研究成果及创新点,并对今后的工作提出了建议。
The measurement of fragment parameter is indispensable during the development and confirmation of bomb. The workload of measurement is very heavy, because the number of fragment is very big after explosion and there are too many parameters to measure. Manual method and photoelectric method have some shortcomings, such as inefficiency, big man-made error and low-level automatization, so conventional methods do not meet the requirement in measurement of fragment parameters. Computer vision inspection is a new technology based on modern optics, which syncretizes optical electronics, computer image, information processing, and computer vision. It has many advantages, such as non-contact, big field, high efficiency and high precision. It also has the ability of on-line inspection, real-time analysis and control. It is widely used in military industry, mechanism, electronics, agriculture, medicine and so on. Some principles and algorithms of computer vision inspection can be used to improve the efficiency and accuracy in measure system of fragment parameters.
     The dissertation is based on the project of the study of fragment parameter measuring system, which is supported by mechanics institute of Nanjin Science & Technology University to develop a fragment parameter measuring system. Some principles and algorithms of computer vision inspection are adopted to improve the efficiency and accuracy of this measuring system.
     Many papers have been referred in this study. The situation on the research of fragment parameter measurement has been inquired, and the difficulties to realize the project have been analyzed. The idea is put forward that the principles and algorithms used in computer vision inspection will be adopted in fragment parameter measuring system. The history, situation and trend in development of computer vision inspection have been summarized. As critical factors of computer vision inspection, accuracy and efficiency have been discussed. The content of this dissertation is related to measuring model, measuring method, system composition, image processing, camera calibration and accuracy analysis.
     The measuring model, regular icosahedra, has been established. The system simulates the direction of fragment's windward using the 16 special orientations of regular icosahedra, and measures the fragments' projected area in 16 different directions. According to the measuring model, a fragment parameter measuring system based on computer vision inspection has been designed. The system is composed of illumination unit, object stage, mechanical unit, optical unit, electric unit, and software. Image of projected area can be obtained by camera in projected direction, and image area can be calculated throught image processing. According to the equivalent of pixel, the fragment's windward area can be gotten. The system qualifications require that the time consumption is less than 35s for one fragment measurement. This system uses four cameras to capture image at the same time, so the time consumed in moving the cameras is decreased greatly. Multi-thread technique has been adopted in this system's software, and the system efficiency has been improved greatly, when main thread and image processing thread works parallel.
     Image processing is the kernel of computer vision inspection, and has great effect on accuracy and efficiency. In this paper, the basic concept of digital image is introduced, and some methods of image processing, such as image filter, image segmentation and edge detection, are discussed in detail. Based on basic image processing methods, the special image processing method is designed in this measure system. When outside the depth of field, images obtained are usually obscure, so there is big error in the results of area measurement. Two image processing arithmetic's are developed to amend area error from defocus. The two methods, one based on image gradient and the other based on edge detection, can amend the results to meet the system's requirements.
     Camera calibration is a very important step in computer vision inspection. In practice, the camera cannot obey exactly the principle of pinhole imaging, so there is aberration in images. In high accuracy measurement, the aberration should be eliminated. The cause of image aberration is analyzed and the method to correct aberration using grid is introduced. For the requirement of real-time, conventional method of camera calibration is very difficult to realize in practical system. According to the character of images, a new calibration method based on special contrastive object is put forward. In this method, the 13 camera parameters are not need to calculate, and only the area equivalent of pixel is calibrated. The test results indicated that the calibration method is perfect and does not increase image-processing time.
     Accuracy is the most important technical parameter in this system. The accuracy of this measuring system is analyzed using the theory of uncertainty. In this system, the random errors include noise, principle error of measure model, position error of rotating stage, area error caused by defocus image, and image segmentation error. All errors mentioned above are analyzed thoroughly, and uncertainty of errors is calculated. At last, the whole uncertainty of the system is gotten by synthesis.
     The accuracy and repeatability of this system are verified. According to the slenderness ratio and the maximum windward area, four experiments are designed. The result shows that the error of average windward area is less than 1.38%, and the maximum deviation of repeatability is less than 0.03%. The accuracy of this system meets the requirement. According to the result, the more slender the fragment is, the less accurate the result is.
     At the end of the dissertation, the research results and original discoveries are presented, and the succeeding research is suggested.
引文
[1]孙传东,陈良益,邓年茂.新型破片平均迎风面积自动测量仪的研制[J].兵工自动化,1998:49-52.
    [2]马玉媛.小型预制破片的速度衰减和侵彻深度的研究[J].兵工学报,1981:23-25.
    [3]孙传东,李迟,陈良益.破片平均迎风面积测量方法的研究[J].光子学报,1998:36-39.
    [4]贾云得.机器视觉[M].北京:科学出版社,2000.
    [5]吴立德.计算机视觉需要更扎实更艰苦的工作[J].模式识别与人工智能,1992,5(4):266-271.
    [6]朱铮涛.基于计算机视觉图像精密测量的关键技术研究[D].广州:华南理工大学博士学位论文,2004.
    [7]李介谷.在应用中成长着的计算机视觉[J].模式识别与人工智能,1992,5(4):266-271.
    [8]边肇琪.计算机视觉要更好地面向应用[J].模式识别与人工智能,1992,5(4):272-275.
    [9]顾伟康.计算机视觉的发展概况[J].浙江大学学报,1986,20(4):137-143.
    [10]Mi chael C.Fairhurst.Computer Vision for Robotic Systems:An Introduction[M].The University Press,Cambridge,1988.
    [11]Hello Zuech,Richard K,Miller,Cmfge.Machine Vision[M].Fairmont Press,Inc.1987,47-89.
    [12]Azriel Rosenfeld.Survey Image Analysis and computer vision[J].Computer Vision and Image Understanding,1995,61(1):90-143.
    [13]Azriel Rosenfeld.Survey Image Analysis and Computer Vision:1994[J].Computer Vision and Image Understanding,1995,61(1):90-143.
    [14]M Xie,L Trassoudaine,J Alizon,J Gallice.Road obstacle detection and tracking by an active and intelligent strategy[J].Machine Vision and Applications,1994,7(3):165-177.
    [15]Nello Zuech,Richard K.Miller,Cmfge.Machine Vision[M].Published by the Fairmont Press,Inc.1987,47-89.
    [16]A.K.Elshennawy.The role of inspection in automated manufacturing[J].Computer Industrial Engineering,1989,17(1-4):327-331.
    [17]彭嘉雄,丁明跃.计算机视觉方法与应用[J].模式识别与人工智能,1992,5(4):279-285.
    [18]Perkins W.A.Model-based inspection system for component boards[J].PatternRecognition,1984,17:135-140.
    [19]Franci Lahajnar.Machine vision system for inspecting electric plates[J].Computer in Industry,2002,47:113-122.
    [20]Kap,Tuk,Chan,et al.Identifying IC Type from Its Package using Character[J].Recognition Technique,SPIE Vol,3185:50-57.
    [21]Kim,Pyunghyun,Rhee,Sehun.Three dimensional inspection of ball grid array using laser vision system[J].IEEE Transactions on Electronics Packaging Manufacturing,1999,22(2):151-155.
    [22]Okawa Y.Automatic inspection of the surface defects of cast metals[J].Computer Vision,Graphics and Image Processing,1984,25:151-174.
    [23]Zurcher R.G.Vision systems for medical products[J].Quality,1988,32-33.
    [24]左奇,史忠科.基于机器视觉的胶囊完整性检测系统研究[J].西安交通大学学报,2002,36.
    [25]Zurcher R.G.Vision systems for medical products[J].Quality,1988,32-33.
    [26]林靖,陈辉堂,土月娟,等.机器人视觉伺服系统的研究[J].控制理论与应用,2000,17(4):476-481.
    [27]阮秋琦.图像处理和计算机视觉技术在美国[J].北方交通大学学报,1992,16(3):8-14.
    [28]唐四春,袁保宗.计算机视觉研究进展与展望[J].通讯学报,1993,14(4):55-62.
    [29]B.G.Batchelor,D.W.Braggins.Commercial vision systems in computer vision[J].Theory and Industrial Applications,1992,405-452.
    [30]Elias N.Malamas,Euripides G.M.Petrakis,Michalis Zervakis,Laurent Petit,Jean-Didier Legat.A survey on industrial vision systems,applications and tools[J].Image and Vision Computing,2003,21:171-188.
    [31]钟玉琢,乔秉新,李树青.机器人视觉技术[M].北京:国防工业出版社,1994.
    [32]Batchilor B.G.Automated visual inspection in industry[J].The Industrial Robot,1978,5:174-176.
    [33]Timothy S.Newman.A Survey of Automaed Visual Inspection[J].Computer Vision and Image Understanding,1995,61(2):231-262.
    [34]Chin T.R,Harlow C.A.Automated visual inspection:A Survey,IEEE Trans[J].Pattern Analysis and Machine Intelligence,1982,PAMI-4:557-573.
    [35]German D.Vision-aided inspection techniques for the automotive industry[C].Proceedings of the SMB Vision'85 Conference.1988,23-28.
    [36]Okawa Y.Automatic inspection of the surface defects of cast metals[J].Computer Vision,Graphics and Image Processing.1984,25:151-174.
    [37]Zurcher R.G.Vision systems for medical products[J].Quality,1988,32-33.
    [38]A.K.Elshennawy.The role of inspection in automated manufacturing[J].Computer Industrial Engineering.1989,17(1-4):327-331.
    [39]Michael C.Fairhurst.Computer Vision for Robotic Systems:An Introduction[M].The University Press.Cambridge,1988.
    [40]Ulrich RemBold,Christian blume,Ruediger Dillmann,田雨华,等。计算机集成制造技术和系统[M].北京:兵器工业出版社,1995.
    [41]Elias N.Malamas,Euripides G.M.Petrakis,Michalis Zervakis,et al.A survey on industrial vision systems,applications and tools[J].Image and Vision Computing,2003,21:171-188.
    [42]Batchilor B.G.Automated visual inspection in industry[J].The Industrial Robot,1978,5:174-176.
    [43]C Burke W.J.Vision technology for parts inspection[J].Quality,1988,3.
    [44]Batchilor B G.Automated visual inspection in industry[J].The Industrial Robot,1978,5:174-176.
    [45]Timothy S.Newman.A Survey of Automaed Visual Inspection[J].Computer Vision and Image Understanding,1995,61(2):231-262.
    [46]Silven ,et al. A defect analysis method for visual inspection[C]. the 8 Int.Conf. on Pattern Recognition. 1986:868-870.
    [47]Franci Lahajnar ,et al. Machine vision system for inspecting electric plates[J]. Computer in Industry,2002,47:113-122.
    [48]Perkins W.A. Model-based inspection system for component boards[J]. Pattern Recognition, 1984,(17): 135-140.
    [49]kap Iuk Chan. Identifying IC Type from Its Package using Character Recognition Technique[J]. SPIE Vol. 3185:50-57.
    [50] Wu Wen-yen, Wang Mao-Jiun ,Liu Chi — Ming. Automated inspection of printed circuit boards through machine vision[J]. Computer In Industry, 1996,28:103-111.
    [51]Madhav Moganti, Fikret Ercal, Cihan H.Dagli ,et al. automatic PCB inspection algorithms:a survey[J]. Computer Vision and Image Understanding, 1996,63 (2):287-313.
    [52]E K Tech ,D P Mital. A transputer-based automated visual inspection system for electronic devices and PCBs[J]. Optics and Lasers in Engineering, 1995, 22:161-180.
    [53]C Rubat ,du Merac. A new domain for image analysis:VLSI circuits testing with romauld, Specialized in Parallel Image Processing[J]. Pattern Recognition Letter, 1983,1:347-357.
    [54]Perkins W A. Model-based inspection system for component boards[J]. Pattern Recognition, 1984,17:135-140.
    [55]P Kaufmann ,et al. Visual inspection using linear features[J]. Pattern Recognition, 1984, 17:485-491.
    [56]Y Hara ,et al. Automatic inspection system for printed circuit boards[J]. IEEE Trans On PAMI,1983,5:623-630.
    [57]Franci Lahajnar ,et al. Machine vision system for inspecting electric plates[J]. Computer in Industry.2002,47:113-122.
    [58]Kayalp A E Jain R. A knowledge—based on automatic line wafer inspection system[C]. Proceedings of the Society of Manufacturing Engineers Conference on Vision.1985:117-130.
    [59]E K Tech,D P Mital.A transputer-based automated visual inspection system forelectronic devices and PCBs[J].Optics and Lasers in Engineering.1995,22:161-180.
    [60]L F Paul.Integrated testing and algorithms for visual inspection of integrated circuits[J].IEEE Trans.PAMI.1983,5:602-608.
    [61]孙长库,叶升华.集成电路呸件的光电自学机检测系统[J].光电工程,1996,23(3):44-49.
    [62]C Rubat,du Merac,et al.A new domain for image analysis:VLSI circuits testing with romauld,Specialized in Parallel Image Processing[J].Pattern Recognition Letter.1983,1:347-357.
    [63]Wen-Yen Wu,Mao-Jiun Wang.Chih-Ming Liu.Automated inspection of printed circuit boards through machine vision[J].Computers in Industry.1996,28:103-111.
    [64]Decker H.A difference technique for automatic inspection of casting parts[J].Pattern Recognition Lett,1993,2:125-129.
    [65]Gregory P,J,Taylor C J.Knowledge-based models for computer vision[C].Proceedings of the 4th International Conference on Robot Vision and Sensory Control.1988:325-330.
    [66]L Angrisani,P Daponte,A Pietrosanto,et al.An image-based measurement system for the characterisation of automotive gaskets[J].Measurement.1999,25:169-181.
    [67]Mills R.Development of a line-scan camera for 2D high accuracy measurement[J].Machine Vision,1991:267-277.
    [68]Lu R S.On-line measurement of the straightness of seamless steel pipes using machine vision technique[J].Sensors and Actuators,2001,94:417-427.
    [69]Mu-Chen Chen.Roundness measurement for discontinuous perimeters via machine vision[J].Computer in Industry,2002,4:185-197.
    [70]Hobson J P.Development of a combustion chamber cooling ring inspection machine[C].Proceedings of the 5th International Conference on Robot Vision and Sensory Control,1990:359-368.
    [71]Dimitrios Kosmopoulos.Automated inspection of gaps on the automobile production line through stereo vision and specular reflection[J],omputer in Industry,2001,46:49-63.
    [72]Dae-ki Kang.Applying object model technique to automated visual inspection of automotive compressor parts omission[J].International Journal of Machine Tools and Manufacture,1999,39:1779-1792.
    [73]谢图强,谢铁邦,唐良晶,李柱.热冷带钢表面缺陷在线检测系统[J].计量技术,1994,12:3-5.
    [74]罗志勇,刘栋玉,江涛,土斌.新型冷轧带钢表面缺陷在线检测系统[J].华中理工大学学报,1996,24(1):75-78.
    [75]徐国富,李慧敏,李范春.激光CCD钢板尺寸在线检测与控制系统[J].现代计量测试,1994,2:15-19.
    [76]罗志勇,刘栋玉,罗新宇,郑立波.新型高温钢坯长度在线测量系统[J].光电工程,1995,22(5):32-40.
    [77]土斌,罗志勇.运动热钢坯外形尺寸在线测量系统的设计[J].半导体光电,1995,16(2):128-130.
    [78]应义斌,饶秀勤,赵匀,蒋亦元.机器视觉技术在农产品品质自动识别中的应用研究进展[J].农业工程学报,2000,16(3):4-7.
    [79]玛斌,汪惫华.基于计算机视觉的水果大小检测方法[J].农业机械学报,2003,34(1):73-75.
    [80]土江枫,罗锡文,洪添胜,戈振扬.计算机视觉技术在芒果重量及果面坏损检测中的应用[J].农业工程学报,1998,(4):186-189.
    [81]李庆中,汪娥华.农业生物模式识别中的计算机视觉技术[J].中国图像图形学报,1999,4(7):610-616.
    [82]刘禾,汪惫华.苹果自动分级中的图像分割[J].中国农业大学学报,1996,1(6):89-93.
    [83]Bento B,Correin.A Computer vision system for the automatic measurement of volumes of wood[J].SPIE Vol.1993:206-214.
    [84]K.Nakano.Application of Neural Networks to the Color Grading of Apples[J].Computers and Electronics in Agriculture,1997,18:105-116.
    [85]Zhao Xuezeng.Study on Measurement of Wood Surface Roughness by Computer Vision[J].Journal of Northeast Forestry University,1992,3(1):36-42.
    [86]Wang Keqi.Feature Extraction of Defects onWood Surface[J].Journal of Forestry Research,1998,9(1):54-56.
    [87]赵学增,杨延竹,土伟杰,吴羡.计算机技术在苗木自动分级中的应用发展概况[J].林业科学,2004,40(3):162-166.
    [88]Nair M,D S Jayas.Dockage identification in wheat using machine vision[J].Canadian Agricultural Engineering,1998,40(4):293-298.
    [89]Ni B,M R Paulsen,J F Reid.Corn kernel crown shape identification using image processing[J].Trans of the ASAE,1997,40(3):833-838.
    [90]Liao K,M R Paulsen,J F Reid,et al.Corn kernel breakage classification by machine vision using a neural network classifier[J].Trans of the ASAE,1993,36(6):1949-1954.
    [91]Ng H F,W F Wilcke,R V Morey,et al.Machine vision evaluation of corn kernel mechanical and mold damage[J].Trans of the ASAE,1998,41(2):415-420.
    [92]Steenhoek L,Misra M,Batchelor W,et al.Probabilistic neural networks for segmentation of features in corn kernel images[J].1999 ASAE Annual International Meeting,Ontario:ASAE,1999,No.993198.
    [93]L Steenhoek,M Misra,C R Hurburgh,et al.Implementing a computer vision system for corn kernel damage evaluation[J].1999 ASAE Annual International Meeting,Ontario:ASAE.1999,No.993199.
    [94]A J Cardarelli,YTao,J L Berhardt,et al.High resolution machine vision for non-destructive internal inspection of damaged rice grain[J].1998 ASAE Annual International Meeting,Florida:ASAE.1998,No.986024.
    [95]Visen N S,N S Shashidhar,J Paliwal,et al.Identification and segmentation of occluding groups of grain kernels in a grain sample image[J].Agric.Engng.Res.2001,79(2):159-166.
    [96]Taylor R W,Rehkogler G E.Development of a system for automated detection of apple bruises[J].Proceedings of the Society of Manufacturing Engieer Conference,1990:55-65.
    [97]N Aleixos, J Blasco, F Navarron ,E Molto. Multispectral inspection of citrus in real-time using machine vision and digital signal processors[J]. Computers and Electronics in Agriculture,2002,33:121-137.
    [98]Micchalopoubs P G. Vehicle detection through video inage processing, Autoscope System[J]. IEEE Transactions on Vehicular Technology, 1991,40(1):21-29.
    [99]J Versavel. Camera and computer aided traffic sensor[J]. IEEE the 2nd International Conference on Road Trai}ic Monitoring, 1989:21-29.
    [100]Kameda, Yoshinari ,Minoh Michihiko. A human motion estffnation method using 3-successive video frames[J]. Proceedings of International Conference on Virtual Systems and Multffnedia,1996:135-140.
    [101]N Paragios ,R Deriche Geodesic. Active contours and level sets for the detection and tracking of moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):266-280.
    [102]C Setchell ,E L Dagless. Vision-based road-traffic monitoring sensor[J]. IEEE Proceedings Vision, Image and Signal Processing,2001,148(1):78-84.
    [103]Kopp U U, Andrew J D ,Manz A. Chemical amplification continuous flow PCR on a chip[J]. Science, 1998,280(5366): 1046-1048.
    [104]Cleegg B S. Development of an enzyme-linked immunosorbent assay for the detection of clyphlsato, Agfic[J]. Food Chem,1999,47(12):5031-5037.
    [105]Asari K V. Training of a feed-forward multiple-valued neural network by error back propagation with a multilevel threshold functions[J]. IEEE Trans Neural Networks. 2001,12(6): 1519-1521.
    [106]Xu B G. Instrumental evaluation of fabric pilling[J]. Journal of the Textile Institute, 1997,88(4):488-500.
    [107]Abril H C, Tomes Y ,Millan M S. Objective automatic assessment of pilling in fabrics by image analysis[J]. Optical Engineering,2000, 39(6): 1477-1488.
    [108] Wang Keqi. Feature extraction of defects on wood surface[J]. Journal of Forestry Research, 1998,9(1):54-56.
    [109]Costas Boukouvalas. ASSIST: Automatic system for surface inspection and sorting of tiles[J]. Journal of Materials Processing Technology, 1998, 82:179-188.
    [110]岳晓峰,赵敏,架宝剑,等.计算机视觉技术在发动机缺陷检测系统中的应用[J].计算机测量与控制,2005,13(6):516-518.
    [111]陈永光,土国柱,土杨,等.木材表面缺陷边缘形态检测算法的研究[J].木材加工机械,2003,(3):18-22.
    [112]刘雪芳.一种新的基于图像区域特征的生物芯片边缘检测方法[J].电了科技,2003,(21):35-38.
    [113]蔡叶著,彭涛,何静,等.机器视觉在包装过程中的应用研究[J].包装工程,2003,24(2):45-48.
    [114]程云勇,张定华,毛海鹏,等.一种基于工业CT的航空发动机涡轮叶片生产检测系统关键技术研究[J].CMES.2003年年会:27-31.
    [115]张晓波,刘文耀,土兵振.汽车制动阀内底面质量检测仪的设计[J].计算机测量与控制,2005,13(6):615-617.
    [116]黄劫,周肇飞.机器视觉精密测量系统研究[J].光学技术,2004,30(4):491-494.
    [117]张翼空,刘谨,陈敏贤.基于计算机视觉得检测装置[J].制造技术与机床,2000,9:14-15.
    [118]段发阶,叶声华,土春和,等.拔丝模孔形计算机视觉检测技术[J].光电工程,1996,23(3):72-76.
    [119]段发阶,张洪涛,叶声华.视觉技术在电了网板检测中的应用研究[J].光电子·激光,2001,12(9):927-929.
    [120]杨丽风,韩冀皖,李元宗.面阵高精度测量技术的应用[J].太原理工大学学报,2001,32(5):455-458.
    [121]刘文兵,杨坤涛.CCD成像在线测量玻璃管外径及壁厚的方法[J].华中理工大学学报,1996,24(7):80-81.
    [122]陈元琐,姜颖军,土强.玻璃瓶口裂纹检测的简易判断法[J].广西师范大学学报(自然科学版),2001,19(3):19-21.
    [123]蒋庆,蔡晋辉,边绍辉,周泽魁.基于机器视觉的空瓶图像检测系统[J].粮油加工与食品机械,2003,10:51-53.
    [124]姜洪,李恩普,赵建林,等.激光三角测距法在测量路面时的计算和分析[J]. 西安公路交通大学学报,2000,20(2):62-65.
    [125]马强,唐文彦,陈金存,等.自由环状零件尺寸图像测量系统研究[J].航天制造技术,2004(1):27-31.
    [126]土少杰,朱志刚,石定机,等.货运列车车型车号自动分割和识别算法[J].模式识别与人工智能,1998,11(3):228-234.
    [127]郁梅,蒋刚毅.智能交通系统中的计算机视觉技术应用[J].计算机工程及应用,2001,37(10):101-103.
    [128]蒋刚毅,郁梅,叶锡恩.一种基于视觉的车辆跟踪及交通流量参数估计新方法[J].电路与系统学报,2001,6(4):69-73.
    [129]郁梅,蒋刚毅,贺赛龙.基于路面标记的车辆检测和计数[J].仪器仪表学报,2002,23(4):386-391.
    [130]李庆中,张漫,汪愚华.基于遗传神经网络的苹果颜色实时分级方法[J].中国图象图形学报,2002,5(9):779-784.
    [131]李庆中.苹果自动分级中计算机视觉信息快速获取与处理技术的研究[D].北京:中国农业大学博士学位论文,2000,
    [132]冯斌,汪愚华.基于颜色分形的水果计算机视觉分级技术[J].农业工程学报,2002,18(2):141-144.
    [133]李震,洪添胜,土卫星,等.基于多元统计的柑桔图像分割和目标识别[J].中山大学学报,2005,44(增2):136-140.
    [134]左奇,史忠科.基于机器视觉的胶囊完整性检测系统研究[J].西安交通大学学报,2002,36(2):1262-1265.
    [135]陈杰春,丁振良,袁峰.基于多线程的精密离心机测试系统设计[J].仪表技术与传感器,2006,6:29-31.
    [136]高扬,徐景硕,杨彦明.多线程技术在组合导航半物理仿真系统中的应用[J].弹箭与制导学报,2007,27(1):97-99.
    [137]傅红伟,刘宇,沈伟.空管系统中雷达数据接收的实时性和准确性的设计与实现[J].计算机应用,2007,27:420-422.
    [138]王新国,郭锁利,李爱华,等.多线程的光陀螺信号采集系统设计[J].电光与控制,2005,12(5):50-53.
    [139]马春雷,申宇皓,刘于端.基于PDIUSBD12芯片的USB接口的研究与开发[J].微计算机息,2005,21(8):140-142.
    [140]鲍黎波,艾勇,左韬,等.无线激光通信系统USB接口的设计与调试[J].红外与激光工程,2004,33(5):473-476.
    [141]王志冰,李汉强.基于USB总线的数据采集系统的设计与实现[J].武汉理工大学学报,2005,29(5):758-601.
    [142]郝新轶,余青松,杨智君,等.数据采集系统的USB接口设计[J].吉林大学学报,2004,22(5):472-475.
    [143]刘少峰,韦克平.USB软件系统的开发[J].计算机应用研究,2002,3:102-104.
    [144]程斓,杨子杰.基于PDIUSBD12的USB设备固件程序开发[J].计算机应用,2004,24(7):150-153.
    [145]A.Rosenfeld.Image Analysis and Computer Vision:1995[J].Computer Vision and Image Understanding,1996,63(1):568-612.
    [146]章毓晋.图像工程(下册)[M].北京:清华大学出版社,2000.
    [147]吴晓波,钟先信.高精度图像测量系统[J].光学精密工程,1995,3(1):20-33.
    [148]吴晓波,安文斗.图像测量系统中的误差分析及提高测量精度的途径[J].精密工程,1997,2.
    [149]孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报,2003,29(1):110-124.
    [150]孙长库,魏鬼,张效栋,等.CCD摄像机参数标定实验设计[J].光电子技术与信息,2005,18(2):43-46.
    [151]张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社,1998.
    [152]吴文琪,孙增沂.机器视觉中的摄像机定标方法综述[J].计算机应用研究,2004,2:4-6.
    [153]吴福朝,胡占义.摄像机自标定的线性理论与算法[J].计算机学报,2001,24(11):1121-1135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700