用户名: 密码: 验证码:
多主体协作结构健康监测系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构健康监测是当前工程界与学术界的一个研究热点,已在多个领域取得不少进展,但要真正将其实用化,必须解决大范围集成问题。实际大型结构中,传感器数目多、种类繁杂,传感器信息是分散、分布、不同种类的。为了能够有效地协调、管理大型结构中的分布式监测网络,本文将人工智能领域的多主体技术应用到结构健康监测领域,建立多主体协作结构健康监测系统。针对实际大型平板结构进行了功能验证,验证了多主体协作结构健康监测系统的有效性,并在研究中初步提出了移动主体协作技术在结构健康监测中的应用,优化了系统的性能。本文的工作有助于促进结构健康监测技术的实用化。
     论文的主要工作和创新性成果如下:
     (1)研究了多主体协作结构健康监测系统的理论基础及构造原理。研究了主体BDI模型;从思考型主体、反应型主体、混合型主体中选取设计了不同主体的结构;研究了主体间的通信语言KQML;采用结合网状结构和层次结构优点的复合结构,设计了多主体协作结构健康监测系统的体系结构。
     (2)提出了多主体协作结构健康监测系统的构造过程,建立了多主体协作结构健康监测系统框架。建立了7类健康监测系统智能主体及确立了主体间的协作、协调、协商机制;提出采用本体设计规范系统中概念间的关系;采用推进器(Facilitator)设计作为主体间的桥梁作用,实现了主体之间真正自主地、有效地协作。
     (3)提出在多主体协作结构健康监测系统中采用黑板协作方法解决单个损伤评估主体不能解决的难题,采用信息融合中的D-S证据方法解决结果冲突问题;提出采用功能精确的协同方法作为子系统间的协作方法,在子系统间设立共享信息管理主体,建立分布式数据库为当地子系统提供服务,并通过子系统间信息共享的方式协同解决大型结构健康监测工作。
     (4)将多主体协作健康监测系统应用于大型平板结构,针对三种典型监测对象:应变分布、螺钉松动、冲击载荷进行了分布式监测、协作功效、健康监测功效等系统功能的实验验证。提出采用基于案例的推理(CBR)技术作为诊断主体的协调机制,提出采用循环激励-依次传感方案解决大型结构中的螺钉松动监测问题。验证系统通过主体协作可自动判别监测对象,实现不同类传感器的选取和自组网络、通过协作自动选取合适的不同传感器的信号和信息处理方法,解决了边界监测问题、消除环境干扰、自动判别多个子监测区域中的上述三种典型监测问题。
     (5)初步提出采用移动主体协作技术进一步优化多主体协作结构健康监测系统的性能,并结合验证实例阐述了移动主体协作的有效性。
Structural health monitoring (SHM) technology is a research fucus in the engineering and academic domain. Much progress has been made in many aspects. However, using the technology on large practical structures, integration work must be solved in practice efficiently. Since density and different kinds of sensors have to be adopted to have a reliable monitoring of large scale engineering structures, the sensor information obtained by different sensors at different sites is distributed, diverse and heterogeneous. To coordinate and manage the distributed sensor monitoring network effectively, in this dissertation the multi-agent technology in Artificial Intelligence (AI) area is researched for SHM. Multi-agent cooperative system based SHM is developed. To evaluate the efficiency of the system, the function verification is conducted on a plate structure. In the research the mobile agent cooperation technology is also proposed to optimize the realization performance. The objective of the research is to promote the development of SHM technology in practical application.
     The main works and novel researched performed in this dissertation include:
     (1) The theory and construction principle of the multi-agent cooperative system based SHM are researched. BDI model of agent is researched. According to the deliberative agent, reactive agent and hybrid agent, different architectures are chosen to design different agents. KQML as the agent communication language is investigated. The architecture of the multi-agent cooperative system based SHM is designed adopting the composite architecture combing the advantages of network architecture and layed architecture.
     (2) The detailed process of constructing the multi-agent cooperative based SHM is presented. A general framework of the multi-agent cooperative system based SHM is developed. Seven kinds of health monitoring agents are designed and the cooperation, coordination and negotiation mechanism are estabished. The ontology design is presented to normalize the relationship of the concepts in the system. Facilitator design is adopted to act as the bridge among the agents. The work above realizes the automatic and effective cooperation in the system.
     (3) The blackboard model is proposed to solve the problem that the single damage evaluation agent can not deal with. An information fusion method on D-S evidence theory is adopted to solve the diagnosic result conflict problem. Functionally Accurate, Cooperative method is presented as the effective cooperation way among the subsystems. Sharing Information Management Agent (SIMA) is designed for every subsystem and the distributed database is estabished to provide information service for local subsystem and external information sharing. The subsystems exchange the results with each other by SIMA and cooperate together to realize the large structural health monitoring work.
     (4) The experimental verification is conducted on a large plate to validate the efficiencies of the system including the distributed monitoring, cooperation function and health monitoring for three typical kinds of structure states including strain distribution, bolt loosening and the impact load. Case-based reasoning (CBR) technology is presented as the effective coordination mechanism of diagnostic agents. Circular actuating/sensing in turn technology is proposed to monitor the bolt loosening for the large structure. Through the cooperation of different agents, the whole verification system can automatically choose sensing object, choose suitable signal processing method and damage evaluation method, self-organize the sensor network and discard useless sensor data to recognize the three typical structure states. Through collaboration, the static load happened in the edge area between two adjacent substructures is monitored successfully and the influence from environment parameters can be eliminated.
     (5) In the research the mobile agent cooperation technology is presented to optimize the realization performance. The efficiency of the technology is embodied through the verification instance.
引文
1.陶宝祺,智能材料结构,北京,国防工业出版社,1997:p4-10。
    2.袁慎芳,结构健康监控,北京,国防工业出版社,2007。
    3. Sohn H, Farrar CR, Hemez FM, Shunk DD, et al. A review of structural health monitoring literature:1996-2001.Technical reports LA-13976-MS,Los Alamos National Laboratory, 2003.
    4. Charles R.Farrar and Keith Worden, An introduction to structural health monitoring, Royal Society of London Transactions Series, 2007,365(1851):303-315.
    5.石立华,基于压电元件的损伤自诊断自适应智能结构研究,博士学位论文,南京:南京航空航天大学,1996:p75-116。
    6.陶宝祺,智能材料结构,北京:国防工业出版社,1997:p272-295。
    7. Giurgiutiu V., Xu B, Chao Y et al. Smart sensors for monitoring crack growth under fatigue loading conditions, Journal of Smart Structures & Systems, 2006, 2(2):101-113
    8. Jeong-Beom Ihm and Fu-Kuo Chang, Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensors/actuator network: I.Diagnostics, Smart Materials and Structures, 2004,13:609-620.
    9.彭鸽,基于Lamb波的结构健康监测主动监测技术研究,博士学位论文,南京:南京航空航天大学,2006:p91-105。
    10. Shenfang Yuan, Yingdi Xu and Ge Peng , New developments in structural health monitoring based on diagnostic Lamb wave, Journal of Material Science & Technology, 2004,20(5):490-496.
    11. Coverley PT and Staszewski WJ, Impact damage location in composite structures using optimized sensor triangulation procedure, Smart Materials and Structures, 2003,12:795-803.
    12. Giurgiutiu V, Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring, Journal of Intelligent Material System and Structures, 2005, 16 (4):291-305.
    13. Balasubramaniam K, Sekhar BVS, Vardan JV, et al. Structural health monitoring of composite structures using guided lamb waves. Advanced Nondestructive Evaluation, 2006,321-323:759-764.
    14. Park G, Sohn H, Farrar CR, et al. Overview of piezoelectric impedance based health monitoring and path forward, The Shock and Vibration Digest, 2003,35(6):451-463.
    15.苗苗,基于光纤光栅的结构连接失效及应变场监测研究,硕士学位论文,南京:南京航空航天大学,2006: p1-7。
    16. Li XH, Zhao CS, Jun L, et al. The internal strain of three-dimensional braided composites with co-braided FBG sensors, Optics and Lasers in Engineering, 2007, 45:819-826.
    17. Yoji Okabe, Ryohei Tsuji, Nobuo Takeda, Application of chirped fiber Bragg grating sensors for identification of crack locations in composites, Composites: Part A, 2004, 35: 59-65.
    18. Moyo P, Brownjohn J M W, Suresh R, et al. Development of fiber Bragg grating sensors for monitoring civil infrastructure, Engineering Structures, 2005,27:1828-1834.
    19. Lynch J P, Sundararajan A, Law K.H, et al. Field validation of a wireless structural health monitoring system on the Alamosa canyon bridge, Smart Structure and Materials, 2003: Smart System and Nondestructive Evaluation for Civil Infrastrcutures, San Diege, CA, March 3-6, Proceedings of the SPIE, 5057:267-278.
    20. Lynch J P, Sundararajan A, Law K H, et al. Design and performance validation of a wireless sensing unit for structural health monitoring applications. Structural Engineering and Mechanics, 2004, 17(3): 393-408.
    21. Lynch J P, An overview of wireless structural health monitoring for civil structures, Philosophical Transactions of The Royal Society A-Mathematical Physical and Engineering Science 365(1851):345-372.
    22. Jian Wu, Shenfang Yuan, Xia Zhao, et al. A wireless sensor network node designed for exploring a structure health monitoring application. Smart Materials and Structures, 2007, 16:1898-1906.
    23. Roundy S, Kwright P. A piezoelectric vibration based generator for wireless electronics . Smart Materials and Structures, 2004, 13:1131-1142.
    24. Mita A, Takahira S, Damage index sensor for smart structures, Structural Engineering and Mechanics, 2004, 17(3-4): 331-346.
    25. Zimmermann W, Mader J. Structure condition monitoring with passive tags. The 3rd European Workshop on Structural Health Monitoring, Granada Spain, July 5-7,2006: 184-190.
    26. Lynch J P, Loh K J, A summary review of wireless sensors and sensor networks for structural health monitoring, The Shock and Vibration Digest, 2006, 38(2):91-128.
    27. Ruiz-Sandoval M E,“Smart”sensors for civil infrastructure systems, Doctor of philosophy Thesis, Department of Civil Engineering and Geological Science, University of Notre Dame, Notre Dame, IN,2004, p47-123.
    28. Xinlin PQ, Shawn J B, Amrita K, Advances in the development of built development of built-in diagnostic system for filament wound composite structures, Composites science and technology, 2006, 66:1694-1702.
    29. Bent A, Hagood N W. Improved performance in piezoelectric fiber composites using interdigitated electrodes, SIPE, 2001,2441:196-211.
    30. Andreas J S, Thomas D, Bent B, Overview on macro fiber composite applications, SPIE, 2006, 6170:K1-K8.
    31. Jung Kyungho, Kang Tae Jin. Cure monitoring and internal strain measurement of 3-D hybrid braided composites using fiber bragg grating sensor, Journal of Composite Materials, 2007, 41(12):1499-1519.
    32. Kosaka T, Kurimoto H, Osaka K. Strain monitoring of braided composites by using embedded fiber-optic strain sensors, Advanced Composite Materials, 2004,13(3-4): 157-170.
    33. Yuan S F, Rao Y J, Huang R, Internal strain measurement in 3-D braided composites using co-braided optical fiber sensors, Journal of Material Science & Technology, 2004, 20(2):199-202.
    34. http://www.advancedcerametrics.com/
    35. http://www.trstechnologies.com/
    36. Stehmeier H, Spenckmann H, Comparative vacuum monitoring(CVM): monitoring of fatigue cracking in aircraft structures, Proceedings of the second European Workshop Structural Health Monitoring, Munich, Germany, July 7-9, 2004: 367-373.
    37. Yang S, Yuan F G. Transient wave propagation of isotropic plates using a higher-order plate theory, International Journal of Solids and Structures, 2005, 42:4115-4153.
    38. Staszewski W J, Lee BC, Modeling of lamb waves for damage detection in metallic structures: partⅠ. wave propagation. Smart Materials and Structures, 2003, 12:804-814.
    39. Staszewski W J, Lee B C, Modeling of lamb waves for damage detection in metallicstructures: partⅡ. wave interaction with damage, Smart Materials and Structures, 2003, 12: 815-824.
    40. Staszewski W J, Lee B C, Lamb wave propagation modeling for damage detection: Ⅰ.Two-dimensional analysis. Smart materials and Structures, 2007,16:249-259.
    41. Staszewski W J, Lee B C, Lamb wave propagation modeling for damage detection: Ⅱ.damage monitoring strategy. Smart materials and Structures, 2007,16:260-274.
    42.张恒萍,Lamb波在结构中的传播特性研究,南京航空航天大学硕士学位论文,2006,p16-39。
    43. Lanson C B, Zimmerman D C, Marek E L. A comparison of modal test planning techniques: Excitation and sensor placement using the NASA 8-bay truss, Proceedings of the 12th International Modal Analysis Conference, Honolulu, Hawaii, USA, Jan 31-Feb 3, 1994:205-211.
    44. Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control and Dynamics, 1991,14(2):251-259.
    45. Guyan R J. Reduction of stiffness and mass matrics. AIAA Journal, 1965, 3(2):23-29.
    46.谢强,薛松涛,王远功,利用线性模型估计的传感器优化布置算法,固体力学学报,2006,27(1):46-50。
    47.黄维平,刘娟,李华军,基于遗传算法的健康监测传感器优化布置,工程力学学报,2005,22(1):113-117。
    48. Swann C, Chattopadhyay A. Optimization of piezoelectric sensor location for delamination detection in composite laminates. Engineering Optimization, 2006,38(5):511-528.
    49.谢强,薛松涛,结构健康监测传感器优化布置的混合算法,同济大学学报,2006,34(6):726-731。
    50.袁慎芳,陶宝祺,朱晓荣,应用小波分析及主动监测技术的复合材料损伤监测,材料工程,2001,15(4):43-46。
    51. Sung D-U,Kim C-G, Hong C-S, Monitoring of impact damages in composite laminates using wavelet transform, Composites Part B: Engineering, 2002,33(1):35-43.
    52. Qusk S T,Tua P S, Wang Q, Detection anomalies in beams and plates based on the Hibert-Huang transform of real signals. Smart Materials and Structures, 2003,12:447-460.
    53.胥保春,袁慎芳,余振华等,基于HHT分析的新型低频调制域信号频偏测量方法,仪器仪表学报,2007,28(12):2185-2189。
    54. Sohn H, Farrar C R, Huanter N F, Structural health monitoring using statistical pattern recognition techniques, Journal of Dynamic Systems, Measurement and Control, 2001,123:706-711.
    55. Chang C C, Chang T Y P, Xu Y G, et al, Structural damage detection using an iterative neural network, Journal of Intelligent Materials Systems and Structures, 2000, 11:32-42.
    56.彭鸽,袁慎芳,复合材料结构损伤的小波神经网络辨识研究,宇航学报,2005,26(5):625-667。
    57. Worden K,Lane A J, Damage identification using support vector machine, Smart Materials and Structures, 2001,10 : 540-547.
    58. Chou J-H, Ghaboussi J, Genetic algorithm in structural damage detection, Computer & Structures, 2001, 79(14):1335-1353.
    59.王强,袁慎芳,邱雷,基于时间反转理论的复合材料螺钉连接失效监测研究,宇航学报,2007,28(6):1719-1722。
    60. Giurgiutiu V, Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring, Smart structures and Materials 2003: Smart Structures and Integrated Systems, Proceedings of SPIE Vol.5056: 111-122.
    61.赵霞,袁慎芳,小型化结构健康监测实时信号分析模块,仪器仪表学报,2004,25(6):832-835。
    62. Lynch J P, Sundararajan A, Law K H, et al, Embedding damage detection algorithm in a wireless sensing unit for operational power efficiency, Smart Materials and Structures, 2004, 13(4):800-810.
    63.李惠,周文松,欧进萍等,大型桥梁结构智能健康监测系统集成技术研究,土木工程学报,2006,39(2):46-52。
    64.邱雷,袁慎芳,集成压电健康监测扫查系统的研制及其应用,压电与声光,2008,30(1):39-41。
    65. Harmann D, Smarsly K, Development of an autonomous monitoring system for safety-relevant engineering structures, Research Project, Institute for Computational Engineering, Ruhr-University Bochum, Germany,2005.
    66.罗燚,柳清芬,桥梁长期健康监测中状况评估专家系统的研究,微计算机信息,2006,22(9-3):32-34。
    67. http://www.acellent.com/
    68. http://www.tider.com.cn/
    69. Chan T H T, Yu L, Tam H Y, et al, Fiber Bragg gratings sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation, Engineering Structures, 2006,28(5):648-659.
    70. Mufti A A, Tadros G, Jones P R, Field assessment of fiber-optic Bragg grating strain sensors in the confederation bridge, Canadian Journal of Civil Engineering 1997:24(6);963-966.
    71. Lynch J P, Sundararajan A, Law K H, et al, Field validation of a wireless structural health monitoring system on the Alamosa Canyon bridge, Smart Structures and Materials: Smart Systems and Nondestructive Evaluation for Civil Infrastructure, San Diego, CA, March3-6, Proceedings of the SPIE, Vol. 5057:267-278.
    72. Lynch J P, Wang Y, Law K H, et al, Validation of a large-scale wireless structural monitoring system on the Geumdang bridge, Proceedings of the International Conference on Safety and Structural Reliability (ICOSSAR), Rome, Italy, June 19-23, 2005.
    73. Peeters B, Roeck G D, One-year monitoring of the Z24-bridge: environment effects versus damage events, Earthquake Engineering and Structural Dynamics, 2001,31(2):149-171.
    74. Boller C, Next generation structural health monitoring and its generation into aircraft design, International Journal of Science, 2000, 31(11):1333-1349.
    75. Staszewski W, Boller C, Tomlinson C, Health monitoring of aerospace structure, Wiley Inter Science, Join-Wiley&Sons, Inc., 2004.
    76. Austin R E, The X-33 program: proving feasibility of the next generation reusable launch vehicles, Proceedings of The 2nd International Workshop on Structural Health Monitoring, Stanford, CA, September 8-10,1999: p3-22.
    77. Shenfang Yuan, Dakai Liang, Lihua Shi, et al, Recent progress on distributed structural health monitoring at NUAA, Journal of Intelligent Materials System and Structures, 2008, 19(3):373-386.
    78. Iglesias M J, Palomino A, SHMS, A good chance to gain experience to optimize the aircraft structural capability, Proceedings of the European COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain, June, 2000, p753-771.
    79. Boller C, Ways and options for aircraft structural health management, Proceedings of the European COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain, June, 2000, p71-82.
    80. Paul D S, Darryll J P. A review of vibration-based techniques for helicopter transmission diagnostics. Journal of Sound and Vibration, 2005, 282 (1-2):475-508.
    81. Giurgiutiu V, Cuc A, Goodman P. Review of vibration-based helicopters health and usage monitoring methods. The Shock & Vibration Digest 33, 2001, 5: 387-443.
    82.张启伟,大型桥梁健康监测概念与监测系统设计,同济大学学报,2001,29(1):65-69。
    83. Chueng M S, Tadros G S, Brown T G, et al. Field monitoring and research on performance of the Confederation bridge. Canadian Journal of Civil Engineering, 1997, 24(6):951-962.
    84. Myroll F, Dibiagio E. Instrumentation for monitoring the Skarnsunder cable-stayed bridge. Proceedings of the 3rd Symposium on Strait Crossing. Rotterdam: Balkema, 1994: 207-215.
    85. Andersen E Y. Structural monitoring of the Great Belt East Bridge. Proceedings of the 3rd Symposium on Strait Crossing. Rotterdam: Balkema, 1994: 189-195.
    86. Curran P, Tilly G. Design and monitoring of the Flintshire Bridge. Structural Engineering International, 1999, 3: 225-228.
    87. Ko J M, Ni Y Q. Technology developments in structural health monitoring of large-scale bridges. Engineering Structures, 2005, 27: 1715-1725.
    88.黄方林,王学敏,陈政清等,大型桥梁健康研究进展,中国铁道科学,2005, 26(2):1-7。
    89.余天庆,陈开利,彭苗,桥梁结构的损伤现代检测与评估,世界桥梁,2004, 2:52-55。
    90. BROWNJOHN J M W. Structural health monitoring of civil infrastructure. Philosophical Transactions of The Royal Society. A, 2007, 365:589-622.
    91. Farrar C R, Worden Keith, An introduction to structural health monitoring. Philosophical Transactions of The Royal Society. A, 2006, 365:303-315.
    92. Victor R L. Cooperative multi-agent systems: a personal view of the state of the art. IEEE Transaction on Knowledge and Data Engineering, 1999, 11(1):133-142.
    93. Wooldridge M, Jennings N R. Intelligent agents: theory and practice. Knowledge Engineering, 1995, 10(2):115-152.
    94.史忠植,智能主体及其应用,科学出版社,2000, p1-108。
    95. Sohn H, Worden K, Farrar C R, Statistical damage classification under changing environmental and operational conditions, Journal of Intelligent Material Systems and Structures, 2002, 13(9):561-574.
    96.谈丹辉,孙利民(2004),Mamdani型模糊推理系统在桥梁状态评估中的应用。同济大学学报,2004, 32(9):1131-1135。
    97. Sohn H, Law K H. Bayesian probabilistic damage detection of a reinforced-concrete bridge column. Earthquake Engineering & Structural Dynamics, 2000, 29(8): 1131-1152.
    98. Alexiou K. Accurate modeling and damage detection in high safety and cost structures (AMADEUS). Proceedings of the European COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain, Jun3-6,2000: p667-675.
    99. Smarsly K, Hartmann D. Artificial intelligence in structural health monitoring. The Third International Conference on Structural Engineering, Mechanics and Computation (SEMC) , Cape Town, South Africa, Sep 10-12, 2007 .
    100. Mujica L.E., Vehi J., Rodellar J., et al. (2005) A Hybrid Approach of knowledge-based reasoning for structural assessment. Smart Materials and Structures, 2005, 14: 1554-1562.
    101.张维明,姚莉.智能协作信息技术.北京:电子工业出版社,2002.p1-138。
    102. Schroeder M, Wagner G. Distributed diagnosis by vivid agents. Proceedings of the First International Conference on Autonomous Agents, California, USA, Feb 5-8, 1997: p268-275.
    103.王润孝,高利辉,薛俊峰,柔性制造系统(FMS)故障诊断技术研究综述,机械科学与技术,2006,25(2): 127-132。
    104. Maria-Athina M, Gabi D R. Using the concept of intelligent agents in fault management distributed services. Journal of Network and Systems Management, 1999, 7(4):425-446.
    105. Godbole D N. Control & coordination in uninhabited combat air vehicles. Proceedings of the American Control Conference, San Diego, California, June,1999, p1487-1490.
    106. Malin J T, Kowing J, Schreckenghost D, et al. Multi-agent diagnostic and control of an air revitalization system for life support in space. Aerospace Conference Proceedings, 2000 IEEE, Big Sky, MT, USA, Mar 18-25, 2000: p309-326.
    107. Bernard D E, Dorais G A, Fry C, et al. Design of the remote agent experiment for spacecraft autonomy. Aerospace Conference Proceedings, 1998 IEEE, Snowmass at Aspen, CO, USA, Mar 21-28, 1998: p259-281.
    108. Lyell M J, Krueger W, Zhang R, et al. An agent-based approach to health monitoring applied to the ISS power system. The 45th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, Jan 8-11, 2007.
    109.范显峰,基于多Agent系统的卫星故障诊断技术研究,博士学位论文,哈尔滨:哈尔滨工业大学,2003。
    110.龙兵,姜兴渭,宋政吉,基于多Agent卫星遥测数据实时监测与诊断技术,航空学报,2005,26(6):726-732。
    111. Hu w. A systematic approach to integrated fault diagnosis of flexible manufacturing systems. International Journal of Machine Tools & Manufacture, 2000, 40:1587-1602.
    112. Logan K P. Prognostic software agents for machinery health monitoring. IEEE Aerospace Conference, 2003, 7:3213-3225.
    113.吴伟蔚,杨叔子,故障诊断Agent研究,振动工程学报,2000,13(3):393-399。
    114.邱忠宇,基于多Agent的汽轮发电机组故障诊断技术的研究与应用,博士学位论文,浙江:浙江大学,2000。
    115.陈真勇,何永勇,褚福磊等。多Agent故障诊断原型系统研究,中国机械工程,2002,13(13):1084-1087。
    116.孙红岩,大型旋转机械智能诊断多Agent系统的研究,博士学位论文,重庆,重庆大学,2007。
    117.许雪琦,分布式智能化状态监测与故障诊断系统的设计与研究,博士学位论文,天津,天津大学,2004。
    118.武兵,熊诗波,林健,张宏,基于Multi-agent技术的大型机电设备故障诊断系统,测试技术学报,2006,20(5):412-417。
    119.李志芳,冯秀芳,基于模糊推理的多Agent故障诊断系统的研究,太原理工大学学报,36(2):220-223。
    120.左万里,基于多Agent的智能故障诊断系统研究,计算机与现代化,2003,96(8): 4-6。
    121.陈斌,王建中,基于多Agent的分布式通信设备智能实时故障监测系统,武汉科技大学学报,2006,29(3):280-282。
    122.肖小峰,蔡金燕,梁玉英,基于多Agent的监测与诊断系统功能模型,2006,22(3-1):212-214。
    123. Garga A, Campbell R, Byington C, et al. Diagnostic reasoning agents development for HUMS systems. Proceedings of the Annual Meeting of the American Helicopter Society-AHS International Forum 57, May9-11,2001: p1-5.
    124. Albert Esterline . Verified models of multi-agent systems for vehicles health management. Smart Structures and Materials 2005: Modeling Signal Processing and Control, Proceedings of SPIE vol.5757.
    125. Abbott D. Development and evaluation for sensor concepts for ageless aerospace vehicles. NASA technical report NASA/CR-2002-211773, Langley Research Center, Hampton, Virginia, 2002.
    126. Price D C, Scott D A, Edwards G C, et al. An integrated health monitoring system for an ageless aerospace vehicle. The 4th International Workshop on Structural Health Monitoring, Stanford University, USA, Sep15-17,2003. Published in Structural Health Monitoring 2003: From Diagnostics & Prognostics to Structural Health Management, Fu-Kuo Chang, DEStech Publications, 2003, p310-318.
    127. Prokopenko M, Wang P, Foreman P, et al. On connectivity of reconfigurable impact networks in ageless aerospace vehicles. The Journal of Robotics and Autonomous Systems, 2005, 53(1):36-58.
    128. Hoschke N, Lewis C J, Price D C, et al. A self-organising sensing system for structural health management. Lecture Notes in Computer Science, Springer Berlin, 2006, Vol.4253: p349-357.
    129.张亮,多主体协作技术在结构健康监测领域的初步研究,硕士学位论文,南京:南京航空航天大学,2005。
    130. Shenfang Yuan, Xiaosong Lai, Xia Zhao, et al. Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology. Smart Materials and Strcutures, 2006, 15(1): 1-8.
    131. Ruiz-Sandoval M.‘Smart’sensors for civil infrastructure systems. Doctor of Philosophy Thesis, Department of Civil Engineering and Geological Science, University of Notre Dame, Notre Dame, IN, 2004.
    132. Smarsly K, Nguyen V V, Hartmann D. An evolutionary computation approach towards sensor placement optimization for monitoring civil engineering structures. The 6th International Workshop on Structural Health Monitoring (IWSHM): Quantification, Validation and Implementation, Stanford CA, USA, Sep11-13, 2007.
    133. Xia Zhao, Shenfang Yuan, Zhenhua Yu, et al. Designing strategy for multi-agent system based large structural health monitoring. Expert Systems With Applications, 2008, 34(2):1154-1168.
    134.邓志刚,基于MAS的大型桥梁健康监测系统研究与开发,硕士学位论文,2007,p9。
    135. Jennings N R, Sycara K, Wooldridge M. A roadmap of agent research and development.Autonomous Agents and Multi-agent Systems, 1998, 1:7-38.
    136. Russell S, Norvig P. Artificial intelligence: a modern approach. Prentice-Hall International, Inc., 1995.
    137. Wooldridge M J, Jennings N R. Intelligence agents, Springer,1995.
    138.史忠植,高级人工智能,北京,科学出版社,2006,p123-438。
    139.黄敏,佟振声,分布式多Agent系统的研究,电力情报,2002,1:65-70。
    140. Finin T, Labrou Y. KQML as an Agent communication language. Bradshaw J W. Software agents. MIT Press, 1997: 291-316.
    141. http://www.fipa.org/.
    142.杨明辉,郭肇德,基于扩展的BNF文法的通用语法分析算法,软件学报,1992,3:24-32。
    143. Uschold M, Gruninger M. Ontologies: principles, methods and applications. The Knowledge Engineering Review, 1996, 11(2):93-136.
    144.肖正,吴承荣,张世永,多Agent系统合作与协调机制研究综述,计算机科学,2007,34(5):139-143。
    145. Daniel D C. Blackboard systems. AI Expert, 1991, 6(9):40-47.
    146. Hayes-Roth B. A blackboard architecture for control. Artificial Intelligence, 1985, 26:251-321.
    147. Lesser V R. A Retrospective view of FA/C distributed problem solving. IEEE Transaction on systems, Man and Cybernetics, 1981, SMC-11:81-96.
    148.何友,王国宏,多传感器信息融合及应用,北京:电子工业出版社,2007,p40-46。
    149.高峰,王德俊,江钟伟,压电阻抗技术用于螺栓松紧健康诊断,中国机械工程,2001.12(9):1048-1049.
    150. Vincent Caccese, Richard Mewer, Senthil S.Vel. Detection of bolt load loss in hybrid composite/metal bolted connections . Engineering Structures, 2004,26:895-906.
    151. Yen CS, Wu E. On the inverse problem of rectangular plates subjected to elastic impact, Part I:method development and numerical verification. Journal of Applied Mechanics,1995, 62:692-698.
    152. Yen CS, Wu E. On the inverse problem of rectangular plates subjected to elastic impact, Part II:experimental verification and further application. Journal of Applied Mechanics, 1995, 62?699-705.
    153. Tracy M, Chang FK. Identifying impact load in composite Plates based on distributedpiezo-electric sensor measurements[C]. SPIE, Proceeding, 1996, 2779 ?118-123.
    154.刘金根,基于CBR与多Agent的分布式故障诊断系统研究,硕士学位论文,南京,南京航空航天大学,2006,p6-12。
    155. Enric P, Santiago O. Cooperative multi-agent learning. Adaptive Agents and Multi-Agent Systems, Lecture Note on Artificial Intelligence , 2003, 2636 :1-17.
    156.韩泉叶,王阳萍,基于CBR和MAS的分布式故障诊断系统模型研究,兰州交通大学学报(自然科学版),2004,23(6):74-77。
    157.陈平,谢志江,孙红岩,基于CBR的Multi-agent旋转机械故障诊断系统,重庆大学学报(自然科学版),2006,29(5):8-11。
    158.马爱军,周传月,王旭,Patran和Nastran有限元分析专业教程,北京:清华大学出版社,2005。
    159.焦敬品,何存富,吴斌等,基于模态分析和小波变换的声发射源定位新算法研究,仪器仪表学报,2005,26(5):482-485。
    160.陈锡辉,张银鸿,LabVIEW 8.20程序设计从入门到精通,北京:清华大学出版社,2007。P273-339。
    161.张云勇.移动agent技术及其应用,北京:清华大学出版社,2003。
    162. Qi H,Iyengar S,Chakrabarty K.Multi-resolution data integration using mobile agents in distributed sensor networks.IEEE Transactions on Systems,Man and Cybernetics,2001,31(3):383-391.
    163.孙岩,李德毅.一种基于Multi-agent协作的战场传感器网络数据融合架构.军事运筹与系统工程,2006,20(1):39-43。
    164. Wu Q S, Nageswara SV R, Barhen J, et al. On computing mobile agent routes for data fusion in distributed sensor networks. IEEE Transactions on Knowledge and Data Engineering. 2004,16(6):740-752.
    165.叶宁,王汝传.基于移动Agent的无线传感器网络数据管理框架,电子工程师,2006,32(4):50-52。
    166. http://mobilab.wustl.edu/projects/agilla/.
    167. Fok CL, Roman GC, Lu CY. Rapid development and flexible deployment of adaptive wireless sensor network applications. Proceedings of the 24th International Conference on Distributed Computing Systems (IDCS’05),Columbus,Ohio,June 6-10, 2005, p653-662.
    168. Lynch J P, Law K H, Kiremidjian A S, et al. The design of a wireless sensing unit for structural health monitoring. Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford, CA, Sep 12-14,2001.
    169. Lynch J P, Law K H, Kiremidjian A S, Carryer E, et al. Validation of a wireless module monitoring system for structures. Smart Structures and Materials: Smart System for Bridges, Structures, and High-ways, San Diego, CA, MAR 17-21, 2002, Proceedings of the SPIE, 4696(2):17-21.
    170. Lynch J P, Sundararajan A, Law K H, et al. Power-efficient wireless structural monitoring with local data processing. Proceedings of the International Conference on Structural Health and Intelligent Infrastructure, Tokyo, Japan, Nov 13-15,2003, Vol.1,331-338.
    171. Lynch J P, Sundararajan A, Law K H, et al. Design of a wireless active sensing unit for structural health monitoring. Proceedings of the 11th Annual International Symposium on Smart Structures and Materials, San Diego, CA, Mar 14-18,2004. Proceedings of the SPIE, Vol.5394,157-169.
    172. Michell K, Rao V S, Pottinger H J. Lessons learned about wireless technologies for data acquisition. Smart Structures and Materials, Smart Electronics, MEMS, and Nanotechnology, San Diego, CA, Mar 18-21, Proceedings of the SPIE, Vol.4700,331-341.
    173. Farrar C R, Allen D W, Ball S, et al. Coupling sensing hardware with data interrogation software for structural health monitoring. Proceedings of the 6th International Symposium on Dynamics Problems of Mechanics (DINAME), Ouro Preto, Brazi, Feb 29-Mar 4, 2005.
    174. Lynch J P, Sundararajan A, Law K H, et al. Embedment of structural monitoring algorithm in a wireless sensing unit. Journal of Structural Engineering and Mechanics, 2003,15(3): 285-297.
    175.任丰原,黄海宁,林闯,无线传感网络,软件学报,2003,14(7):1282-1291.
    176.沈波,张世平,钟亦平,无线传感网络分簇路由协议,软件学报,2006, 7(17):1588-1600。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700