用户名: 密码: 验证码:
梓醇对D-半乳糖衰老小鼠的神经保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梓醇是玄参科植物地黄(Rehmannia glutinosa Libosch)的主要成分,有保肝泻下,抗炎止痛,降血糖的功效。本实验室的前期研究证实:在细胞和动物模型上梓醇具有神经保护活性。然而梓醇是一种环烯醚萜类化合物,化学性质不稳定,分离工艺繁琐,来源有限,因此对现有工艺进行优化,对于梓醇的药理活性研究及产品开发具有现实意义。本研究旨在优化地黄中梓醇的提取纯化工艺,重点探讨梓醇在D-半乳糖致衰老小鼠模型中的神经保护作用及机制,主要研究内容与结果如下:
     首先,将微波辅助提取与大孔吸附树脂柱层析技术相结合,对梓醇工艺进行了优化。
     以高效液相色谱法为检测手段,考察冷浸、超声波辅助提取、微波辅助提取、热回流提取、索氏提取五种方法对梓醇提取率的影响。达到最大提取率时,微波辅助提取用时最短(4 min),说明微波辅助提取方法在提取效率上优于其它方法,综合评价选用微波辅助提取法进行梓醇的提取;考察九种不同极性大孔吸附树脂对梓醇的吸附性能,结果表明,D101树脂对梓醇的吸附量较大(76.1 mg/g干树脂),且对梓醇的解析率较高(92.1%)。该树脂对梓醇的吸附等温线符合Langmuir和Freundlich公式,为单分子层吸附,适于地黄醇提取液中梓醇的纯化。利用D101树脂层析柱,上样量为5 BV的地黄浓缩液(2 mg/ml),以水和不同浓度的乙醇洗脱。收集含梓醇的5%乙醇洗脱液,浓缩干燥后,得到梓醇含量大于50%的褐色粉末,将其进行硅胶柱层析,氯仿:甲醇(8∶2)梯度洗脱得到梓醇单体,纯度达90%以上,得率为600 mg/kg药材。
     其次,建立皮下注射D-半乳糖致衰老小鼠模型,研究梓醇的神经保护作用及机制。
     (1)利用旷场、跳台和Morris水迷宫,考察梓醇对D-半乳糖衰老模型小鼠认知能力的影响,发现D-半乳糖致衰老小鼠的自主活动和探究能力,被动学习记忆和空间认知能力下降,应用梓醇治疗两周后,明显改善衰老小鼠的学习记忆能力。病理切片苏木素-伊红(HE)染色发现D-半乳糖衰老小鼠神经元细胞稀疏,细胞核固缩;生化方法检测到大脑皮层和海马内胆碱酯酶(AChE)活力上升,免疫组织化学方法发现基底前脑乙酰胆碱转移酶(ChAT)表达量减少,免疫印迹方法发现脑组织乙酰胆碱M受体(mAChR)表达量降低。应用梓醇后,不仅能够减轻D-半乳糖所致的小鼠大脑病理损伤,而且通过抑制AChE的活力,提高ChAT和mAChR表达来保护乙酰胆碱系统,进而维持神经递质乙酰胆碱(Ach)的含量,改善模型小鼠的学习记忆能力。
     (2)梓醇对D-半乳糖衰老模型小鼠体内抗氧化能力的研究表明:梓醇能显著提高大脑皮层、海马、肝和脾组织内超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽-S-转移酶(GSH-ST)活力,降低脂质过氧化产物丙二醛(MDA)含量。提示梓醇对衰老模型小鼠具有保护作用,其保护机制之一是提高机体内源性抗氧化酶活力,减轻脂质过氧化程度,保护机体免受氧化损伤。通过相关性分析,发现小鼠大脑皮层、海马内SOD和GSH-Px活力与小鼠水迷宫实验第五天逃避潜伏期呈负相关,MDA水平与第五天逃避潜伏期呈显著正相关,表明梓醇改善模型小鼠学习记忆能力可能与其提高大脑抗氧化能力有关。
     (3)考察梓醇对D-半乳糖衰老模型小鼠大脑能量代谢的影响,发现梓醇能够降低模型小鼠大脑皮层和海马组织乳酸脱氢酶(LDH)活力,提高肌酸激酶(CK)、Na~+-K~+-ATP和Ca~(2+)-Mg~(2+)-ATP酶活力;梓醇治疗组小鼠大脑皮层和海马线粒体呼吸链复合酶Ⅰ、Ⅱ/Ⅲ、Ⅳ活性明显高于D-半乳糖衰老模型小鼠,梓醇不仅抑制线粒体活性氧(ROS)的产生和线粒体膜电位(MMP)的降低,而且抑制衰老小鼠皮层和海马细胞的凋亡,提高抑凋亡蛋白Bcl-2的表达,抑制凋亡通路关键蛋白caspase-3的活性。这说明梓醇可通过提高线粒体呼吸链复合酶的活性,抑制线粒体ROS的产生,阻止MMP的丧失,上调Bcl-2蛋白的表达及拮抗caspase-3的激活,从而保持线粒体功能的完整性,进而抑制氧化应激所致的细胞凋亡同时上调能量代谢相关酶的活力,保护脑组织能量代谢的平衡来发挥其抗衰老作用。
     总之,本研究表明梓醇为地黄中主要的抗衰老活性成份之一,有可能在延缓衰老和与衰老相关的神经退行性疾病的预防和治疗中发挥作用。
Catalpol, one of the main active constituents of Rehmannia glutinosa Libosch, possesses many therapeutic effects such as protection of liver damage, anti-inflammation, reduction of pain and blood sugar. Catalpol has been verified to have neuroprotective effects in vitro and in vivo in our laboratory and be worth further studying. Due to its instable chemical property and complicated seperation technique, it is so difficult to obtain bulk of catalpol that an optimized seperation technique of catalpol becomes urgent. The purpose of this study mainly aims to optimize existed extraction and purification technique of catalpol and obtain enough catalpol to investigate its protective effects on senescent mice induced by D-galactose. The main results are summarized as following.
     Firstly, an optimized technique for extraction and purification of catalpol had been established, including microwave-assisted extration and column chromatography with macroporpus adsorbent resins.
     Different extraction methods including extraction at room temperature (ERT), heat reflux extraction, Soxhlet extraction, ultrasonic extraction and microwave-assisted extraction (MAE) to evaluat the percentage extraction of catapol from Rehmannia has been tested. The extracts were analyzed by high performance liquid chromatography (HPLC). The results showed that the percentage extraction of catalpol from Rehmannia by MAE (4 min) was more efficient in short time followed by Soxhlet extraction, heat reflux extraction, ultrasonic and ERT methods. The present results showed that the considerable saving of time by MAE was more competent than the other extraction techniques. Considering its time saving and higher percentage extraction of catalpol, we had choosed MAE technique for catalpol extraction from Rehmannia. Nine different kinds of macroporous adsorbent resins were evaluated by the static capacity of adsorption and desorption. The results showed that D101 resin had higher static adsorption capacity of 76.1mg/g dry resin and desorption ratio of 92.1%. Its isotherm curve can be well described by Langmuir and Freudlich equation and belong to monomolecular layer absorption. D101 resin was choosed for the purification of catalpol from the extraction solution of Rehmannia. After the extract containing 2mg/mL of catalpol was loaded onto the column, resins bed was eluted by 5BV (five folds volume of resin bed) water and different concentrations of ethanol, respectively. The 5% ethanol elution on removal of the solvent under reduced pressure provided a brown powder containing 50% catalpol, which was subjected to an open column chromatography on silica gel eluted with a CHCl_3-MeOH gradient. The fraction eluted with CHCl_3-MeOH (8:2) was identified as catalpol and the purity of the compound was more than 90% purity by HPLC analysis. The yield of this separation technique was 600mg/kg Rehmannia.
     Secondly, the neuroprotective effects of catalpol on the senescent mice induced by subcutaneous injection of D-galactose were assessed and the mechanisms underlying its protective effects were studied.
     (1) Effects of catalpol on the cognition ability of senescent mice induced by D-galactose were evaluated by open field test, step-down avoidance test and Morris water maze test. The results showed that injection of D-galactose caused not only degression of autonomic activities and novelty-induced exploratory behaviors but also passive and spacial cognition ability. Administration of catalpol for two weeks was capable of reversing the D-galactose induced behavioral impairment, indicating that catalpol has the effect of ameliorating cognition ability of senescent mice. Hematoxylin and eosin (HE) staining showed that pyramidal neurons either presented a densely stained shrunken appearance with minimal cytoplasm or had disappeared in the brain of D-galactose treated mice. In contrast, majority of the neurons were rescued in mice treated with catalpol. Moreover, catalpol decreased the elevated activity of acetylcholinesterase (AChE) in aging mice brain cortex and hippocampus, increased the positive neurons of choline acetyltransferase (ChAT) in aging mice basal forebrain revealed by immunohistochemical staining and the expression of Acetylcholine M receptor (mAChR) in aging mice brain determined by western blotting method, indicating that catalpol had protective effects on cholinergic impairment in aging model mice so as to maintain the content of acetylcholine (ACh) and eventually ameliorate cognition deficits of senescent mice.
     (2) Effects of catalpol on the anti-oxidative ability of senescent mice induced by D-galactose were examined by biochemical method. The results showed that catalpol increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GSH-ST), decreased the malondialdehyde (MDA) level in the cerebral cortex, hippocampus, liver and spleen of D-galactose treated mouse. These suggested that the antiaging effects of catalpol were partly mediated via enhancing endogenous antioxidant enzymatic activities, alleviating lipid peroxide and protecting organism from oxidative damage. Significant negative correlation was found between the mean latency to find the platform on fifth day in water maze test and the activities of SOD and GSH-Px in mice cortex and hippocampus. The levels of MDA were positive correlated with the mean latency in the two regions of mice brain. The data indicated that the oxidative damage may play a role in the cognitive decline of the senescent mice induced by D -galactose.
     (3) Effects of catalpol on the brain neuron apotosis of senescent mice induced by D-galactose were studied utilizing ultraviolet spectrophotometer, fluorospectrophotometer and flow cytometry. The data revealed that catalpol could decreased the activity of lactate dehydrogenase (LDH), increased the activities of creatine kinase (CK), Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase in brain cortex and hippocampus of senescent mice induced by D-galactose. Further study found that catalpol could increase the activities of respiratory complex I, II /III, IV and mitochondrial membrane potential level, decrease reactive oxygen species (ROS) production in the brain cortex and hippocampus mitochondria of senescent mice. Flow cytometry analysis revealed that catalpol could inhibit apoptosis in the brain cortex and hippocampus of senescent mice via inhibting the production of ROS and the loss of membrane potential level, up-regulation of Bcl-2 and inactivation of caspase-3. These results suggested that catalpol could exert antiaging effects via maintaining the balance of energy metabolism in the brain of senescent mice by elevating the activities of respiratory complex, inhibting apoptosis and regulating the activities of energy-related enzymes.
     In conclusion, the results suggest that catalpol may be one of the main antiaging components in the Rehmannia and may be an agent for senescence or neurodegenerative diseases.
引文
[1] Jeune B. Living longer-but better? Aging Clin Exp Res, 2002,14(2):72-93.
    [2] Toussaint O, Remacle J, Clark BF et al. Biology of ageing. Bioessays, 2000,22(10): 954-956.
    [3] Medvedev ZA. An attempt at a rational classification of theories of aging. Biol Rev Camb Philos Soc, 1990, 65(3):375-398.
    [4] Walford RL. Immunologic theory of aging: current status. Fed Proc, 1974, 33(9): 2020-2027.
    
    [5] Strhler BL, Mildvan AS. General theory of mortality and aging. Science, 1960,132:14-21.
    [6] Fossel M. Human aging and progeria. J Pediatr Endocrinol Metab, 2000,13:1477-1481.
    [7] Gryfe R, Swallow C, Bapat B et al. Molecular biology of colorectal cancer. Curr Probl Cancer, 1997,21:233-300.
    [8] Vaziri H. Critical telomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signal lead to activation of P53 protein and limited life-span of human diploid fibroblasts. Biochemistry(Mosc), 1997, 62(11):1306-1310.
    [9] Harley CB, Futcher BA, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature, 1990,345:458-460.
    [10] Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol, 1956,11:298-300.
    
    [11] Droge W. Oxidative stress and aging. Adv Exp Med Biol, 2003,543:191-200.
    [12] Nystrom T. The free-radical hypothesis of aging goes prokaryotic. Cell Mol Life Sci, 2003, 60(7):1333-1341.
    [13] Nichols K, Staines W, Rubin S et al. Distribution of nitric oxide synthase activity in arterioles and venules of rat and human intestine. Am J Physiol, 1994, 267(1):270-275.
    [14] Chio KS, Reiss U, Fletcher B et al. Peroxidation of subcellar organelles: Formation of lipofuscin like fluorescent pigments. Science, 1969,166:1535-1536.
    [15] Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol, 1992, 32: S22 - S27.
    
    [16] Irizarry MC. Biomarkers of Alzheimer Disease in Plasma. NeuroRx, 2004,1(2):226-234.
    [17] Behl C, Moosmann B. Antioxidant neuroprotection in Alzheimer's disease as preventive and therapeutic approach. Free Radic Biol Med, 2002,33(2):182-191.
    [18] Butterfield DA, Drake J, Pocernich C et al. Evidence of oxidative damage in Alzheimer' s disease brain: central role for amyloid beta-peptide. Trends Mol Med, 2001,7(12): 548-554.
    [19] Jenner P. Oxidative stress in Parkinson's disease and other neurodegenerative disorders. Pathol Biol(Paris), 1996, 44(1):57-64.
    [20] Szewczyk A, Wojtczak L. Mitochondria as a Pharmacological Target. Pharmacol Rev, 2002,54(1): 101-127.
    [21] Sawyer DE, Van Houten B. Repair of DNA damage in mitochondria. Mutat Res, 1999,434 (3): 161-176.
    [22] Nystrom T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J, 2005,24(7):1311-1317.
    [23] Das N, Levine RL, Orr WC et al. Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J, 2001, 360(1):209-216.
    [24] Castegna A, Aksenov M, Aksenova M et al. Proteomic identification of oxidatively modified proteins in Alzheimer' s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med, 2002, 33(4): 562-571.
    [25] Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 2003, 25(3-4):207-218.
    [26] Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Bio Med, 2002,32(9):790-796.
    [27] Multhaup G, Ruppert T, Schlicksupp A et al. Reactive oxygen species and Alzheimer's disease. Biochem Pharmacol, 1997, 54(5):533-539.
    [28] Hensley K, Hall N, Subramaniam R et al. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J Neurochem, 1995, 65(5):2146-2156.
    
    [29] Stadtman ER. Protein oxidation and aging. Free Radic Res. 2006,40(12):1250-1258.
    [30] Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep, 1997,17(1): 3-8.
    [31] Mecocci P, Beal MF, Cecchetti R et al. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol Chem Neuropathol, 1997, 31 (1):53-64.
    [32] Johnston AP, De Lisio M, Parise G. Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl Physiol Nutr Metab. 2008, 33(1):191-199.
    [33] Harman D. Free radical theory of aging: Consequences of mitochondrial aging. Age, 1983,6:86-94.
    [34] Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. Biochem J, 1973,134:707-716.
    [35]Melov S, Coskun PE, Wallace DC. Mouse models of mitochondrial disease, oxidative stress, and senescence. Mutat Res, 1999,434(3):233-242.
    
    [36] Muller-Hocker J. Mitochondria and aging. Brain Pathol, 1992, 2(2):149-158.
    [37] Kadenbach B, Munscher C, Frank V et al. Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res. 1995, 338(1-6):161-172.
    [38] Linnane AW, Kovalenko S, Gingold EB. The universality of bioenergetic diseases: Age-associated cellular bioenergetic degradation and amelioration therapy. Ann N Y Acad Sci, 1998,854:202-213.
    [39] Szabadkai G, Duchen MR. Mitochondria: the hub of cellular Ca2+ signaling. Physiology (Bethesda), 2008,23 (2):84-94.
    [40] Davidson SM, Duchen MR. Calcium microdomains and oxidative stress. Cell Calcium, 2006, 40(5-6):561-574.
    [41] Jacobson J, Duchen MR, Hothersall J. Induction of mitochondrial oxidative stress in astrocytes by nitric oxide precedes disruption of energy metabolism. J Neurochem, 2005, 95(2): 388-395.
    [42] Krieger C, Duchen MR. Mitochondria, Ca~(2+) and neurodegenerative disease. Eur J Pharmacol, 2002,447(2-3):177-188.
    [43] Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today, 1994,15(1): 7-12.
    [44] Blackburn RV, Spitz DR, Liu X et al. Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic Biol Med, 1999, 26(3-4):419-430.
    [45] Wagner AM. A role for active oxygen species as second messengers in the induction of alternative oxidase gene expression in Petunia hybrida cells. FEBS Lett, 1995, 368 (2): 339-342.
    [46] Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 2002,84:131-141.
    [47] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26:239-257.
    [48] Williams GT, Smith CA. Molecular regulation of apoptosis: genetic controls on cell death. Cell, 1993,74:777-779.
    [49] Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol, 2000,10:369-377.
    [50] Parone P, Priault M, James D et al. Apoptosis: bombarding the mitochondria. Essays Biochem, 2003,39:41-51.
    [51] Gillardon F, Wickert H, Zimmermann M. Up-regulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neurosci Lett, 1995,192: 85 - 88.
    [52] Gillardon F, Lenz C, Waschke KF et al. Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res, 1996,40:254-260.
    [53] Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel forming activity by Bcl-2. Science, 1997,277:370-372.
    [54] Kluck RM, Bossy-Wetzel E, Green DR et al. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997,275:1132-1136.
    [55] Joza N, Susin SA, Daugas E et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 2001,410:549-554.
    
    [56] Wood KA, Youle RJ. Apoptosis and free radicals. Ann N Y Acad Sci. 1994,738:400-407.
    [57] Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med, 2002, 33(5):575-586.
    [58] Zhu X, Raina AK, Lee HG et al. Oxidative stress signalling in Alzheimer's disease. Brain Res, 2004,1000(1-2):32-39.
    [59] Olanow CW. A radical hypothesis for neurodegeneration. Trends neurosci, 1993,16(11): 439-444.
    [60] Reiter RJ. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J, 1995,9(7):526-533.
    [61] Emerit J, Edeas M, Bricaire E. Neurodegenerative disease and oxidative stress. Biomed Pharmacother, 2004, 58:39-46.
    [62] Behl C. Alzheimer's disease and oxidative stress: implication for novel therapeutic approaches. Prog Neurobiol, 1999,57:301-323.
    [63] Smith MA, Perry G, Richey PL. Oxidative damage in Alzheimer's. Nature, 1996,382(6587): 120-121.
    [64] Smith MA, Kutty RK, Richey P et al. Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer's disease. Am J Pathol, 1994,145:42-47.
    [65] Zarkovic K. 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med, 2003, 24(4-5):293-303.
    [66] Nunomura A, Perry G, Aliev G et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol, 2001,60(8):759-767.
    [67] Behl C. Oxidative stress in Alzheimer's disease: implications for prevention and therapy. Subcell Biochem, 2005,38:65-78.
    [68]Bruce AJ,Malfroy B,Baudry M.beta-Amyloid toxicity in organotypic hippocampal cultures:protection by EUK-8,a synthetic catalytic free radical scavenger.Proc Natl Acad Sci USA,1996,93(6):2312-2316.
    [69]Dexter DT,Holley AE,Flitter WD et al.Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra:an HPLC and ESR study.Mov Disord,1994,9(1):92-97.
    [70]Zhang J,Perry G,Smith MA et al.Parkinson' s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons.Am J Pathol,1999,154(5):1423-1429.
    [71]Yoritaka A,Hattori N,Mori H et al.An immunohistochemical study on manganese superoxide dismutase in Parkinson' s disease.J Neurol Sci,1997,148(2):181-186.
    [72]Good PF,Hsu A,Werner P et al.Protein nitration in Parkinson' s disease.J Neuropathol Exp Neurol,1998,57(4):338-342.
    [73]Alam ZI,Daniel SE,Lees AJ et al.A generalised increase in protein carbonyls in the brain in Parkinson' s but not incidental Lewy body disease.J Neurochem,1997,69(3):1326-1329.
    [74]Floor E,Wetzel MG.Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay.J Neurochem,1998,70(1):268-275.
    [75]Sian J,Dexter DT,Lees AJ et al.Alterations in glutathione levels in Parkinson' s disease and other neurodegenerative disorders affecting basal ganglia.Ann Neurol,1994,36(3):348-355.
    [76]Schapira AH,Cooper JM,Dexter D et al.Mitochondrial complex Ⅰ deficiency in Parkinson' s disease.Lancet,1989,1(8649):1269.
    [77]Mizuno Y,Matuda S,Yoshino H et al.An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson' s disease.Ann Neurol,1994,35(2):204-210.
    [78]Martin JB.Molecular basis of the neurodegenerative disorders.N Engl J Med.1999,340(25):1970-1980.
    [79]Bates G.Huntingtin aggregation and toxicity in Huntington's disease.Lancet,2003,361(9369):1642-1644.
    [80]赵彩红,王钦富.小鼠自然衰老模型的评价.中国行为医学科学,2003,12(5):588-589.
    [81]幸浩洋,胡新珉,刘鸿莲等.O_3衰老小鼠模型的DNA损伤研究.华西医科大学学报,2001,32(2):229-231.
    [82]李云,杨素青,张军.急性致衰老动物模的探讨.卫生研究,2002,31(4):290-291.
    [83]彭宗根,陈紫榕.胸腺素在神经内分泌系统中的延缓衰老作用.国外医学.老年医学分册,2003,24(4):178-180.
    [84]Kiso M,Manabe N,Komatsu K et al.Abnormal accumulation of luteal bodies in ovaries of the senescence accelerated mouse (SAM). J Reprod Dev, 2001, 47(3):153-164.
    [85] Suganuma H, Kaburagi S, Inakuraa T et al. Amelioratory effect of dietary ingestion of lycopene and tomato rich inlycopene on learning impairment in senescence-accelerated mice (SAMP8). Food Sci Technol Res, 2002, 8(2):183-187.
    [86] Numata T, Saito T, Maekawa K et al. Bcl-2-1 inked apoptosis due to increase in NO synthase in brain of SAMP10. Biochem Biophys Res Commun, 2002,297(3):517-522.
    [87] Deutsch JA. The cholinergic synapse and the site of memory. Science, 1971,174(11): 788-794.
    
    [88] Whitehouse PJ, Price DL, Clark AW et al. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol, 1981,10(2):122-126.
    [89] Whitehouse PJ, Price DL, Struble RG et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science, 1982, 215(4537):1237-1239.
    [90] Rudy JW. Scopolamine administered before and after training impairs both contextual and auditory-cue fear conditioning. Neurobiol Learning Mem, 1996, 65(1):73-81.
    [91] Vitiello B, Martin A, Hill J et al. Cognitive and behavioral effects of cholinergic, dopaminergic, and serotonergic blockade in humans. Neuropsychopharmacology, 1997, 16(1): 15-24.
    [92] Chandra JN, Malviya M, Sadashiva CT et al. Effect of novel arecoline thiazolidinones as muscarinic receptor 1 agonist in Alzheimer' s dementia models. Neurochem Int, 2008, 52(3): 376-383.
    [93] Bodick NC, Offen WW, Levey AI et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol, 1997,54(4):465-473.
    [94] Smith ML, Booze RM. Cholinergic and GABAergic neurons in the nucleus basalis region of young and aged rats. Neuroscience, 1995, 67(3):679-688.
    [95] Arkhipov VI, Shevchenko NA. Studies of the reproduction of long-term memory during exposure to kainic Acid. Neurosci Behav Physiol. 2005, 35(8):829-834.
    [96] Miyamoto M, Koto J, Narumi S et al. Lesioning of the rat basal forebrain leads to memory impairments in passive and active avoidance tasks. Brain Res, 1985, 328(1):97-104.
    [97] 徐黻本.D-半乳糖的亚急性毒性.第二届国际衰老研究会议, 1985年,中国,哈尔滨.
    
    [98] Birlouez I, Lestradet H, Bessard C. Influence of glucose on the conversion of galactose into galactitol in the young adult. Ann Nutr Metab, 1986,30 (3):149-165.
    [99] Mizisin AP, Calcutt NA. Dose-dependent alterations in nerve polyols and (Na+, K+)-ATPase activity in galactose intoxication. Metabolism, 1991,40:1207-1212.
    [100] Mizisin AP, Calcutt NA, Distefano PS et al. Aldose reductase inhibition increases CNTF-like bioactivity and protein in sciatic nerves from galactose-fed and normal rats. Diabetes, 1997, 46: 647-652.
    [101]Holton JB.Galactose disorders:an overview.J Inherit Metab Dis,1990,13(4):476-486
    [102]Babcock GT,EI-Deeb MK,Sandusky PO et al.Electron paramagnetic resonance and electron nuclear double resonance spectroscopes of the radical site in galactose oxidase and of thioether-substituted phenol model compounds.J Am Chem Soc,1992,114:3727-3734.
    [103]Whittaker MM,Whittaker JW.The active site of galactose oxidase.J Biol Chem,1988,263:6074-6080.
    [104]Wachter RM,Branchaud BP.Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase.Biochemistry,1996,35:14425-14435.
    [105]Wachter RM,Branchaud BP.Molecular modeling studies on oxidation of hexopyranoses by galactose oxidase.An active site topology apparently designed to catalyze radical reactions,either concerted or stepwise.J Am Chem Soc,1996,118:2782-2789.
    [106]刘天培,曹瑾,郑玉群等.人参与三七总皂甙对抗D-半乳糖所致小鼠虚损的研究.老年学杂志,1989,9(1):44-46.
    [107]龚国清,徐黻本.小鼠衰老模型的研究.中国药科大学学报,1991,22(2):101-103.
    [108]Song X,Bao MM,Li DD et al.Advanced glycation in D-galactose induced mouse aging model.Mech Ageing Dev.1999,108:239-251.
    [109]Deng HB,Cui DP,Jiang JM et al.Inhibiting effects of Achyranthes bidentata polysaccharide and Lycium barbarum polysaccharide on nonenzyme glycation in D-galactose induced mouse aging model.Biomed Environ Sci,2003,16(3):267-275.
    [110]李文彬.D-半乳糖衰老模型的现状与展望.中华医学会首届全国老年基础医学学术会议论文汇编,1994,3-12,北京.
    [111]李文彬,韦丰,范明等.D-半乳糖在小鼠上诱导的拟老化效应.中国药理学与毒理学杂志,1995,9(2):93-95.
    [112]崔旭,李文彬,张炳烈等.D-半乳糖拟脑老化模型的脂质过氧化机理.中国老年学杂志,1998,18(2):38-40.
    [113]Salganik RS,Solovyova NA,Dikalov SI et al.Inherited enhancement of hydroxyl radical generation and lipid peroxidation in the S strain rats results in DNA rearrangements,degenerative diseases,and premature aging.Biochem Biophys Res Commun,1994,199:726-733.
    [114]Yelinova V,Glazachev Y,Khramtsov V et al.Studies of human and rat blood under oxidative stress:changes in plasma thiol level,antioxidant enzyme activity,protein carbonyl content,and fluidity of erythrocyte membrane.Biochem Biophys Res Commun,1996,221:300-303.
    [115]Kubo E,Miyoshi N,Fukuda M et al.Cataract formation through the polyol pathway is associated with free radical production.Exp Eye Res.1999,68(4):457-464.
    [116]Cui X,Wang LN,Zuo PP et al.D-galactose-caused life shortening in drosophila melanogaster and Musca domestica is associated with oxidative stress.Biogerontology,2004,5(5):317-325.
    [117]崔旭,李文彬,张炳烈等.D-半乳糖对神经元和肺成纤维细胞拟老化作用的实验研究.中国应用生理学杂志,1997,13(2):131-133.
    [118]崔旭,李文彬,张炳烈等.自由基损伤与D-半乳糖所致细胞老化关系的研究.基础医学与临床,2000,20(1):24-26.
    [119]Jordens RG,Berry MD,Gillott C et al.Prolongation of life inan experimental model of aging in Drosophila melanogaster.Neurochem Res,1999,24:227-233.
    [120]Mohanty I,Joshi S,Trivedi D et al.Pyruvate modulates antioxidant status of cultured human lens epithelial cells under hypergalactosemic conditions.Mol Cell Biochem,2002,238(1-2):129-135.
    [121]Yokoyama T,Sasaki H,Giblin FJ et al.A physiological level of ascorbate inhibits galactose cataract in guinea pigs by decreasing polyol accumulation in the lens epithelium:a dehydroascorbate-linked mechanism.Exp Eye Res,1994,58(2):207-218.
    [122]任宏伟,李崎,李文彬等.金属硫蛋白抗D-半乳糖拟衰老效应的研究.中华老年医学杂志,2002,21(4):278-280.
    [123]王月华,杜冠华.L-肉毒碱对D-半乳糖衰老模型小鼠的作用.中国老年学杂志,2003,23(1):49-51.
    [124]Shen Y X,Xu S Y,Wei W et at.Melatonin reduces memory changes and neural oxidative damage in mice treated wish D-galactose.J Pineal Res,2002,32(3):173-178.
    [125]戚晓利,徐秀芳,魏晓东.当归对D-半乳糖衰老模型小鼠抗氧化系统的研究.黑龙江医药科学,2003,26(1):2-3.
    [126]徐晓虹.葛根素抗D-半乳糖致衰老小鼠的脂质过氧化作用.中国中药杂志,2003,28(1):66-69.
    [127]薛红丽,魏睦新,刘栋.补肾活血对D-半乳糖诱导的衰老小鼠皮层一氧化氮的影响.南京医科大学学报,1999,19(3):213-214.
    [128]薛红丽,赵佩霞,魏睦新等.补肾活血延缓衰老作用的实验研究.江苏中医,1999,20(9):40-41.
    [129]张嘉麟,徐文安,杨荫康等.三七中人参皂甙对老年鼠血浆脂质及其代谢产物含量的影响.昆明医学院学报,2001,22(1):45-46.
    [130]吕明庄,陈波,张遵真等.芦荟提取物对衰老模型鼠抗自由基氧化损伤DNA作用的实验研究.中国医药学报,2003,18(3):136-138.
    [131]高向东,吴梧桐.五种抗衰老中药对小鼠T-淋巴细胞增殖与IL-2产生的影响.中国药科大学学报,1990,21(1):43-45.
    [132]裘月,杜冠华,屈志炜等.常用补益中药抗脂质过氧化作用比较.中国药学杂志,1996,31(2):83-86.
    [133]张鹏霞,曲凤玉,欧芹等.熟地提取液对衰老模型小鼠脑组织NOS、N0、SOD和LPO的影响.中国老年学杂志,1999,19(3):174-175.
    [134]强世平,赵华.六味地黄汤对老龄小鼠血清SOD和LPO的影响.中医药研究,1998,14(6):42-43.
    [135]谢宁,牛英才,宋琳等.加减地黄饮子对Aβ1-40所致痴呆大鼠学习记忆、脑酶活性的影响.中医药信息.2004,21(2):57-58.
    [136]伍倩,董淳.六味地黄汤及其补、泻组分的抗衰老作用及机制.中药药理与临床,2003,19(3):6-7.
    [137]曹凯,刘永平,李素婷等.熟地、菊花、山药、牛膝等四大怀药对小鼠脑线粒体单胺氧化酶活性的影响.中国老年学杂志,1998,18(2):102-103.
    [138]苗明三,孙艳红,史晶晶等.熟地黄粗多糖对血虚模型小鼠胸腺和脾脏组织形态的影响.中华中医药杂志,2007,22(5):318-320.
    [139]王军,于震,李更生等.地黄苷A对“阴虚”及免疫功能低下小鼠的药理作用.中国药学杂志,2002,37(1):20-22.
    [140]梁爱华,薛宝云,王金华等.鲜地黄与干地黄止血和免疫作用比较研究.中国中药杂志,1999,24(11):663-666.
    [141]管家齐,刘军莲,王传金.干地黄在金匮肾气丸中抗衰老实验研究.南京中医药大学学报(自然科学版),2002,18(3):169-170.
    [142]马渊,周文霞,程军平等.六味地黄汤对皮质酮所致小鼠下丘脑-垂体-卵巢轴紊乱的调节作用及其拆方研究.中国实验方剂学杂志,2005,11(2):28-32.
    [143]魏小龙.海马学习记忆功能有关基因及六味地黄汤益智作用与基因表达关系的研究.生理科学进展.2000,31(3):227-230.
    [144]查良伦.生地对家兔糖皮质激素受抑模型的实验研究.中西医结合杂志,1988,8(2):95-97.
    [145]冯国平,荣征星,易宁育等.生地、龟板和附子、肉桂对“甲亢”大鼠β-肾上腺素能受体的影响.中西医结合杂志.1986,6(10):606-608.
    [146]侯金才,张翠香,杨书龙.复方地黄对阿尔次海默大鼠学习记忆及海马细胞凋亡的影响.解剖科学进展,2005,11(2):111-113.
    [147]李龙宣,赵斌,许志恩等.熟地黄抑制阿尔茨海默病样大鼠海马神经元凋亡的作用.中华神经医学杂志,2006,5(1):10-13.
    [148]崔瑛,颜正华,侯士良等.熟地黄对毁损下丘脑弓状核大鼠学习记忆及下丘脑-垂体-肾上腺-海马轴的影响.中药材,2004,27(8):589-592.
    [149]周坤福,王明艳,赵风鸣等.六味地黄丸延缓衰老作用机理的实验研究.江苏中医,1999,20(1):44-45.
    [150]魏小龙,茹祥斌.低分子质量地黄多糖体外对Lewis肺癌细胞p53基因表达的影响.中国药理学通报,1998,14(3):245-248.
    [151]Tian YY,Jiang B,An LJ et al.Neuroprotective effect of catalpol against MPP~+-induced oxidative stress in mesencephalic neurons.Eur J Pharmacol,2007,568:142-148.
    [152]Mao YR,Jiang L,Duan YL et al.Efficacy of catalpol as protectant against oxidative stress and mitochondrial dysfunction on rotenone-induced toxicity in mice brain.Envir Toxi Phar,2007,23:314-318.
    [153]姜波.梓醇在帕金森病模型中保护作用的研究:博士学位论文.大连理工大学,2004.
    [154]Li DQ,Duan YL,Bao YM et al.Neuroprotection of catalpol in transient global ischemia in gerbils.Neurosci Res,2004,50:169-177.
    [155]Li DQ,Bao YM,Li Y et al.Catalpol modulates the expressions of Bcl-2 and Bax and attenuates apoptosis in gerbils after ischemic injury.Brain Res,2006,1115:179-185.
    [156]Li DQ,Li Y,Liu YX et al.Catalpol prevents the loss of CA1 hippocampal neurons and reduces working errors in gerbils after ischemia-reperfusion injury.Toxicon,2005,46:845- 851.
    [157]Jiang B,Liu JH,Bao YM et al.Catalpol inhibits apoptosis in hydrogen peroxide induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade.Toxicon,2004,43:53-59.
    [158]Tian YY,An LJ,Jiang L et al.Catalpol protects dopaminergicneurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures.Life Sci,2006,80:193-199.
    [159]Jiang B,Du J,Liu JH et al.Catalpol attenuates the neurotoxicity induced by β-amyloid_(1-42) in cortical neuron-glia cultures.Brain Res,2008,1188:139-147.
    [160]Yamazaki M,chiba K,Mohri T.Neuritogenic effect of natural iridoid compounds on PC12 cells and its possible relation to signaling protein kinases.Biol Pharm Bull,1996,19(6):791- 795.
    [161]Liu J,He Q J,Zou W et al.Catalpol increases hippocampal neuroplasticity and up-regulates PKC and BDNF in the aged rats.Brain Res,2006,1123:68-79.
    [162]杜红光.地黄不同炮制品中梓醇的含量测定研究.时珍国医国药,2004,15(9):582-583.
    [163]李更生,刘长河,王慧森等.不同产地的地黄中梓醇含量比较.中草药,2002,33(2):126-128.
    [164]罗燕燕,张绍青,索建政等.高效液相色谱法测定地黄中梓醇的含量.中国药学杂志.1994,29(1):38-40
    [165]赵新峰,孙毓庆.毛细管区带电泳法测定地黄中梓醇的含量.药物分析杂志,2002,22:471-473.
    [166]刘方,余绍玲.地黄不同炮制品中梓醇含量比较.中国药房.2003,14(6):378-379.
    [167]王宏洁,边宝林,杨健等.地黄中梓醇变化条件的探讨.中国中药杂志,1997,408-409.
    [168]祖勃荪,周勤.兰考泡桐木材成分的变色行为及其变色过程.林业科学,1998,34(3):97-103.
    [169]汪程远,张浩,张承平等.生地黄中环烯醚萜苷类的纯化分离工艺.医药导报,2003,22(10):707-709.
    [170]李更生,王慧森,都恒青等.液相层析法分离制备地黄活性成分梓醇.中成药,1998,20:36-38
    [171]刘峰群,肖小河,史成和.大孔吸附树脂在药物分离中的研究应用.中国医院药学杂志,2000,20(3):166-167.
    [172]宓晓黎,杨焱,成恒篙等.大孔吸附树脂技术应用与复方中成药制备工艺的研究.离子交换与吸附,1997,13(6):594-598.
    [173]刘兴昌,杨松松,王升辉.蒲杞宫泰颗粒剂纯化工艺研究.中国实验方剂学杂志,2002,8:6-7.
    [174]郭立玮,彭国平,王天山等.大孔树脂吸附与超滤联用对六味地黄九中丹皮酚和马钱素含量的影响.南京中医药大学学报(自然科学版),1999,15(2):86-88.
    [175]颜肖慈,罗明道,周晓海.物理化学.武汉:武汉大学出版社,2004:346-347.
    [176]Ganzler K,Salgo A,Valko K.Microwave extraction:A novel sample preparation method for chromatography.J Chromatogr,1986,371:299-306.
    [177]Sun C,Liu H.Application of non-ionic surfactant in the microwave-assisted extraction of alkaloids from Rhizoma Coptidis.Anal Chim Acta,2008,612(2):160-164.
    [178]Itoh N,Numata M,Aoyagi Y et al.Comparison of low-level polycyclic aromatic hydrocarbons in sediment revealed by Soxhlet extraction,microwave-assisted extraction,and pressurized liquid extraction.Anal Chim Acta,2008,612(1):44-52.
    [179]Mandal V,Mohan Y,Hemalatha S.Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design.J Pharm Biomed Anal.2008,46(2):322-327.
    [180]Fu Y,Zu Y,Li S et al.Separation of 7-xylosyl-10-deacetyl paclitaxel and 10-deacetylbaccatin Ⅲ from the remainder extracts free of paclitaxel using macroporous resins.J Chromatogr A,2008,1177(1):77-86.
    [181]Wang BS,Li BS,Zeng QX et al.Antioxidant and free radical scavenging activities of pigments extracted from molasses alcohol wastewater.Food Chem,2008,107:1198 - 1204.
    [182]Zhang Y,Jiao JJ,Liu CM et al.Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography.Food Chem,2008,107:1326-1336.
    [183]Zhao RY,Yan Y,Li MX,Yan HS.Selective adsorption of tea polyphenols from aqueous solution of the mixture with caffeine on macroporous crosslinked poly(N-vinyl-2-pyrrolidinone).React Funct Polym,2008,68:768-774.
    [184]Grady CL,Craik FIM.Changes in memory Processing with age.Curr Opin Neurobiol,2000,10:224-231.
    [185]Markesbery W R.Oxidative stress hypothesis in Alzheimer' s disease.Free Radic Biol Med,1997,23:134-147.
    [186]Perry G,Nunomura A,Hirai K et al.Oxidative damage in Alzheimer' s disease:the metabolic dimension.Int J Dev Neurosci,2000,18:417-421.
    [187]Leanza G,Muir J,Nilsson OG et al.Selective immunolesioning of the basal forebrain cholinergic system disrupts short-term memory in rats.Eur J Neurosci,1996,8:1535 - 1544.
    [188]Stoehr JD,Mobley SL,Roice D et al.The effects of selective cholinergic basal forebrain lesions and aging upon expectancy in the rat.Neurobiol Learn Mem,1997,67:214-227.
    [189]Zhang ZJ,Berbos TG,Wrenn CC et al.Loss of nucleus basalis magnocellularis,but not septal,cholinergic neurons correlates with passive avoidance impairment in rats treated with 192-saporin.Neurosci Lett,1996,203:214-218.
    [190]Johns CA,Hartowtunian V,Greenwald BS et al.Development of cholinergic drugs for Alzhemer' s disease.Drug Dev Res,1985,5:77-96.
    [191]Araujo JA,Studzinski CM,Milgram NW.Further evidence for the cholinergic hypothesis of aging and dementia from the canine model of aging.Prog Psychopharmacol Biol Psychiatry,2005:29:411- 422
    [192]Wei HF,Li L,Song Q et al.Behavioural study of the D-galactose induced aging model in C57BL/6J mice.Behav Brain Res,2005,157:245 -251.
    [193]Zhang Q,Li XK,Cui X,Zuo PP.D-Galactose injured neurogenesis in the hippocampus of adult mice.Neurol Res,2005,27:552-556.
    [194]廖赞,李玲,刘学源.吡拉西坦对大鼠慢性脑缺血所致认知功能障碍和神经元损伤的保护作用.药学服务与研究,2007,7(1):32-36.
    [195]周红宇,郑国统,胡国新等.吡拉西坦长期大剂量用药对小鼠学习记忆的影响.温州医学院学报,2001,31(1):1-2.
    [196]Ames BN,Shigenaga MK,Hagen TM.Oxidants,antioxidants,and the degenerative diseases of aging.Proc Natl Acad Sci USA,1993,90:7915-7922.
    [197]张熙,张葆樽,杨新平等.D-半乳糖诱导大鼠操作性记忆巩固与再现障碍.中国应用生理学杂志,1996,12(4):377-379.
    [198]Barnes CA,Nadel L,Honig WK.Spatial memory deficit in senescent rats.Can J Psychol,1980,34(1):29-39.
    [199]De Leonibus E,Pascucci T,Lopez S et al.Spatial deficits in a mouse model of Parkinson disease.Psychopharmacology(Berl),2007,194(4):517-525.
    [200]陈玉林.吡拉西坦:一种新型增智剂.医药导报,1994,13(4):176-177.
    [201]段永强,程容,成映霞等.敦煌石室大宝胶囊对衰老大鼠血清MDA含量、SOD和脑组织GSH-Px 活性的影响.兰州大学学报(医学版),2005,31(2):20-22.
    [202]Bae HJ,Lee YS,Kang DW et al.Neuroprotective effect of low dose riluzole in gerbil model of transient global ischemia.Neurosci Lett,2000,294:29-32.
    [203]Pepeu G,Spignoli G.Nootropic drugs and brain cholinergic mechanisms.Pro NeuroPsychopharmacol Biol Psychiatry,1989,13:77-88.
    [204]Sonkusare S,Srinivasan K,Kaul C et al.Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats.Life Sci,2005,77:1-14.
    [205]Hernandez CM,Terry AV.Repeated nicotine exposure in rats:effects on memory function,cholinergic markers and nerve growth factor.Neuroscience,2005,130:997-1012.
    [206]Borlongan CV,Sumaya IC,Moss DE.Methanesulfonyl fluoride,an acetylcholinesterase inhibitor,attenuates simple learning and memory deficits in ischemic rats.Brain Res,2005,1038:50-58.
    [207]Tombaugh GC,Rowe WB,Chow AR et al.Theta-frequency synaptic potentiation in CA1in vitro distinguishes cognitively impaired from unimpaired aged Fisher 344 rats.J Neurosci,2002,22:9932-9940.
    [208]刘涛,王灿晖,杨进等.改良三甲散抗脑衰老的实验研究.中国老年学杂志,2001,21(4):308-309.
    [209]Gil P,Farinas F,Casado Aet al.Malondialdehyde:a possible marker of aging.Gerontology,2002,48(4):209-214.
    [210]Harman D.Free-radical theory of aging:Increasing the functional life span.Ann N Y Acad Sci,1994,717:1-15.
    [211]Lukawski K,Nieradko B,Sieklucka-Dziuba M.Effects of cadmium on memory processes in mice exposed to transient cerebral oligemia.Neurotoxicol Teratol,2005,27:575-584.
    [212]Topic B,Tani E,Tsiakitzis K et al.Enhanced maze performance and reduced oxidative stress by combined extracts of zingiber officinale and ginkgo biloba in the aged rat.Neurobiol Aging,2002,23:135-143.
    [213]Cui X,Zuo PP,Zhang Q et al.Chronic systemic D-galactose exposure induces memory loss,neurodegeneration,and oxidative damage in mice:protective effects of R-α-Lipoic acid.J Neurosci Res,2006,83:1584-1590.
    [214]Butterfield DA,Lauderback CM.Lipid peroxidation and protein oxidation in Alzheimer' s disease brain:potential causes and consequences involving amyloid beta-peptide-associated free radical oxidiative stress.Free Radic Biol Med,2002,32(11):1050-1060.
    [2t5]Amada K,Tanaka T,Han D et al.Protective effects of idebenone and alpha-tocopherol on beta amyloid(1-42)-induced learning and memory deficits in rats:implication of oxidiative stress in beta-amyloid-induced neurotoxicity in vivo.Eur J Neurosci,1999,11(1):83-90.
    [216]Nystrom T.The free-radical hypothesis of aging goes Prokaryotic.Cell Mol Life Sci,2003,60(7):1333-1341.
    [217]Droge W.oxidative stress and aging.Adv ExP Med Biol,2003,543:191-200.
    [218]Merad-Boudia M,Nicole A,Santiard-Baron D et al.Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells:relevance to Parkinson' s disease-intracellular levels of glutathione influence mode of cell death.Biochem Pharmacol,1998,56(5):645-655.
    [219]Zhou JF,Cai D,Zhu YG et al.A study on relationship of nitric oxide,oxidation,peroxidation,lipoperoxidation with chronic cholecysitis.World J Gastroentero,2000,6:501-507.
    [220]Giron M D,Salto R,Gonzalez Y et al.Modulation of hepatic and intestinal glutathione-S-transferases and other antioxidant enzymes by dietary lipids in streptozotocin diabetic rats.Chemosphere,1999,38:3003-3013.
    [221]Cini M,Fariello RG,Bianchetti A et al.Studies on lipid peroxidation in the rat brain,Neurochem Res,1994,19:283-288.
    [222]Lazzarino G,Tavazzi B,Pierro DD et al.The relevance of malondialdehyde as a biochemical index of lipid peroxidation of postischemic tissues in the rat and human beings.Biol Trace Elem Res,1995,47:165-170.
    [223]Melatonin S V.oxidative stress and aging.Curr Sci,1999,76:46-54.
    [224]Ginli L,Martinis M,Ostilio A et al.The immune system in the elderly:Ⅰ.Specific humoral immunity.Immunol Res,1999,20(2):101-108.
    [225]Mauriz JL,Molpeceres V,Garcia-Mediavilla MV.Melatonin prevents oxidative stress and changes in antioxidant enzyme expression and activity in the liver of aging rats.J Pineal Res,2007,42(3):222-230.
    [226]Tian L,Cai Q,Wei H.Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging.Free Radic Biol Med,1998,24(9):1477-1484.
    [227]Tian JW,Fu FH,Geng MY et al.Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats.Neurosci Lett,2005,374:92-97.
    [228]Hoxworth JM,Xu K,Zhou Y et al.Cerebral metabolic profile,selective neuron loss,and survival of acute and chronic hyperglycemic rats following cardiac arrest and resuscitation.Brain Res 1999,821:467-479.
    [229]Erecinska M,Silver IA.ATP and brain function.J Cereb Blood Flow Metab,1989,9:2-19.
    [230]Mrsic-Pelcic J,Zupan G,Maysinger D et al.The influence of MK-801 on the hippocampal free arachidonic acid level and Na~+,K~+-ATPase activity in global cerebral ischemia-exposed rats.Prog Neuropsychopharmacol Biol Psychiatry,2002,26:1319-1S26.
    [231]岳峰,张巍,郭炯.全脑低灌时脑的乳酸、乳酸脱氢酶、磷酸肌酸激酶的变化及对血或肝中这些参数水平和肠屏障的影响.中国病理生理杂志,1999,15(12),1106-1109.
    [232]Hensley K,Hall N,Subramaniam P et al.Brain regional correspondence between Alzheimer' s disease histopathology and biomarkers of protein oxidation.J Neurochem,1995,65:2146 -2156.
    [233] Howard BJ, Yatin S, Hensley K et al. Prevention of hyperoxia-induced alterations in synaptosomal membrane-associated proteins by N-tert-butyl-a-phenylnitrone and 4-hydroxy-2, 2, 6, 6-tetramethylpiperidin-1-oxyl (Tempol). J Neurochem, 1996,67: 2045 - 2050.
    [234] Smith CD, Carney JM, Starke-Reed PE et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA, 1991, 88:10540-10543.
    [235] Carney JM, Smith CD, Carney AM et al. Aging and oxygen-induced modifications in brain biochemistry and behavior. Ann N Y Acad Sci, 1994,738:44-53.
    [236] Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol, 2007,83:84-92.
    [237] Ames BN. Delaying the mitochondrial decay of aging. Ann N Y Acad Sci, 2004,1019 (1): 406-411.
    [238] Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med, 2004, 25(4):365 - 451.
    [239] Harper ME, BevilacquaL, Hagopian K et al. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand, 2004,182(4):321 - 331.
    [240] James AM, Murphy MP. How mitochondrial damage affects cell function. J Biomed Sci, 2002,9:475-487.
    [241] Tan S, Sagara T, Liu YB et al. The regulation of reactive oxygen species production during programmed cell death. J cell Biol, 1998,141(6):1423-1432
    [242] Troy CM, Shelanski ML. Down-regulation of copper/zine superoxidismutase causes apoptic death in PC12 neuronal cells. Proc Natl Acad Sci USA, 1994,91:6384-6388.
    [243] Hockenbery DM, Oltvai ZN, Yin XM et al. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 1993,75:241-248.
    [244] Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol, 2004, 287(5): 1244-1249.
    [245] Judge S, Jang YM, Smith A et al. Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J Mar, 2005,19(3):419-421.
    [246] Trushina E, Mcmurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience, 2007,145:1233-1248.
    [247] Veitch K, Hombroeckx A, Caucheteux D et al. Global ischemia induces a biphasic response of the mitochondrial respiratory chain: Anoxic pre-perfusion protects against ischemic damage. Biochem J, 1992,281:709-715.
    [248] Yonetani T. Cytochrome oxidase: beef heart. Methods Enzymol, 1967,10:332-335.
    [249] Gorini A, Canosi U, Devecchi E et al. ATPases enzyme activities during ageing in different types of somatic and synaptic plasma membranes from rat frontal cerebral cortex. Prog Neuropsychopharmacol Biol Psychiatry, 2002, 26(1):81-90.
    [250] Smith CD, Landrum W, Carney JM et al. Brain Creatine Kinase with Aging in F-344 Rats:Analysis by Saturation Transfer Magnetic Resonance Spectroscopy. Neurobiol Aging, 1997,18 (6): 617-622.
    [251] David S, Shoemaker M, Haley BE. Abnormal properties of creatine kinase in Alzheimer' s disease brain: Correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Mol Brain Res, 1998,54: 276-287.
    [252] Svatava K, Zuzana S, Peter B et al. Effect of coenzyme Q_(10) and vitamin E on brain energy metabolism in the animal model of Huntington' s disease. Neurochem Int, 2006,48:93-99.
    [253] Aksenova MV, Aksenov MY, Carney JM et al. Protein oxidation and enzyme activity decline in old brown Norway rats are reduced by dietary restriction. Mech Ageing Dev, 1998,100:157-168.
    [254] Sen T, Sen N, Jana S et al. Depolarization and cardiolipin depletion in aged rat brain mitochondria: Relationship with oxidative stress and electron transport chain activity. Neurochem Int, 2007,50:719-725.
    [255] Pandya JD, Agarwal NA, Katyare SS. Dexamethasone treatment differentially affects the oxidative energy metabolism of rat brain mitochondria in developing and adult animals. Int J Devl Neuroscience, 2007,25:309-316.
    [256] Patel MA, Katyare SS. Effect of dehydroepiandrosterone (DHEA) treatment on oxidative energy metabolism in rat liver and brain mitochondria: A dose - response study. Clin Biochem, 2007,40:57-65.
    [257] Sun K, Johnson BS, Gunn TM. Mitochondrial dysfunction precedes neurodegeneration in mahogunin (Mgrn1) mutant mice. Neurobiology of Aging, 2007,28:1840-1852.
    [258] Parker Jr WD, Filley CM, Parks JK. Cytochrome oxidase deficiency in Alzheimer's disease. Neurology, 1990,40:1302-1303.
    [259] Moreira PI, Santos MS, Seica R et al. Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes. J Neurol Sci, 2007, 257(1-2):206 - 214.
    [260] Maurer I, Zierz S, Moller HJ. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging, 2000,21:455-462.
    [261] Barber DA, Hamis SR. Oxygen free radicals and antioxidants: a review. Am Pharm, 1994, 34(9): 26-35.
    [262] Yang J, Liu X, Bhalla K et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997,275(5303):1129-1132.
    [263] Manion MK, Fry J, Schwartz PS et al. Small-molecule inhibitors of Bcl-2. Curr Opin Investig Drugs, 2006,7:1077-1084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700