用户名: 密码: 验证码:
映山红总黄酮对脑缺血再灌注损伤的保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑缺血性疾病是严重危害人类生命健康的常见病和多发病,具有很高的死亡率和致残率,但脑缺血的药物治疗效果却不尽如人意。因此,开发预防和治疗脑缺血损伤有效药物是国内外医药界特别关注的热点。映山红总黄酮(total flavonesof rhododendra,TFR)是从映山红中提取的主要有效部位,其主要成分包括金丝桃甙、槲皮素和映山红素等,有较强的抗心肌缺血损伤作用。但迄今为止,尚无对映山红总黄酮抗脑缺血作用的系统研究,因此,为加快开发利用映山红总黄酮,本研究将从整体水平、细胞水平评价TFR对局灶脑缺血再灌注损伤、全脑缺血再灌注损伤和海马细胞缺氧复氧损伤的保护作用,分析TFR与神经元缺血缺氧损伤后NOS mRNA表达、ERK和JNK通路、Ca~(2+)和EDHF的关系。
     目的:
     观察TFR对小鼠和大鼠局灶性脑缺血再灌注损伤是否具有保护作用,以及保护作用是否与脂质过氧化和NO有关。观察TFR对大鼠全脑缺血再灌注损伤是否具有保护作用,以及保护作用是否与ERK和JNK信号转导通路有关。在细胞水平,探讨TFR对大鼠海马神经元体外缺氧复氧的保护作用,以及TFR作用与Ca~(2+)和EDHF的关系。
     方法:
     1.采用线栓法制作小鼠和大鼠大脑中动脉阻塞再灌注模型(middle cerebralartery occlusion,MCAO),脑缺血2 h再灌注24 h后进行小鼠神经功能缺失评分;干湿法测定脑含水量;TTC染色显示大鼠再灌注后的梗塞灶,计算梗塞灶体积;测定血清和脑组织中LDH活力、MDA和NO含量及脑组织中SOD和GSH-PX活力;用RT-PCR法测定脑缺血再灌注后梗塞半球的iNOS、nNOS、eNOS mRNA表达的变化。
     2.采用Pulsinelli等介绍的四血管结扎法(4-vessel occlusion,4-VO)建立大鼠全脑缺血再灌注损伤模型。记录脑缺血前、缺血10 min和再灌注后5min、10 min、15 min、30 min、45 min、60 min的脑电图改变;采用HE染色法观察脑组织病理结构改变,进行脑组织病理评分;检测血清中LDH活性和NSE含量的变化;采用蛋白免疫印迹方法;测定大鼠脑皮质和海马组织中ERK1/2、p-ERK1/2、JNK1/2和p-JNK1/2在脑缺血再灌注后表达的变化,以及TFR对此变化的影响。
     3.采用大鼠原代培养的海马神经元缺氧4 h再复氧24 h模型。用MTT染色来评价神经元存活率;收集细胞上清液,进行LDH活性、NO和MDA含量测定;以Fluo-3/AM染色观察海马神经元内Ca~(2+)的变化。
     4.在海马细胞缺氧前分别用脑血管段和脑微血管内皮细胞预处理,然后行海马神经元MTT染色率和上清液中LDH活性、NO含量的测定。
     结果:
     1.在小鼠MCAO模型上,TFR(30、60、120 mg/kg)能明显改善神经功能障碍(P<0.05,P<0.01),明显降低缺血侧脑组织的含水量,使缺血侧脑水肿明显减轻(P<0.01),显著降低血清中LDH活性,MDA含量和NO含量(P<0.05,P<0.01)。
     2.在大鼠MCAO模型上,TFR(15、30、60 mg/kg)缺血再灌注半球梗塞体积百分比减小(P<0.05),使脑组织中LDH活性和MDA含量及NO含量下降,SOD和GSH-PX活性均升高(P<0.05,P<0.01)。
     3.在大鼠4-VO模型上,脑缺血时大鼠的脑电图幅度迅速下降,再灌注后脑电幅度逐渐恢复。TFR(15、30、60 mg/kg)在再灌注5 min时脑电图幅度与NS组比较无差异:在再灌注10 min、15 min和30 min时TFR(15、30、60 mg/kg)脑电图幅度尽管比NS组幅度高,但无统计学意义;再灌注45 min和60 min时,TFR(15、30、60 mg/kg)脑电图幅度与NS组比较有显著差异(P<0.05,P<0.01)。结果提示TFR可促进再灌注时大鼠脑电的恢复。同时TFR(15、30、60 mg/kg)能不同程度地改善脑缺血再灌注大鼠脑组织病理结构的改变,能减少血清中LDH的活力和NSE的含量(P<0.05,P<0.01)。
     4.在大鼠局部脑缺血2 h再灌注24 h模型上,30和60 mg/kg TFR可以显著增加脑组织eNOS mRNA的表达,降低脑组织iNOS mRNA和nNOS mRNA表达(P<0.05,P<0.01),减少NO的生成。
     6.30和60mg/kg TFR对大鼠全脑缺血再灌注损伤脑皮质和海马组织ERK1/2和JNK1/2总体蛋白水平没影响,但对其激活产生了影响,促进ERK1/2信号通路的激活,抑制JNK1/2信号通路的激活。
     6.在大鼠原代海马神经元缺氧4 h复氧24 h模型上,TFR(10、20、40、80、160 mg/L)显著降低神经元的MTT染色和减少海马细胞LDH的漏出(P<0.05,P<0.01),TFR(40、80、160 mg/L)显著减少上清液NO和MDA的含量(P<0.05,P<0.01)。
     7.在大鼠原代海马神经元缺氧4h复氧24h模型上,与模型组相比,TFR(10、20、40、80、160 mg/L)显著抑制海马细胞内钙离子的增加(P<0.05,P<0.01),并呈一定的浓度依赖性。
     8.在大鼠原代海马神经元缺氧4 h复氧24 h模型上,TFR(10、20、40、80、160 mg/L)进一步升高加入脑血管段和脑微血管内皮细胞的海马神经元的活力,减少海马细胞LDH的漏出(P<0.05,P<0.01),对NO的产生无影响;再加入Indo和L-NAME,神经元的活力和海马细胞LDH的漏出无进一步改变,NO产生减少。
     结论:
     1.TFR对小鼠和大鼠局部缺血再灌注损伤的脑组织具有保护作用。
     2.TFR对大鼠全脑缺血再灌注损伤具有保护作用。
     3.TFR可以提高海马神经元对于缺氧复氧的耐受性。
     4.TFR增加大鼠脑组织eNOS mRNA的表达,降低iNOS mRNA和nNOS mRNA表达,从而影响血清和脑组织中NO的含量;增加大鼠脑组织ERK1/2的激活,抑制JNK1/2在缺血再灌注后的激活;抑制海马细胞缺氧复氧时细胞内钙离子的增加;脑血管内皮,尤其是非NO和非PGI_2,即假定的EDHF可能参与了TFR的作用。
     5.TFR作为抗脑缺血再灌注损伤的新药开发有潜在的临床应用价值。
Cerebrovascular ischemic disease is a source of mortality and profound morbidity that remains pervasive in the modern world.Neuroprotective agents reduce the injuries in ischemic penumbra and promote the recovery of brain function.Finding more effective neuroprotective agents with fewer risks has been a challenge.Some traditional Chinese medicines have been proven to be effective in alleviating symptoms that are similar to those induced by cerebral ischemia.It was found that some traditional Chinese medicines,especially those contained flavones,have protective effects against cerebral ischemic injury.Rhododendra is one of the plants that is rich in flavones,such as quercetin,hyperin and rutin,and has been used for treating patients with bronchitis for hundreds of years in China.Recent studies have shown that most flavones have protective effects against cerebral ischemic injury.Also,total flavones of rhododendra (TFR) have protective effects against myocardial ischemic injury by scavenging oxygen fiee radicals and inhibiting nitric oxide.However,there is very limited information about the protective effect of TFR on animal models of cerebral ischemic reperfusion injury.To determine the protective effect and mechanism of TFR on cerebral ischemic reperfusion injury,the models of local cerebral ischemia reperfusion in mice and rats, global ischemia reperfusion in rats and anoxia and reoxygenation in rat hippocampal neurons were used in this study.Influence of TFR on expression of NOS mRNA,ERK and JNK signal pathway,Ca~(2+) and EDHF were analyzed to clarify the possible mechanism.
     Purpose:
     In the experiments in vivo,it was determined whether TFR has protective effects on injury induced by local cerebral ischemia reperfusion and by global cerebral ischemia reperfusion.In the experiments in vitro,it was determined whether TFR protects neuron from injury induced by anoxia and reoxygenation in rat primary hippocampal neurons. To clarify the possible mechanism,the effects of TFR on lipid peroxidation,NOS mRNA expression intracellular calcium and EDHF were observed.
     Methods:
     1.Middle cerebral artery occlusion(MCAO) was performed to induce local brain ischemia reperfusion model by an intraluminal filament in mice and rats.MCA was occluded for 2h and the brain was reperfused for 24h at that moment neurologic deficiency scores were assessed,and infarct volume was measured by TTC staining. Brain water content,plasma and brain levels of malondialdehyde,nitric oxide contents, lactate dehydrogenase activity,brain levels of superoxide dismutase and glutathione peroxidase activities were evaluated.Expression levels of inducible nitric oxide synthase mRNA,neuronal nitric oxide synthase mRNA and endothelial nitric oxide synthase mRNA were detected by RT-PCR at reperfusion 24h after cerebral ischemia.
     2.Cerebral ischemia reperfusion was induced by 4-vessel occlusion(4-VO) in rat. Changes in electroencephalograph was recorded before and after ischemia 10min and after reperfusion 5min,10min,15min,30min,45min and 60min.HE staining was used to observe brain pathologic changes.Measuring the releases of lactate dehydrogenase and NSE content.The activation extracellular-signal regulated kinase1/2 and c-Jun N-terminal protein kinase1/2 were investigated by western blot.
     3.The injury of hippocampai neurons after anoxia and reoxygenation and the protective effects of TFR were observed on cultured neonatal rat primary hippocampal neurons. Cell viability of hippocampal neurons was quantified by measuring MTT staining,the releases of LDH and the content of NO and MDA were measured.The intracellular calcium indicated by the fluorescence in neurons was detected.The effect of brain vessle or cerebral micorvessel endothelial cell on anoxia injury of hippocampal neurons was observed by using MTT staining method and measurement of LDH and NO.
     Results:
     1.On MCAO model in mice,TFR(30,60,120 mg/kg) significantly ameliorated the neurological deficit(P<0.05 or P<0.01) and reduced the brain water content (P<0.05).The activity of LDH and the contents of MDA and NO in plasma were decreased(P<0.05 or P<0.01).
     2.On MCAO model in rats,TTC staining showed infarct volume of rats was significantly smaller in the TFR(15,30,60 mg/kg) group after 24 h reperfusion compared with NS control group(P<0.05).The activities of LDH,SOD and GSH-PX in brain were enhanced,while the contents of MDA and NO in brain were decreased (P<0.05 or P<0.01).
     3.On 4-VO model in rats,compared with sham-operate group,EEG amplitude decrease significantly after ischemia and recovery after reperfusion in NS control and TFR(15, 30,60 mg/kg) groups.At 5 min after reperfusion,there was no difference between the EEG amplitude in treated groups of 15,30,60 mg/kg TFR and that in untreated group (NS control)(P>0.05).EEG amplitud of TFR(15,30,60 mg/kg) groups was higher than that of NS control at 10 min,15 min and 30 min after reperfusion,however it did not reach the level of statistical significance.At 45 min and 60 min,EEG amplitud of TFR(15,30,60 mg/kg) groups was significantly higher than that of NS control(P<0.05, P<0.01).TFR(15,30,60 mg/kg) could significantly improve brain pathologic changes, and inhibite the increases of LDH relasing and NSE content.
     4.On primarily cultured hippocampal neurons hypoxia and reoxygenation model,TFR (10,20,40,80,160 mg/L) significantly reduced MTT staining of rat primary hippocampal neurons compared with NS control group(P<0.01).TFR mardedly inhibited A/R-induced increases of LDH and NO release(P<0.05)
     5.TFR(30,60 mg/kg) significantly suppressed the expression of iNOS and nNOS mRNA.Meanwhile,the expression of eNOS mRNA in brain was up-regulated in the TFR(30,60 mg/kg) group(P<0.05 or P<0.01).
     6.On the global cerebral ischemia reperfusion in rats,TFR(30,60 mg/kg) could not change total protein level of ERK 1/2 and JNK1/2,but TFR could increase the activation of ERK and inhibit the ctivation of JNK in ischmeia reperfusion.
     7.After hippocampal neurons anoxia and reoxygenation,TFR(10,20,40,80,160 mg/L) markedly decreased the intracellular calcium from 499.02±53.87(control group) to 397.28±94.82,335.89±75.09,238.51±38.40,147.56±17.76 and 88.50±7.03, respectively.
     8.Before anoxia and reoxygenation hippocampal neurons pretreatment with cerebral vessel or cerebral micorvessel endothelial cell respectively,TFR(20,40,80,160 mg/L) significantly increase the neuron viability and reduce the activity of LDH furtherly,but NO content don't change in culture medium.When adding with Indo and L-NAME, neuron viability and LDH don't change furtherly,but NO content was reduced in culture medium.
     Conclusion:
     1.TFA has remarkable protective effects on local cerebral ischemic reperfusion injury in mice and rats.
     2.TFA has remarkable protective effects on global cerebral ischemic reperfusion injury in rats.
     3.TFR protects neuron from anoxia and reoxygenation injury in vitro.
     4.The mechanisms that TFR protect cerebral ischemia and reperfusion injury include anti-lipid peroxidation,up-regulating eNOS mRNA expression and down-regulating iNOS mRNA and nNOS mRNA expression,inceasing the activation of ERK1/2 and inhibiting the activation of JNK1/2,inhibiting the neurons calcium overload.Vascular endothelium,especially non-NO-non-PGI_2(supposed EDHF),might involve the protection of TFR partially.
     5.TFR may be of value as a new drug against cerebral ischemia reperfusion for clinical application.
引文
1. 李忠.缺血性脑血管疾病[M].北京:北京科学技术出版社,2002:2210.
    2. 高梅,杜冠华.抗脑缺血药物的研究现状与进展[J].中国医药导刊,2006,8(5): 323-325.
    3. Takahashi A, Camacho P, Lechleiter JD, et al. Measurement of intracellual calcium[J]. Physiol Rev, 1999, 79(4) : 1089-1095.
    4. Schanne FA, Kane AB, Young EE, et al. Calcium dependence of toxic cell death:a final common pathway[J]. Science, 1979, 206(4419):700- 702.
    5. Iring EA, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury[J]. J Cereb Blood Flow Metab, 2002, 22(1):631-647.
    6. Chang LF, Michael K. Mammalian MAP kinase signalling cascades[J]. Nature, 2001, 410(6824) :37-40.
    7. Lennmyr F, Karlsson S, Gerwins P, et al. Activation of mitogen activated protein kinases in experimental cerebral ischemia[J]. Ada Neurol Scand, 2002, 106(6) : 333-340.
    8. Wu DC, Ye W, Cho XM,et al. Activation of mitogen activation protein kinases after permament cerebral artery occlusion in mouse brain[J]. J Cere Blood Flow Metab, 2000, 20(9) : 1320-1330.
    9 . Liu X, Wang S, Wu X, et al. Association between delayed cardio protection of aged rat myocytes and activation of mitogen activation protein kinases[J]. Chin Med J(Engl), 2000, 113(1) :5-9.
    10. Bryan RM Jr, You J, Golding EM, et al. Endothelium-derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin. Anesthesiology, 2005, 102(3) : 1261 - 1277.
    11. Marrelli SP, Eckmann MS, and Hunte MS. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol 2003,285(5):H1590 -H1599.
    12.张弢,汪五清,陈伟成.缺血性脑卒中脑保护药物治疗现状[J].临床误诊 杂志,2007,20(8):73-75.
    13.王明航,李建生,刘轲.中医药保护脑缺血损伤的研究现状[J].中西医结 合学报,2004,2(4):299—301.
    14. Dai SJ, Chen RY, Yu DQ. Studies on the flavonoid compounds of Rhododendron anthopogonoides[J]. China J Chin Mat Med,2004, 29(3): 44-47.
    15. Wang WQ, Chen PR, Zhang H, et al. Studies on the active constituents of Sichuan Liang Shan RhododendronL. I. detertmination of flavonoids in leaves extracts and jinjuan[J]. Chin J Chromato, 2000, 18(2): 167-169.
    16. Chen ZW, Ma CG,Zhao WZ. Effects of hyperin on free intracellular calcium in disssociated neonatal rat brain cell[J]. Acta pharmacoi Sin, 1999, 20(1): 27-30.
    17.陈志武,章家胜,马传庚.金丝桃甙对大鼠脑梗塞的保护作用[J].中国中药 杂志,1998,23(10):626—629.
    18. 陈志武,马传庚,赵维忠.金丝桃甙对脑缺血再灌损伤保护作用的研究[J]. 药学学报,1998,:33(1):14—17.
    19.马贵龙,汤允昭,王志平等.槲皮素磷酸酯钾对大鼠急性脑缺血再灌损伤的保 护作用[J].中国药理学通报,1994,10(3):204—206.
    20.陈志武,马传庚.金丝桃甙,槲皮素对小鼠脑缺血的保护作用[J].天然药物开发与研究,1997, 9(2) :21-23.
    21. Guo Y, Chen ZW. Protective effect of total flavone of Abelmoschl Manihot L. Medic against cerebral ischemia-reperfusion injury[J]. Chin Pharmacol Bull, 2002, 18(69) : 692-695.
    22. Yuan LP, Chen ZW, Fan L, et al. Protective effect of total flavones of rhododendra on ischemic myocardial injury in rabbits[J]. Am J Chin Med 2006, 34(3) : 483-492.
    23. Zhang Z, Chopp M, Zhang RL, et al. A mouse model of embolic focal cerebral ischemia[J]. J Cereb Blood Flow Met, 1997, 17(10):1081-1088.
    24. Bederson JB, Pitts LH,Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurological examination[J]. Stroke, 1986, 17(3):472-476.
    25. Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1) :84-91.
    26. Swanson RA, Morton MT, Tsao WG, et al. A semiautomated method for measuring brain infarct volume[J]. J Cereb Blood Flow Met, 1990, 10(2) : 290-293.
    27. Pulsinelli W, Brierley J. A new model of bilateral hemispheric ischemia in the unanesthetized rat[J]. Stroke, 1979, 10(3) :267-272.
    28. 张 敏,郭莉华,李文斌等.大鼠寰椎的解剖学特点及其椎动脉的走行[J].解剖学杂志,2006,29(6):792-793.
    29.崔艳英,孔祥军,王淑仙.银杏叶提取物对急性脑缺血的保护作用[J].中草药,1996,27(1):22-24.
    30.陈惠金,张忠德,周建德.脑缺氧缺血损伤新大鼠的脑形态学研究及病理量化评分.上海医学, 2000,23(11):682—684.
    31.郑志竑,林 玲.神经细胞培养:理论与实践[M].北京:科学出版社,2000:41-43.
    32. Kiryushko D, Kofoed T,Skladchikova G, et al. A synthetic peptide ligand of niural cell adhesion molecule(NCAM), C3d, promotes neurito-genesis and synap togenesis and modulates presynaptic function in primary cultures of rat hippocampal neurons[J]. J Biol Chew, 2003, 278 (14) : 12325-12334.
    33.青雪梅,李澎湃,胡京红,et al.不同脑微血管内皮细胞条件培养液抗缺血及再灌神经元损伤的比较[J].中西医结合学报,2007,5(2):183—187.
    34.秦晓辉,米卫东,张 宏,et al.依托米酯对神经元缺氧损伤的保护作用及其机制[J].中国药理学通报,2006,22(10):1202—1205.
    35. Dias N, Nicotau A, Carvalleo GS, et al. Miniatarization and application of the MTT assay to evaluate metabolic activity of protozoa in thepresence of toxicants[J]. Basic Microbiol, 1999,39(2) : 103-108.
    36.胡德辉,常全忠,李牛海,et al.李氏5号方水提液对神经元游离钙浓度的影响[J].解放军医学杂志,2006,3l(5):437—439.
    37. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases:a family of protein kinases with diverse biological functions[J]. Microbiol Mol Biol Rev, 2004, 68(2) : 320-344.
    38. Bouillet P,Strasser A. BH32 only proteins evolutionarily conserved pro-apoptotic Bcl-2 family members essential for initiating programmed cell death[J]. J Cell Science, 2002, 115(8):1567-1574.
    39.蒲小平,李长岭.脑缺血的细胞应答对研制新药的启示[J].中国药学杂志, 1999,34(9):579-581.
    40. Yi Y, Ashfaq S, Qiu L. Quantification of infarct size on focal cerebral ischemia model of rats using a simple and economical method [J]. Journal of Neuroscience Methods, 1998, 82(2):9-16.
    41.肖丽萍,黄益兴.急性脑梗塞血清乳酸脱氢酶的测定及临床意义[J].脑与神经疾病杂志,2000,8(1):54.
    42.马春华,穆春晓,刘 耘.复方中药丹星通络汤对大鼠局灶性脑缺血再灌注损伤的保护作用[J].第四军医大学学报,2006,27(21):1940-1942.
    43.贾 栋,高国栋.大鼠全脑缺血/再灌注模型之比较[J].卒中与神经疾病,1999,6(3):145-147.
    44. Young W, Rsappaport ZH, Chalif DJ, et al. Regional brain sodium, potassium and water changes in the rat middle cerebral artery occulation model of ischemia[J]. Stroke, 1987, 18(4):751-756.
    45. Li G, Wang TY, Zhang L, et al. The changesof EEG power spectrum before and after cerebral ischemia in gerbils[J]. Chin J Nerv Dis, 1990, 16(2): 139-144.
    46.陈力学,姜利人,刘宝松,et al.脑缺血后体感诱发电位和脑电图波谱特征变化及其与细胞凋亡的关系[J].中国危重病急救医学,2006,18(5):268—271.
    47.关景霞,余绍祖,曾庆杏.神经元烯醇化酶和S-100蛋白在脑血管疾病中的临床意义[J].国外医学·脑血管疾病分册,2000,8(4):242—244.
    48. Degiorgio CM, Gott PS, Rabinowicz AL, et al. Neuron-specific enolase, a marker of acute neuronal injury is increased in complex partial status epilepticus[J]. Epilepsia, 1996, 37(7):606-609.
    49. Barone FC, Clark RK, Price WJ, et al. Neuron-specific enolase increase in cerebral and systemic circulation following focal ischemia[J]. Brain Res, 1993, 623(1) :77-82.
    50. Nissler U,Wiesmann M,Friedrich T, et al. S-100 protein and neuron-specific enolase concentration in blood as indicators of infartion volume and prognosis in acute ischemic stroke[J]. Stroke, 1997, 28(10): 1956-1960.
    51. Michael T,Wunderlich T,Anne D, et al. Early neurobehavioral outcome after stroke is related to relase of neurobiochemical makers of brain damage[J]. Stroke, 1999, 30(6) :1190-1195.
    52. Correale JD, Rabinowicz AL, Heck, CN, et al. Status eliepticus increases CSF levels of neuron-specific enolase and alters the blood- brain barrier[J]. Neurology, 1998,50(5):1388-1391.
    53. Michael P, Gang zhao. Tissue plasminogen activator protects hippocampal neurons from oxygen-glucose deprivation injury[J]. J Neuroscience research, 2001, 63(5):388-394.
    54. Nagarajan S,Theodore DR, Abraham J, et al. Free fatty acids, lipid peroxidation, and lysosomal enzymes in experimental focal cerebral ischemia in premates:loss of lysosomal latency by lipid peroxidation[J]. Neurochem Res, 1988, 13(3) :193-201.
    55. Siesjo BK, Zhao Q, Pahlmark K, et al. Glutamate, calcium, and free radicals as mediators of ischemia brain damage[J]. Ann Thorac Surg, 1995,59(5) : 1316-1320.
    56. Chan PH. Oxygen radicals in focal cerebral ischemia[J]. Brain Pathol, 1994, 4(1) : 59-65.
    57. Yoshiha S,Abe K,Basto R, et al. Influence of transient ischemia onlipid-soluble antioxidants, free fatty acid and energy metabolites in rat brain [J]. Brain Res, 1982, 245(2): 307-311.
    58. Dawson TM, Snyder SH. Gases as biological messengers:nitric oxide and carbon monoxide in the brain[J].J Neurosci, 1994,14(9):5147-5159.
    59. Dawson TM, Dawson VL,Snyder SH. A novel neuronal messenger molecule in brain:the free radical, nitric oxide[J]. Ann Neurol, 1992, 23(3): 297-311.
    60.毛小平,刘志超,陈秀芳.一氧化氮合酶、谷氨酸在局灶脑缺血中的变化[J].卒中与神经疾病,2002,9(4):87-85.
    61. Gross SS, Wolin MS. Nitric oxide:pathophysiological mechanism[J]. Annu Rev Physiol, 1995, 57(6) : 737-769.
    62 . Yan XB, Meng FJ, Song B, et al. Brain ischemia induces serine phosphorylation of neuronal nitric oxide synthase by Ca~(2+)/ calmodulin-dependent protein kinase II in rat hippocampus[J]. Acta Pharmacol Sin, 2004, 25(5):617-622.
    63. Knowles RG, Palacios M, Palmer RM, et al. Formation of nitric oxide from L-arginine in the Central nervous system:a transduction mechanism for stimulation of the soluble guanylate cyclase[J]. Proc Natl Acad Sci, 1989,86(13) :5159-5162.
    64. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology[J]. Pharmacol Rev, 1991,43(2): 109-142.
    65. 方玲,王柠,吴志英等.一氧化氮合酶与脑缺血早期神经损伤关系研究[J].中国临床神经科学,2003,11(4):357-360.
    66. Knowles RG, Salter M, Brooks SL, et al. Anti-inflammatory glucocoticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat[J]. Biochem Biophys Res Commun, 1990, 172(3):1042-1048.
    67. Faraci FM,Brian JE. Nitric oxide and the cerebral circulation[J]. Stoke, 1994, 25(3): 692-703.
    68. Huang Z, Huang PL, Ma J, et. al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro- L-arginine[J]. J Cereb Blood FlowMetab, 1996, 16(5) :981-987.
    69. Jiang MH, Kaku T, Hada J, et al. Different effects of eNOS and nNOS inhibition on transient forebrain ischemia[J]. Brain Res, 2002, 946(1): 139-147.
    70.胡 敏.一氧化氮的病理及生理作用[J].国外医学分子生物学分册,1995,17(2):58-62.
    71.蒲蜀湘,周 伟,吴圣楣,et al.脑缺氧缺血新生大鼠诱生型一氧化氮合酶基 因的表达及其与脑细胞凋亡的关系[J].中国神经免疫学和神经病学杂志, 2003,10(2):123—126.
    72.方 玲,王 柠,吴志英,et al.一氧化氮合酶与脑缺血亚急性期神经损伤的 关系[J].福建医科大学学报,2003,37(1):23—25.
    73.刘瑞春,吴立克,李为民.氨基胍对大鼠脑缺血的保护作用[J].脑与神经疾 病杂志,2004,12(2):113-115.
    74. Sopala M, Frankiewicz T, Parsons C, et al. Middle cerebral artery occlusion produces secondary, remote impairment in hippocampal plasticity of rats-involvement of N-mithyl-D-asparate receptors[J]. Nierosci Lett, 2000, 281 (3) : 143-146.
    75. Zhang P,Wang YZ,Kagan E, et al. Peroxynitrite targets the epidermal growth factor receptor, Raf-1 and MEK independently to activate MAPK[J]. J Biol Chem, 2000, 275(5):22479-22486.
    76. Iadecola C, Zhang F, Xu S, et al. Induciboe Nitric oxide systhase gene expression in vascular cells after transient focal cerebralischemia[J]. Stoke, 1996, 27(8): 1373-1380.
    77. Wieloch T, Hu BR,BorisA, et al. Intracellular signal transduction in thrpost ischemic brain. Adv Neurol, 1996, 71 (5):371-387.
    78 . Nozaki K, Nishimura M, Hashimoto N. Mitogen activated protein kinases and cerebral ischemia. Mol Neurobiol, 2001, 23(1) :1-19.
    79. Sgambato V, Pages C, Rogard M, et al. Extracellular signal-regulated kinase(ERK) controls immediate early gene induction on corticostriatal stimulation[J]. J Neurosci, 1998, 18(21) :8814-8825.
    80. Hu BR, Liu CL, Park DJ. Alteration of MAP kinase pathways after transient forebrain ischemia[J]. J Cere Blood Flow Metab,2000, 20(7): 1089-1095.
    81. Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell, 2000, 103 (2) : 239-252.
    82. Segal RA,Greenberg ME. Intracellular signaling pathways activated by neurotrophic factors[J]. Annu Rev Neurosci, 1996, 19(30):463-489.
    83. Gu ZL, Jiang Z, Zhang GY, et al. D/phosphorylation of extracellular signal regulated kinases and c-Jun N-terminal protein kinase in brain ischemic tolerance in rat[J]. Brain Res, 2000, 860(t-2):157-160.
    84. Irving EA, Barone PC, Reith AD, et al. Differentia lactivation of MAPK/ERKand P38/SAPK in neurons and glia following focal cerebra ischemia in the rat[J]. Brain Res Mol Brain Res, 2000, 77(1):65-75.
    85. Hicks SD, Parmele KT,Defranco DB, et al. Hypothermia differentially increase extracellular signal regulated kinase and stress activated protein kinase/C-Jun terminal kinase activation in the hippocampus during reperfusion aftera sphyrialcar diacarrest[J].Neuro science, 2000, 92(4) : 677-685.
    86. Aharon AS, Mulloy VR, Drinkwater DC, et al. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass[J]. Eur J Cardiothorac Surg, 2004, 26(5): 912-919.
    87. Cho DG, Mulloy MR, Chang PA, et al. Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest[J]. J Thorac Cardiovasc Surg, 2004, 127 (4) : 1033-1040.
    88. Ozawa H, Shioda S, Do MK, et al. Dalayed neuronal cell death in the rat hippocampus ismediated by the mitogena ctivated protein kinase signal transduction path way[J]. Neurosci Lett, 1999, 262(1) :57-60.
    89. Alessandrini A, Namura S, Mokowitz MA, et al. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral, ischemia[J]. Proc Nail Acad Sci USA, 1999, 96(22):12866-12869.
    90. Wang ZQ, Wu DC, Huang FP, et al. Inhibition of MEK/ERK1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res, 2004, 996(1):55-66.
    91. Gonzale Z, Zulueta M, Feldman AB, et al. Requirement for nitricoxide activation of P21 (ras)/extracellular regulated kinase in neuronal ischemic preconditionging[J]. Proc Nat 1Acad Sci USA, 2000, 97(1) : 436-441.
    92. Nicole O, Ali C, Docagne F, et al. Neuro protection mediated by glial cell line-derived neuro trophic factor:Involvement of are duction of NMDA-induced calcium in flux by the mitogen-activated protein kinase path way[J]. .J Neurosci, 2001, 21 (9) :3024-3033.
    93. Wang X, Wang H, Xu L,et al. Significant neuro protection against ischemic brain injury by inhibition of MEK1 protein kinase in mice: Exploration of potential mechanism associated with apoptosis [J]. J Pharmacol ExpTher, 2003, 304 (1) : 172-178.
    94. 李军,曹红.MAPK级联仅反应与缺血性脑损伤[J].国外医学麻醉学与复苏分册,2002,24(4):232-235.
    95. Abe J, Baines CP, Berk BC. Role of mitogen-activated protein kinases in ischemia and reperfusionin jury:the good and the bad[J]. Circ Res, 2000, 86 (6): 607-609.
    96. Widmann C, Gison S,Jarpe MB, et al. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human[J]. Physiol Rev, 1999, 79(1) : 143-180.
    97. Takagi Y, Nozaki K, Sugino T, et al. Phosphorylation of c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase after transient forebrain ischemia in mice[J]. Neurosci Lett, 2000, 294(12): 117-120.
    98. Kuan CY,Whitmarsh AJ,Yang DD, et al. A critical role of neural-specific JNK3 for ischemic apoptosis[J]. Proc Natl Acad Sci USA, 2003, 100(25) : 15184—15189.
    99. Herdegen T, Claret FX, Kallunki T, et al. Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury[J]. J Neurosci, 1998, 18(14) :5124-5135.
    100. Nankova BB, Fuchs SY, Serova LI, et al. Selective in vivo stimulation of stress-activated protein kinase in different rat tissues by immobilization stress[J]. Stress, 1998, 2(4):289-298.
    101. Asanuma T, Inanami O, Tabu K, et al. Protection against malonate-induced ischemic brain injury in rat by a cell-permeable peptidec c-Jun N-terminal kinase inhibitor,(L)-HIV-TAT48-57-PP- JBD20, observed by the apparent diffusion coefficient mapping magnetic resonance imaging method[J]. Neurosce Lett, 2004, 359(1/2) : 57-60.
    102. Borsello T, Clarke PG, Hirt L, et al. A pep tide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia[J]. Nat Med, 2003, 9(9) : 1180-1186.
    103. Wang MJ, Jeng KC, Kou JS, et al. C-Jun N-terminal kinase and, to a lesser, p38 mitogen-activated protin kinase regulate inducible nitric oxide synthase expression in hyaluronan fragments-stimulated BV-2 microglia[J]. J Neuroimmunol, 2004, 146(1-2):50-62.
    104 . Ha HC. Defective transcription factor activation for proinflammatory gene expression in poly(ADP-ribose) polymerase 1-deficient glia[J]. PNAS, 2004, 101 (14) :5087-5092.
    105. Lahti A, Kankaanranta H, Moilanen E. P38 mitogen-activated protein kinase inhibitor SB203508 has a bi-directional effect on iNOS expression and NO production[J]. Eur J Pharmacol, 2002,454(2-3): 115-123.
    106. Siemkowicz E, Hahsen AJ. Brain extracellular ion and EEG activity following 10 minutes ischemia in hyper and normoglycemic rat[J]. Stroke, 1981, 12(2) :236-240.
    107. Lipton P, Lobner D. Mechanism of intracellular calcium accumulation in the CA1 region of rat hippocampus during anoxia in vitro[J]. Stroke, 1990, 21(Suppl III) :60-65.
    108. Jayanthi LD, Wilson JJ, Montalvo J, et al. Differential regulation of mammalian brain - specific proline transporter bycalcium an calcium-dependent protein kinases[J]. Br J Pharmacol, 2000, 129(3): 465-470.
    109. Soderling TR. Structure and regulation of calcium/calmodulindependent protein kinase I and II [J]. Biochem Biophys Acta, 1996, 1297(5): 31-40.
    110. Kim HY, Moon JS, Lee KS, et al. Ca~(2+)/calmodulin-dependent protein phosphatase calcineurin mediates the expression of iNOS through IKK and NF-B activith in LPS-stimulated mouse peritoneal macrophages an RAW264.7 cells[J]. Biochem Biophys Res Commun, 2004, 314(3) : 695-703.
    111. Zhu DY, Li R, Liu GH, et al. Tumor necrosis factor alpha enhances the cytotoxicity induced by nitric oxide in cultured cerebral endothelial cells[J]. Life Sci, 2000, 66(6):1325-1335.
    112. Talor SG, Wwston AH. Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium[J]. Trends Pharmacol Sci, 1988, 9(8) : 272-274.
    113. Eichler I, Wibawa J, Grgic I, et al. Selective blockade of endothelial Ca~(2+) -activated small- and intermediate- conductance K~+ channels suppresses EDHF-mediated vasodilation[J]. Br J Pharmacol, 2003, 138 (4) :594-601.
    114. Fleming I,Fisslthaler B,MichaelisUR, et al. The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells[J]. Plugers Arch, 2001, 442(4) : 511-518.
    115. Michaelis UR, Fisslthaler B,Barbosa-Sicard E, et al. CytochromeP450 epoxygenases 2C8 and 2C9 are implicated in hypoxia inducedendothelial cell migration and angiogenesis[J]. J Cell Sci, 2005,118(Pt23):5489-5498.
    116. Morikawa K,Fujiki T, Matoba T, et al. Important role of superoxide dismutase in EDHF mediated responses of human mesenteric arteries [J]. J Cardiovasc Pharmacol, 2004, 44 (6): 552-556.
    117. Ahluwalia A, Hobbs AJ. Endothelium-derived C-type natriuretic peptide:more than just a hyperpolarizing factor[J]. Trends Pharmacol Sci, 2005, 26 (3) : 162-167.
    118. Coleman HA, TareM, Parkington HC. EDHF is not K~+, but maybe due to sp read of current from the endothelium in guineapig arterioles[J]. Am J Physiol Heart Circ Physiol, 2001, 280(6):H2478-2483.
    119.吴剑,陈志武.乙酰胆碱介导的内皮超极化因子对海马神经元缺氧/再给氧损伤的保护作用[J].中国药理学通报,2007,23(12):1624一1629.
    1 Mayer TE,Hamann GF,Baranczyk J,et al.Dynamic CT perfusion imaging of acute stroke[J].A JNR Am,I Neuroradiol 2000,21(8):1441-1449.
    2 Hossmann KA.Viabititg thresholds and the penumbra of ischemia[J].Ann Neurol 1994,36(4):557-565.
    3 Graham SH,Chen J.Progammed cell death in cerebral ischemia[J].J Cereb Blood Fow Metab 2001,21(2):99-109.
    4 许川山,刘志君,唐建民,等.低强度激光促细胞增殖效应与丝裂原激活蛋白激酶信号传导途径[J].中国激光医学杂志2000,20(2):47-48.
    5 周志琦,刘强.真核生物的MAPK级联信号传递途径[J].生物化学与生物物理进展1998,25(6):496-503.
    6 柴三葆,刘乃奎,唐朝枢.丝裂素活性蛋白激酶磷酸酶[J].国外医学生理病理科学与临床分册2000,20(3):180-183.
    7 田北方,李述庭.MAPK级联途径在脑发育与损伤修复中的作用[J].国外医学生理病理科学与临床分册2000,20(3):184-186.
    8 Sgambato V,Pages C,Rogard M,et al.Extracellular signal-regulated kinase(ERK)controls immediate early gene induction on corticostriatal stimulation[J].J Neurosci 1998,18(21):8814-8825.
    9 Hu BR,Liu CL,Park DJ.Alteration of MAP kinase pathways after transient forebrain ischemia[J].J Cere Blood Flow Metab 2000,20(7):1089-1095.
    10 Davis RJ.Signal transduction by the JNK group of MAP kinases[J].Cell 2000,103(2):239-252.
    11 Segal RA,Greenberg ME.Intracellular signaling pathways activated by neurotrophic factors[J].Annu Rev Neurosci 1996,19(30):463-489.
    12 Adachi T,Kar S,Wang M,el al.Transient and sustained ERK phosphorylation and nuclear translocation in growth control [J]. J Cell Physiol 2002, 192 (2): 151-159.
    
    13 Impey S, Obrietan K, Storm DR. Making new connections: role of ERK/MAK kinase signaling in neuronal plasticity [J]. Neuron 1999, (23):11-14.
    
    14 Fukunaga K, Miyamoto E. Role of MAP kinase in neurons [J]. Mol Neurobiol 1998, (16):79-95.
    
    15 Gupta S, Barrett T, Whitmarsh A, et al. Selective interaction of JNK protein kinase is forms with transcription factors [J]. EMBOJ 1996,15(11): 2760-2770.
    
    16 Claire R, Roger J. The JNK signaling transduction pathway [J]. Mol Cell Biol 1998,18(7): 431-436.
    
    17 Widmann C, Gison S, Jarpe MB, et al. Mitogen-activated protein kinase:Conservation of a three-kinase module from yeast to human [J]. Physiol Rev 1999,79(1): 143-180.
    
    18 Takagi Y, Nozaki K, Sugino T, et al. Phosphorylation of c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase after transient forebrain ischemia in mice[J]. Neurosci Lett, 2000, 294 (12): 117-120.
    
    19 Dong C,Davis RJ,FIavell RA. Signalling by the JNK group of MAP kinasese-c-Jun N-terminal kinase [J]. J Clin Immunol, 2001,21(4): 253-257
    
    20 Ono K, Han J. The p38 signal transduction pathway: activation and function[J].Cell Signal 2000, 12 (1):1 -13.
    
    21 Chang L, Karin M. Mammalian MAP kinase signaling cascades [J]. Nature 2001,410 (6824): 37-40.
    
    22 Hans JS, Michael JW. Mitogen-activated protein kinases: specific messages from ubiquitous messsngers[J]. Mol Cell Biol 1999, 19(4): 2435-2444.
    
    23 Lee S , Park J ,Che Y, et al. Constitutive activity and differential localization of p38aand p38pMAPKs in adult mouse brain [J]. J Neurosci Res 2000, 60(5): 623- 631.
    
    24 Kohsuke T, Hidenori I. Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system [J]. Genes Cells 2002, 7(11) : 1099-1111.
    
    25 Aharon AS, Mulloy VR, Drinkwater DC, et al. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass[J]. Eur J Cardiothorac Surg 2004, 26(5): 912-919.
    
    26 Cho DG, Mulloy MR, Chang PA, et al. Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest [J]. J Thorac Cardiovasc Surg 2004, 127(4): 1033-1040.
    
    27 Irving EA, Barone FC, Reith AD, et al. Differential activation of MAPK/ERK and P38/SAPK in neurones an glia following focal cerebral ischemia in the rat[J].Brain Res Mol Brain Res 2000, 77(1): 65-75.
    
    28 Wang ZQ, Wu DC, Huang FP, et al. Inhibition of MEKP/ERK1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia[J].Brain Res 2004, 996(1): 55-66.
    
    29 Gu Z, Jiang Q, Zhang G. Extracellular signal-regulated kinase 1/2 activation in hippocampus after cerebral ischemia may not interfere with postischemic cell death[J]. Brain Res 2001, 901(1): 79-84.
    
    30 Okuno S, Saito A, Hayashi T, et al. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia [J]. J Neurosci 2004,24(36): 7879-7887.
    
    31 Piao CS, Kim J B, Han P L, et al. Administration of the p38 MAPK inhibitor SB203580: affords brain protection with a wide therapeutic window against focal ischemic insult [J]. J Neurosci Res 2003, 73 (4): 537-544.
    32 Wang X, Zhu C, Qiu L, et al. Activatien of ERK1/2 after neonatal rat cerebral hypoxia-ischemia [J]. JNeurochem 2003, 86(2): 351-362.
    
    33 Jiang Z, Zhang Y, Chen X, et al. Activation of Erk1/2 and Akt in astrocytes under ischemia[J]. BiochemBiophys Res Commun 2002, 294(4): 726-733.
    
    34 Zhengui X, Martin D, Joel R, et al. Opposing effects of ERK and JNK-P38 MAP kinases on apoptosis [J]. Science,1995, 270(5240): 1326-1331.
    
    35 Murray B,Alessandrini A, Cole AJ, et al. Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity[J]. Proc Natl Acad Sci USA 1998, 95(20): 11975-11980.
    
    36 Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory [J]. J Neurochem 2001,76(1):1-10.
    
    37 Lipton SA , Roserberg PA. Excitatory amino acids as a final common pathway for neurologic disorders [J]. N Engl TMed,1994 ,330(9): 613-622.
    
    38 Montal M. Mitochondria, glutamate neurotoxicity and the death cascade [J].Biochim Biophys Aata 1998,1366(1 -2): 113-126.
    
    39 Vanhoutte P, Barnier JV, Guibert B, et al. Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol Cell Biol 1999,19(1): 136-146.
    
    40 Singer CA, Figueroa XA, Batchelor RH, et al. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons [J]. J Neurosci 1999,19(7): 2455-2463.
    
    41 Schwarzschild MA, Cole RL, Meyers MA, et al. Contrasting calcium dependencies of SAPK and ERK activations by glutamate in cultured striatal neurons[J]. J Neurochem 1999, 72(6): 2248-2255.
    
    42 Jones NM, Bergeron M. Hypoxia-induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signalling [J]. J Neurochem 2004, 89(1): 157-167.
    
    43 Wang ZQ, Chen XC, Yang GY, et al. U0126 prevents ERK pathway phosphorylation and interleukin-1beta Mrna production after cerebral ischemia [J].Chin Med Sci J 2004, 19(4): 270-275.
    
    44 Jaffee BD, Manos EJ, Collins RT, et al. Inhibition of MAP kinase kinase(MEK) results in an anti-inflammatory response in vivo [J]. Biochem Biophys Res Commun 2000, 268(2): 647-651.
    
    45 Wang X, Wang H, Xu L, et al. Significant neurop rotection against ischemic brain injury by inhibition of the MEK1 p rotein kinase in mice: exp loration of potential mechanism associated with apoptosis [J]. J Pharmacol Exp Ther 2003, 304(1):172-178.
    
    46 Herdegen T, Claret FX, Kallunki T, et al. Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury[J]. J Neurosci 1998, 18(14): 5124-5135.
    
    47 Nankova BB, Fuchs SY, Serova LI, et al. Selective in vivo stimulation of stress-activated protein kinase in different rat tissues by immobilization stress[J]. Stress 1998, 2(4): 289-298.
    
    48 Ozawah H, Shioda S, Dohi K, et al. Delayed neuronal cell death in the rat hippocampusis medited by the mitogen-activatedp rotein kinase signal transduction pathway [J]. Neuro sci Letters 1999, 262(1): 57 - 60.
    
    49 Erdo F, Trapp T, Mies G, el al. Immunohistochemical analysis of protein expression after middle cerebral artery occlusion in mice[J]. Ada Neuropatho 2004, 107(2): 127-136.
    
    50 Kuan CY, Whitmarsh AJ, Yang DD, et al. A critical role of neural-specific JNK3 for ischemic apoptosis [J]. Proc Natl Acad Sci USA 2003, 100(25):15184-15189.
    
    51 Zhang Q, Tian H, Fu X, et al. Delayed activation and regulation of MKK7 in hippocampal CA1 riegion following global cerebral ischemia in rats[J]. Life Sci 2003, 74: 37-45.
    
    52 Ferrir I, Friguls B, Dalfo E, et al. Early modifications in the expression of mitogen-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia [J]. Acta Neuropathol 2003,105(2): 425-437.
    
    53 Gillardon F, Spranger M, Tiesler C, et al. Expression of cell death-associated phosphor-c-Jun and p53-activated gene 608 in hippocampal CA1 neurons following global ischemia [J]. Brain Res Mol Brain Res 1999, 73(1): 138-143.
    
    54 Asanuma T, Inanami O, Tabu K, et al. Protection against malonate-induced ischemic brain injury in rat by a cell-permeable peptidec c-Jun N-terminal kinase inhibitor, (L)-HIV-TAT48-57-PP-JBD20, observed by the apparent diffusion coefficient mapping magnetic resonance imaging method [J]. Neurosce Lett 2004,359(1/2): 57-60.
    
    55 Borsello T, Clarke PG, Hirt L, et al. A pep tide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia [J]. NatMed 2003,9(9): 1180-1186.
    
    56 Kevin MW, Richard D, Becky A, et al. Activation of p38MAPK in microglia after ischemia [J]. J Neurochem 1998, 70(4): 1764-1767.
    
    57 Elaine AI, Frank CB, Alastair DR, et al. Differential activationof MAPK/ ERK and p38/SAPK in neurones and glia following focal cerebral ischemia in the rat. Brain Res Mol Brain Res 2000, 77(3): 65-75.
    
    58 Piao CS, Che Y, Han PL, et al. Delayed and differential induction of p38 MAPK isoforms in microglia and astrocytes in the brain after transient global ischemia [J].Mol Brain Res 2002,107(2): 137-144.
    
    59 Che Y, Piao CS, Han PL, et al. Delayed induction of alpha B-crystallin in activated glia cells of hippocampus in kainic acid-treated mouse brain [J]. J Neurosci Res 2004, 65(5): 425-431.
    
    60 Che Y,Yu YM, Han PL, et al. Delayed induction of p38 MAPKs in reactive astrocyte in the brain of mice after KA-induced seizure[J]. Brain Res Mol Brain Res 2001, 94(1-2):157-165.
    
    61 Lennmyr F, Karlsson S, Gerwins P, et al. Activation of mitogen activated protein kinases in experimental cerebral ischemia [J]. Acta Neurol Scand 2002, 106(6):333-340.
    
    62 Lin CH, Lin YF, Chang MC, et al. Advanced glycosylation end products induce nitric oxide synthase expression in C6 glioma cells: Involvement of a p38 MAP Kinase-dependent mechanism [J]. Life Sci 2001, 69(21): 2503-2515.
    
    63 Han IO, Kim KW, Ryu JH, et al. p38 mitogen-activated protein kinase mediates lipopolysaccharide, not interferon-γ, induced inducible nitric oxide synthase expression in mouse BV2 microglial cells [J]. Neurosci Lett 2002, 325(1): 9-12.
    
    64 Hua LL, Zhao ML, Cosenza M, et al. Role of mitogen-activated protein kinases in inducible nitric oxide synthase and TNFαexpression in human fetal astrocytes [J].J Neuroimmunol 2002, 126(1-2): 180-189.
    
    65 Herlaar E, Brown Z. p38 MAPK signalling cascades in inflammatory disease [J].Mol Med Today 1999, 5(10): 439-447.
    
    66 Barone FC, Irving EA, Ray AM, et al. SB239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia [J]. J Pharmacol Exp Ther 2001, 296(2): 312-321.
    
    67 Hunt JA, Kallashi F, Ruzek RD, et al. p38 Inhibitors: Piperidine and 4-amino piperidine-substituted naphthyridinones, quinolinones, and dihydroquinazolinones [J]. Bioorg Med Chem Lett 2003,13(3): 467-470.
    
    68 Stelmach JE, Liu L, Patel SB, et al. Design and synthesis of potent , orally bioavailable dihydroquinazolinone inhibitors of p38 MAP kinase[J]. Bioorg Med Chem Lett 2003,13(2): 277-280.
    
    69 Legos JJ, Erhardt JA, White RF, et al. SB239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia [J].Brain Res, 2001, 892(1): 70-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700