用户名: 密码: 验证码:
糖尿病大鼠骨代谢特点的研究观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分糖尿病大鼠骨组织形态计量学和生物力学的特点
     目的:采用高糖高脂肪饮食结合小剂量链脲佐菌素和单次大剂量链脲佐菌素的方法,用雄性Wistar大鼠制备2型和1型糖尿病模型,以正常血糖大鼠和病程匹配的自发性2型糖尿病模型GK大鼠分别作为阴性和阳性对照,测定离体骨密度(BMD)、骨组织形态计量学和生物力学等指标、骨转换血清生化标志物及调节骨代谢的细胞因子,观察糖尿病状态下大鼠骨代谢的特点;并与大鼠胰岛素水平及代谢控制等因素进行相关分析,寻找导致其骨代谢紊乱的可能机制。
     方法:实验动物分为四组:正常对照组(NC组)、2型糖尿病组(T2D组)、1型糖尿病组(T1D组)和自发性2型糖尿病模型GK大鼠(GK组)。T2D组大鼠在给予高脂饮食8周后,空腹状态下一次性腹腔注射小剂量STZ(30mg/kg),1周后空腹状态下行腹腔葡萄糖耐量试验,空腹血糖≥7.0mmol/L或2小时血糖≥11.1 mmol/L确认为造模成功。T1D组大鼠空腹状态下给予一次性腹腔注射大剂量STZ(60mg/kg),72 h后测随机血糖≥16.7 mmol/L者,确定糖尿病模型建立。建模成功后继续喂养20周,同时纳入病程相近的GK大鼠作为阳性对照。所有动物在处死前第14天开始进行四环素标记。试验结束时,留取24小时尿检测尿Ca、肌酐和羟脯氨酸,计算羟脯氨酸(HOP)排出率;所有大鼠禁食12小时后测空腹体重,麻醉状态下取血样测定空腹血糖、胰岛素、糖化血红蛋白(GHb)、Ca、P、肿瘤坏死因子(TNF-α)、白介素(IL)-1β、IL-6、胰岛素样生长因子(IGF)-1、骨钙素(OCN)水平和抗酒石酸酸性磷酸酶(TRAP)活性;留取腰椎、股骨、胫骨等骨标本,测定第五腰椎及股骨BMD,做腰椎压缩试验及股骨三点弯曲试验,取右侧胫骨上端以甲基丙烯酸甲酯包埋,制作不脱钙骨切片。应用多媒体病理图像分析软件对Von Kossa染色的5μm切片和未染色的7μm切片进行骨组织形态计量学分析。
     结果:1、糖代谢状态的检测:T2D组空腹血糖、GHb、胰岛素水平及HOMA-IR均明显高于NC组(P<0.01),血清TG、TC和LDL水平也明显升高(P<0.05或P<0.01)。2、BMD和骨量的变化:T2D组、T1D组和GK组股骨、腰椎BMD和股骨灰干重比均明显低于NC组(P<0.05);各指标在糖尿病大鼠各组间无明显差异(P>0.05)。3、生物力学结果显示:股骨三点弯曲实验中T2D组、T1D组和GK组的最大载荷、能量吸收、最大应变、截面惯性矩和弯曲刚性系数均明显降低(P<0.05或P<0.01);T1D组生物力学指标较T2D组更显著(P<0.05),而GK大鼠股骨生物力学指标无明显差异。腰椎压缩试验中各组糖尿病大鼠的弹性模量和最大载荷均较对照组显著降低(P<0.01);以T1D组的变化更明显(P<0.05或P<0.01),而GK大鼠各项生物力学指标变化与T2D组大鼠相似(P>0.05)。4、骨组织形态学结果:各组糖尿病大鼠骨体积显著低于对照组(P<0.01),Tb.Th、OS/BS和O.Th均明显降低(P<0.01或P<0.05);T1D组和GK大鼠的破骨细胞标记ES/BS也有明显下降(P<0.05)。各组糖尿病大鼠骨组织动力学参数MS/BS、骨矿化沉积率和BFR均明显降低(P<0.01),T1D组和T2D组的类骨质成熟时间Omt明显延长(P<0.05);但骨矿化延迟时间Mlt没有明显变化。糖尿病大鼠各组间没有明显差异(P>0.05)。5、血尿骨代谢指标的变化:各组大鼠血钙、磷水平无明显差异(P>0.05)。与NC组相比,各组糖尿病大鼠血清24h尿钙、TRAP活性和羟脯氨酸排除率HOP/Cr显著升高(P<0.01),血清OCN水平明显降低(P<0.01);同时,血清IGF-1水平明显下降(P<0.01),且T1D大鼠IGF-1水平明显低于T2D大鼠(P<0.01)。6、血清炎性细胞因子:各组糖尿病大鼠血清IL-1β、IL-6和TNF-α水平均明显高于对照组(P<0.01),糖尿病大鼠各组间无明显差异(P>0.05)。7、相关分析:GHb与骨密度、骨生物力学指标及BV/TV均显著负相关,IL-1β、IL-6和TNF-α与骨密度也显著负相关(P<0.05)。
     结论:1、高糖高脂饮食和小剂量STZ诱导的Wistar大鼠呈现明显的高血糖、高胰岛素血症和胰岛素抵抗,并伴有血脂代谢紊乱,可用来成功制造2型糖尿病动物模型;2、该模型大鼠无明显肥胖,可摒除肥胖对骨代谢的影响,可作为研究2型糖尿病骨代谢紊乱的理想动物模型。3、糖尿病状态下大鼠表现为骨密度和骨量减少,骨力学强度降低;4、糖尿病状态下大鼠不仅出现血、尿骨代谢标记的异常,且可出现明显的骨组织形态结构异常,成骨细胞功能障碍可能是糖尿病骨代谢失衡的主要机制,但破骨细胞也可能参与其中。5、糖尿病大鼠骨密度、骨生物力学和骨形态学指标与糖化血红蛋白明显负相关,提示高血糖及其糖基化终产物可能在糖尿病大鼠骨代谢紊乱中具有重要作用。
     第二部分糖尿病大鼠骨组织RAGE、OPG、RANKL和IGF-1基因表达的研究
     目的:采用单次注射大剂量链脲佐菌素的方法,用Wistar大鼠制备胰岛素缺乏的糖尿病模型,免疫组化方法检测骨组织中AGEs受体RAGE的表达,并用RT-PCR方法测定骨组织RAGE、RANKL、OPG、IGF-1等基因表达,初步探讨糖尿病状态下高血糖和糖基化终产物对大鼠骨代谢相关基因表达的影响。
     方法:雄性Wistar大鼠随机分为正常对照组(NC)、糖尿病组(T1D组)和糖尿病胰岛素治疗组(DI组)。T1D糖尿病的建模方法同前,成模后治疗组给予胰岛素0.6~1u/d以控制随机血糖在10mmol/L以下,T1D组大鼠隔日皮下注射长效胰岛素0.3~0.6u,以防止酮症发生,但不明显影响血糖水平,随机血糖在16mmol/l以上。糖尿病建模成功后继续喂养20周处死。试验结束时,留取24小时尿检测尿肌酐和羟脯氨酸,计算羟脯氨酸(HOP)排出率;麻醉状态下取血样测定空腹血糖、糖化血红蛋白(GHb)、骨钙素(OCN)水平和抗酒石酸酸性磷酸酶(TRAP)活性;留取股骨、胫骨等骨标本,测定左侧股骨BMD,用手术刀片刮除右侧股骨骨膜后装于冻存管中迅速投入液氮中,再转入-70℃冰箱保存。胫骨经甲基丙烯酸甲酯包埋,制作不脱钙骨切片。采用免疫组化方法检测胫骨组织RAGE蛋白表达,应用多媒体病理图像分析软件测定RAGE阳性细胞积分光密度值。提取大鼠骨组织的总mRNA,利用实时荧光定量RT-PCR方法检测大鼠股骨RAGE、RANKL、OPG和IGF-1基因表达。
     结果:1、与NC组相比,T1D组骨组织RAGE免疫组化平均光密度值明显升高(P<0.01)。RT-PCR显示T1D组大鼠股骨IGF-1 mRNA表达明显下降(P<0.01),RAGE、RANKL mRNA水平显著升高(P<0.01或P<0.05),OPG mRNA水平无明显变化(P>0.05),而OPG/RANKL比值明显低于对照组(P<0.01)。胰岛素治疗可显著改善上述糖尿病大鼠的变化(P<0.01)。2、相关分析分析显示,糖尿病大鼠RAGE蛋白免疫组化染色平均光密度值和mRNA水平与糖化血红蛋白水平显著正相关(r=0.656,P<0.01;r=0.535,P<0.05);RAGE mRNA与股骨BMD和血清骨钙素水平均显著负相关(r=-0.583,P<0.01;r=-0.519,P<0.05),与血清TRAP和羟脯氨酸排泄率无明显相关性。糖尿病大鼠骨组织RAGE mRNA与RANKL mRNA和RANKL/OPG比值均显著正相关(r=0.555,P<0.05;r=0.651,P<0.01);与IGF-1 mRNA显著负相关(r=-0.459,P<0.05);与OPG mRNA没有显著相关性。IGF-1 mRNA与RANKL mRNA和RANKL/OPG比值均显著负相关(r=-0.672,P<0.01;r=-0.567,P<0.05)。
     结论:1、高血糖状态下累积的AGEs诱导其受体RAGE mRNA和蛋白表达上调;2、糖尿病大鼠骨组织RAGE表达增加,可能通过上调RANKL表达作用于偶联骨重建的OPG/RANKL/RANK轴,使破骨细胞活性增加,而成骨细胞功能受抑,参与糖尿病大鼠骨丢失的发生。3、RAGE表达上调可能与骨组织局部IGF-1表达降低有关,后者可直接或间接通过对OPG/RANKL/RANK轴的作用而影响糖尿病大鼠骨重建过程。
Objective:To characterize the bone metabolism in type 2 and type 1 diabetic rats induced by high-fat feed combined with low dose of streptozotocin and high dose of streptozotocin.Non-diabetic Wistar rats and Goto-Kakizaki(GK) rats,a spontaneous type 2 diabetic model,were enrolled as negative and positive controls respectively. Bone mineral density(BMD),bone histomorphometric and biomechanical properties, as well as the bone biochemical indices and cytokines were observed,and correlations between bone metabolism and insulin level,metabolic control were analyzed to seek the possible mechanism for bony metabolic disturbance.
     Methods:Male Wistar rats were randomly served as non-diabetic controls(NC), inducible type 2 diabetic group(T2D) and type 1 diabetic group(T1D),with sex-and course of disease- matched GK rats served as positive controls.Type 2 diabetes was established by high fat and high-sugar feeding for eight weeks combined with one injection of small-dose(30 mg/kg body weight) of streptozotocin(STZ).The diabetes was confirmed by an intraperitoneal glucose tolerance test(IPGTT) one week after the injection of STZ.Type 1 diabetes was established by one injection of large-dose (60 mg/kg body weight) of STZ.The diabetes was confirmed with random blood glucose levels≥16.7 mmol/L detected 72 hours later.Double labeling for bone histomorphometry was conducted by an intraperitoneal injection of tetracycline 14 days before the sacrifice.The rats were killed 20 weeks after the onset of diabetes. Urine was collected from the rats for calcium,creatinine and hydroxyproline analyses. Blood specimens were collected from carotid arteries for fasting blood glucose, glycosylated hemoglobin,calcium,phosphate,osteocalcin and tartrate-resistant acid phosphatase activity analyses.The femur,tibia and the fifth lumbar vertebra were harvested and freed of soft tissue attachments carefully.Analyses for bone mineral density was performed by dual energy X-ray absorptiometry on femur and the fifth vertebral body respectively followed by the biomechanical studies of three-point bending test and compressive test.The metaphyseal tibiae were embedded in methylmethacrylate to obtain the undecalcified sections.Histomorphometry analysis was performed on 5μm(stained with Von Kossa) and 7μm bone sections with an analyze software for multimedia pathological image.
     Results:①Fasting plasma glucose,glycosylated hemoglobin,insulin concentrations, and HOMA-IR of the T2D rats were higher than the NC group significantly(P<0.01), companied by significantly increased serum levels of TG,TC and LDL.②All the diabetic rats showed significantly deceased ratio of bone ash and dry weight,as well as the bone density determined on femur and lumber vertebra(P<0.05).There was no significant difference among the diabetic groups(P>0.05).③The maximal load, maximal energy,maximal strain,cross-sectional moment of inertia and coefficient of stiffness in the three-point bending test of the femora decreased significantly(P<0.05或P<0.01) in the three groups of diabetic rats,among which the T1D group had the most evident changes(P<0.05).The maximal load and elastic modulus of vertebral bodies significantly decreased in the diabetic rats(P<0.01),but there was no significant difference in the elastic modulus of femur among the groups.④Histomorphometrical study showed decreased trabecular bone volume,trabecular thickness,osteoid surface,osteoid thickness and osteoid volume in all the diabetic rats (P<0.05或P<0.01),as well as erosion surface in the T1D group and GK rats(P<0.05).Mineralizing surface,mineral apposition rate and bone formation rate also decreased in all the diabetic rat(P<0.01)s,along with an increase in osteoid maturation time in the T1D group and GK rats(P<0.05).There was no significant difference among the diabetic groups(P>0.05).⑤There was no significant difference in the serum calcium and phosphate levels among all the groups(P>0.05). Compared with the healthy controls,the T2D rats had significantly lower serum osteocalcin and insulin-like growth factor-1 concentrations,and higher 24h urinary calcium,hydroxyproline exclusion and serum tartrate-resistant acid phosphatase activity(P<0.01).The serum levels of IGF-1 were significantly lower in the T1D group than in the T2D groups(P<0.01).⑥Compared to healthy controls,diabetic rats had significantly increased interleukin 1βand 6,and tumor necrosis factorαconcentrations in the serum(P<0.05 or 0.01).There was no significant difference among the diabetic groups(P>0.05).⑦Partial correlation analysis showed that the levels of GHb were significantly correlated with the BMD,biomechanical properties and BV/TV,and the serum levels of IL-1β,IL-6 and TNF-αwere negatively correlated with the BMD in the control and diabetic rats.
     Conclusions:1.Wistar rats induced by high fat and high-sugar feeding combined with one injection of small-dose streptozotocin can be the type 2 diabetes model successfully,which were charactered by high blood glucose,hypefinsulinemia, insulin resistant and metabolic disturbance of blood fat.2.This rat model without obesity excludes the interference of obesity on bone and can be the ideal animal model for study on abnormality of bone metabolism under type 2 diabetes.3.The diabetic rats had decreased bone density,bone mass and biomechanical forces.4.the diabetic rats had disturbance of bone metabolic markers in the blood and urine and abnormal bone histomorphometry.Dysfunction of osteoblasts might be the major mechanism for bone metabolic disturbance under diabetic status,in which osteoclasts may involve.5.The bone mineral density,bone biomechanical and histomorphometric indices were inversely correlated with the glycosylated hemoglobin significantly in the diabetic rats,indicating that hyperglycemia and advanced glycation endproducts might involve in the bone metabolic disturbance in diabetic rats.
     Objective:To observe the expression of RAGE,OPG,RANKL and IGF-1 in bone from the STZ-treated diabetic rats in order to study the possible mechanisms of hyperglycemia and advanced glycation endproducts on bone metabolism.
     Methods:Male Wistar rats were randomly divided into control group(NC),untreated diabetic group(T1D) and insulin-treated diabetic group(DI).Diabetes was established as previously detailed in part one.Rats in the DI group were treated with insulin to control the blood glucose level under 10 mmol/L.All the rats were killed 20 weeks after the onset of diabetes.Urine was collected from the rats for creatinine and hydroxyproline analyses.Blood specimens were collected for fasting blood glucose, glycosylated hemoglobin,osteocalcin and tartrate-resistant acid phosphatase activity analyses.Analyses for bone mineral density was performed by dual energy X-ray absorptiometry on the left femora.RNA samples were extracted directly from the right femora.The expression of RAGE,OPG,RANKL and IGF-1 mRNA were detected by real-time reverse transcription polymerase chain reaction(RT-QPCR). The expression of RAGE protein was detected by immunohistochemieal analysis on the tibiae sections embedded in methylmethacrylate with an analyze software for multimedia pathological image.
     Results:1.Compared with the healthy controls,the untreated T1D diabetic rats had significantly higher optical density value of RAGE protein in the tibiae(P<0.01).The expression of IGF-1 mRNA significantly decreased(P<0.01),and both RAGE and RANKL mRNA significantly increased(P<0.05 or 0.01) in the untreated T1D diabetic rats.The change in the expression of OPG mRNA was undetectable.Then the ratio of OPG/RANKL decreased significantly in the untreated diabetic rats(P<0.01).Insulin improved all the above changes in the diabetic rats(P<0.01).2.The optical density value of RAGE protein and expression of RAGE mRNA were positively correlated with the glycosylated hemoglobin in the diabetic rats(r=0.656, P<0.01;r=0.535,P<0.05).The expression of RAGE mRNA was negatively correlated with the femoral BMD,serum OCN and BV/TV(r=-0.583,P<0.01;r= -0.519,P<0.05;r=-0.564,P<0.05),while positively correlated with ES/BS(r =0.535,P<0.05).There was no correlation between the expression of RAGE and hydroxyproline exclusion and serum tartrate-resistant acid phosphatase activity.The expression of RAGE mRNA was positively correlated with the expression of RANKL mRNA and RANKL/OPG(r=0.555,P<0.05;r=0.651,P<0.01),and negatively correlated with the expression of IGF-1 mRNA(r=-0.459,P<0.05).There were negative correlations between the expression of IGF-1 mRNA and RANKL mRNA and RANKL/OPG(r=-0.672,P<0.01;r=-0.567,P<0.05).
     Conclusions:1.AGEs accumulated in the diabetes induce both the protein and mRNA expression of its receptor,RAGE.2.The increased RAGE in bones might play a role in the bone loss of the diabetic rats through stimulating the osteoclasts activities and inhibit the osteoblasts by increasing the expression of RANKL.3.The increased expression of RAGE may be associated with the decreased expression of IGF-1.The latter impacts the bone remodeling directly or indirectly through the OPG/RANKL/RANK axis in diabetic rats.
引文
1.Kalu DN.The ovariectomized rat model of postmenopausal bone loss.Bone Miner,1991.15(3):175-191.
    2.Morrison L and Bogan I.Bone development in diabetic children:a roentgen study.Am J Med Sci,1927.174:313.
    3.Albright F and Reifenstein E.Parathyroid glands and metabolic bone disease:selected studies.Williams and Wilkins.Baltimore.1948.
    4.Thrailkill KM,Lumpkin CK,Jr.,Bunn RC,et al.Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues.Am J Physiol Endocrinol Metab,2005.289(5):E735-745.
    5.Ahmad T,Ohlsson C,Saaf M,et al.Skeletal changes in type-2 diabetic Goto-Kakizaki rats.J Endocrinol,2003.178(1):111-116.
    6.Amir G.Rosenmann E,Sherman Y,et al.Osteoporosis in the Cohen diabetic rat:correlation between histomorphometric changes in bone and microangiopathy.Lab Invest,2002.82(10):1399-1405.
    7.郭啸华,刘志红,李恒,等.高糖高脂饮食诱导的2型糖尿病大鼠模型及其肾病特点.中国糖尿病杂志,2002.10(5):290-294.
    8.(O|¨)stenson CG.The Goto-Kakizaki rat.,in Animal Models in Diabetes:A Primer (Frontiers in Animal Diabetes Research).Sima A and Shafrir,E,Editors.2001,Harwood Academic Publishers:Amsterdam.197-211..
    9.Halstead LR,Weinstein RS,Cheng SL,et al.Comparison of 22-oxacalcitriol and 1,25(OH)2D3 on bone metabolism in young X-linked hypophosphatemic male mice.Am J Physiol,1996.270(1 Pt 1):E141-147.
    10.Turner CH and Burr DB.Basic biomechanical measurements of bone:a tutorial.Bone,1993.14(4):595-608.
    11.Miyakoshi N,Sato K,Abe T,et al.Histomorphometric evaluation of the effects of ovariectomy on bone turnover in rat caudal vertebrae.Calcif Tissue Int,1999.64(4):318-324.
    12.Abe T,Sato K,Miyakoshi N,et al.Trabecular remodeling processes in the ovariectomized rat:modified node-strut analysis.Bone,1999.24(6):591-596.
    13.Parfitt AM,Drezner MK,Glorieux FH,et al.Bone histomorphometry:standardization of nomenclature,symbols,and units.Report of the ASBMR Histomorphometry Nomenclature Committee.J Bone Miner Res,1987.2(6):595-610.
    14.Matthews DR,Hosker JP,Rudenski AS,et al.Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.Diabetologia,1985.28(7):412-419.
    15.Zhang F,Ye C,Li G,et al.The rat model of type 2 diabetic mellitus and its glycometabolism characters.Exp Anim,2003.52(5):401-407.
    16.Ding SY,Shen ZF,Chen YT,et al.Pioglitazone can ameliorate insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats.Acta Pharmacol Sin,2005.26(5):575-580.
    17.Blondel O,Bailbe D and Portha B.Insulin resistance in rats with non-insulin-dependent diabetes induced by neonatal(5 days) streptozotocin:evidence for reversal following phlorizin treatment.Metabolism,1990.39(8):787-793.
    18.康有厚 和 池芝盛.胰岛素抵抗和非胰岛素依赖型糖尿病.中华内科杂志,1992.31(1):42-45.
    19.李光伟,陈燕燕,张景玲,等.胰岛素抵抗是糖耐量正常人群糖耐量恶化的最重要危险因素.中华内分泌代谢杂志,2000.16(2):74-77.
    20.Kitahara Y,Miura K,Takesue K,et al.Decreased blood glucose excursion by nateglinide ameliorated neuropathic changes in Goto-Kakizaki rats,an animal model of non-obese type 2 diabetes.Metabolism,2002.51(11):1452-1457.
    21.Cline GW,Johnson K,Regittnig W,et al.Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty(fa/fa) rats.Diabetes,2002.51(10):2903-2910.
    22.Kim BM,Han YM,Shin YJ,et al.Clusterin expression during regeneration of pancreatic islet cells in streptozotocin-induced diabetic rats.Diabetologia,2001.44(12):2192-2202.
    23. Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism, 2000.49(11): 1390-1394.
    
    24. Fueger PT, Bracy DP, Malabanan CM, et al. Hexokinase II overexpression improves exercise-stimulated but not insulin-stimulated muscle glucose uptake in high-fat-fed C57BL/6J mice. Diabetes, 2004.53(2): 306-314.
    
    25. Mithieux G, Guignot L, Bordet JC, et al. Intrahepatic mechanisms underlying the effect of metformin in decreasing basal glucose production in rats fed a high-fat diet. Diabetes, 2002.51(1): 139-143.
    
    26. Reimer MK and Ahren B. Altered beta-cell distribution of pdx-1 and GLUT-2 after a short-term challenge with a high-fat diet in C57BL/6J mice. Diabetes,2002. 51 Suppl 1: S138-143.
    
    27. Wang HJ, Jin YX, Shen W, et al. Low dose streptozotocin (STZ) combined with high energy intake can effectively induce type 2 diabetes through altering the related gene expression. Asia Pac J Clin Nutr, 2007.16 Suppl 1: 412-417.
    
    28. Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res, 2005.52(4): 313-320.
    
    29. Kemink SA, Hermus AR, Swinkels LM, et al. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Invest, 2000.23(5): 295-303.
    
    30. Bouillon R. Diabetic bone disease. Calcif Tissue Int, 1991.49(3): 155-160.
    31.Botolin S, Faugere MC, Malluche H, et al. Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology, 2005.146(8): 3622-3631.
    
    32. Nicodemus KK and Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care, 2001. 24(7): 1192-1197.
    
    33. Isaia GC, Ardissone P, Di Stefano M, et al. Bone metabolism in type 2 diabetes mellitus. Acta Diabetol, 1999.36(1-2): 35-38.
    
    34. Schwartz AV, Sellmeyer DE, Ensrud KE, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab,2001.86(1): 32-38.
    
    35. Krakauer JC, McKenna MJ, Buderer NF, et al. Bone loss and bone turnover in diabetes. Diabetes, 1995. 44(7): 775-782.
    
    36. Inzerillo AM and Epstein S. Osteoporosis and diabetes mellitus. Rev Endocr Metab Disord, 2004.5(3): 261-268.
    
    37. Dennison EM, Syddall HE, Aihie Sayer A, et al. Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study: evidence for an indirect effect of insulin resistance?Diabetologia, 2004.47(11): 1963-1968.
    
    38. Rzonca SO, Suva LJ, Gaddy D, et al. Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology, 2004.145(1): 401-406.
    
    39. Soroceanu MA, Miao D, Bai XY, et al. Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol, 2004.183(1):203-216.
    
    40. Verhaeghe J, Suiker AM, Visser WJ, et al. The effects of systemic insulin,insulin-like growth factor-I and growth hormone on bone growth and turnover in spontaneously diabetic BB rats. J Endocrinol, 1992.134(3): 485-492.
    
    41. Tuominen JT, Impivaara O, Puukka P, et al. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care, 1999.22(7): 1196-1200.
    
    42. Hanley DA, Brown JP, Tenenhouse A, et al. Associations among disease conditions, bone mineral density, and prevalent vertebral deformities in men and women 50 years of age and older: cross-sectional results from the Canadian Multicentre Osteoporosis Study. J Bone Miner Res, 2003. 18(4):784-790.
    
    43. Strotmeyer ES, Cauley JA, Schwartz AV, et al. Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: The Health, Aging, and Body Composition Study. J Bone Miner Res, 2004.19(7): 1084-1091.
    
    44. Lill CA, Hesseln J, Schlegel U, et al. Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. J Orthop Res, 2003. 21(5):836-842.
    45.秦岭 和 梁国穗.骨生物力学在防止骨质疏松药物开发中的应用基础(一).中国骨质疏松杂志,2000.6(1):23-25.
    46.崔林 和 刘成林.基础骨生物力学.中国骨质疏松杂志,1997.3(4):82-85.
    47.Augat P,Reeb H and Claes LE.Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell.J Bone Miner Res,1996.11(9):1356-1363.
    48.Fuse H,Fukumoto S,Sone H,et al.A new synthetic steroid,osaterone acetate (TZP-4238),increases cortical bone mass and strength by enhancing bone formation in ovariectomized rats.J Bone Miner Res,1997.12(4):590-597.
    49.Kanter M,Altan MF,Donmez S,et al.The effects of quercetin on bone minerals,biomechanical behavior,and Structure in streptozotocin-induced diabetic rats.Cell Biochem Funct,2007.25(6):747-752.
    50.刘忠厚.骨矿与临床.第1版.北京:中国科学技术出版.2006,353-356.
    51.Lian JB and Stein GS.Transcriptional control of vitamin D-regulated proteins.J Cell Biochem,1992.49(1):37-45.
    52.Hickman J and McElduff A.Insulin promotes growth of the cultured rat osteosarcoma cell line UMR-106-01:an osteoblast-like cell.Endocrinology,1989.124(2):701-706.
    53.Ituarte EA,Ituarte HG,Iida-Klein A,et al.Characterization of insulin binding in the UMR-106 rat osteoblastic osteosarcoma cell.J Bone Miner Res,1989.4(1):69-73.
    54.Gopalakrishnan V,Vignesh RC,Arunakaran J,et al.Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages.Biochem Cell Biol,2006.84(1):93-101.
    55.Botolin S and McCabe LR.Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways.J Cell Biochem,2006.99(2):411-424.
    56.Verhaeghe J,van Herck E,Visser WJ,et al.Bone and mineral metabolism in BB rats with long-term diabetes.Decreased bone turnover and osteoporosis. Diabetes,1990.39(4):477-482.
    57.Sasaki T,Kaneko H,RRamamurthy NS,et al.Tetracycline administration restores osteoblast structure and function during experimental diabetes.Anat Rec,1991.231(1):25-34.
    58.于顺禄,白仁骁,郭若霖,等.骨重建过程“四环素活体标记”骨组织形态计量学指标在骨质疏松中的应用.中国体视学与图像分析,2003.8(2):119-123.
    59.Liu R,Bal HS,Desta T,et al.Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation.J Dent Res,2006.85(6):510-514.
    60.Balint E,Szabo P,Marshall CF,et al.Glucose-induced inhibition of in vitro bone mineralization.Bone,2001.28(1):21-28.
    61.Cutrim DM,Pereira FA,de Paula FJ,et al.Lack of relationship between glycemic control and bone mineral density in type 2 diabetes mellitus.Braz J Med Biol Res,2007.40(2):221-227.
    62.Oz SG,Guven GS,Kilicarslan A,et al.Evaluation of bone metabolism and bone mass in patients with type-2 diabetes mellitus.J Natl Med Assoc,2006.98(10):1598-1604.
    63.Olmos JM,Perez-Castrillon JL,Garcia MT,et al.Bone densitometry and biochemical bone remodeling markers in type 1 diabetes mellitus.Bone Miner,1994.26(1):1-8.
    64.Williams JP,Blair HC,McDonald JM,et al.Regulation of osteoclastic bone resorption by glucose.Biochem Biophys Res Commun,1997.235(3):646-651.
    65.Morohoshi M,Fujisawa K,Uchimura I,et al.Glucose-dependent interleukin 6and tumor necrosis factor production by human peripheral blood monocytes in vitro.Diabetes,1996.45(7):954-959.
    66.Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles.1997.8(2):260-270.
    67.Selby PL,Shearing PA and Marshall SM.Hydroxyproline excretion is increased in diabetes mellitus and related to the presence of microalbuminuria.Diabet Med,1995.12(3):240-243.
    68.Rosato MT,Schneider SH and Shapses SA.Bone turnover and insulin-like growth factor Ⅰ levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus.Calcif Tissue Int,1998.63(2):107-111.
    69.Lee NK,Sowa H,Hinoi E,et al.Endocrine regulation of energy metabolism by the skeleton.Cell,2007.130(3):456-469.
    70.Bouillon R,Bex M,Van Herck E,et al.Influence of age,sex,and insulin on osteoblast function:osteoblast dysfunction in diabetes mellitus.J Clin Endocrinol Metab,1995.80(4):1194-1202.
    71.李莉 和 刘英敏.2型糖尿病患者骨密度改变的初探.中华内分泌代谢杂志,1999.15(1):23-25.
    72.Temelkova-Kurktschiev T,Henkel E,Koehler C,et al.Subclinical inflammation in newly detected Type Ⅱ diabetes and impaired glucose tolerance.Diabetologia,2002.45(1):151.
    73.Richardson AP and Tayek JA.Type 2 diabetic patients may have a mild form of an injury response:a clinical research center study.Am J Physiol Endocrinol Metab,2002.282(6):E1286-1290.
    74.Miyata T,Kawai R,Taketomi S,et al.Possible involvement of advanced glycation end-products in bone resorption.Nephrol Dial Transplant,1996.11Suppl 5:54-57.
    75.Kimble RB,Srivastava S,Ross FP,et al.Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-land tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production.J Biol Chem,1996.271(46):28890-28897.
    76.Kobayashi K,Takahashi N,Jimi E,et al.Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med, 2000.191(2): 275-286.
    
    77. Jimi E, Nakamura I, Duong LT, et al. Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp Cell Res, 1999.247(1): 84-93.
    
    78. Gilbert L, He X, Farmer P, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology, 2000.141(11): 3956-3964.
    
    79. Adebanjo OA, Moonga BS, Yamate T, et al. Mode of action of interleukin-6 on mature osteoclasts. Novel interactions with extracellular Ca2+ sensing in the regulation of osteoclastic bone resorption. J Cell Biol, 1998. 142(5):1347-1356.
    
    80. Hofbauer LC, Khosla S, Dunstan CR, et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res, 2000.15(1): 2-12.
    
    81.Kotake S, Sato K, Kim KJ, et al. Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J Bone Miner Res, 1996. 11(1):88-95.
    
    82. Kuroki T, Shingu M, Koshihara Y, et al. Effects of cytokines on alkaline phosphatase and osteocalcin production, calcification and calcium release by human osteoblastic cells. Br J Rheumatol, 1994.33(3): 224-230.
    
    83. Strand V and Kavanaugh AF. The role of interleukin-1 in bone resorption in rheumatoid arthritis. Rheumatology (Oxford), 2004. 43 Suppl 3: iii10-iii16.
    
    84. Pfeilschifter J, Koditz R, Pfohl M, et al. Changes in proinflammatory cytokine activity after menopause. Endocr Rev, 2002. 23(1): 90-119.
    
    85. Heap J, Murray MA, Miller SC, et al. Alterations in bone characteristics associated with glycemic control in adolescents with type 1 diabetes mellitus. J Pediatr, 2004.144(1): 56-62.
    
    86. Hadjidakis DJ, Raptis AE, Sfakianakis M, et al. Bone mineral density of both genders in Type 1 diabetes according to bone composition. J Diabetes Complications, 2006. 20(5): 302-307.
    87.Srinivasan K and Ramarao P.Animal models in type 2 diabetes research:an overview.Indian J Med Res,2007.125(3):451-472.
    88.Ducy P,Amling M,Takeda S,et al.Leptin inhibits bone formation through a hypothalamic relay:a central control of bone mass.Cell,2000.100(2):197-207.
    89.Albala C,Yanez M,Devoto E,et al.Obesity as a protective factor for postmenopausal osteoporosis.Int J Obes Relat Metab Disord,1996.20(11):1027-1032.
    1. Miyata T, Notoya K, Yoshida K, et al. Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol, 1997. 8(2):260-270.
    
    2. Theoleyre S, Wittrant Y, Tat SK, et al. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev,2004.15(6): 457-475.
    
    3. Miyakoshi N, Kasukawa Y, Linkhart TA, et al. Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology, 2001.142(10): 4349-4356.
    
    4. Heald A, Kaushal K, Anderson S, et al. Effects of hormone replacement therapy on insulin-like growth factor (IGF)-I, IGF-II and IGF binding protein (IGFBP)-1 to IGFBP-4: implications for cardiovascular risk. Gynecol Endocrinol, 2005.20(3): 176-182.
    
    5. McCarthy TL, Ji C, Shu H, et al. 17beta-estradiol potently suppresses cAMP-induced insulin-like growth factor-I gene activation in primary rat osteoblast cultures. J Biol Chem,1997.272(29): 18132-18139.
    
    6. Delany AM, Durant D and Canalis E. Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol, 2001.15(10): 1781-1789.
    
    7. McCarthy AD, Etcheverry SB and Cortizo AM. Effect of advanced glycation endproducts on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development. Acta Diabetol, 2001.38(3): 113-122.
    
    8. Giardino I, Edelstein D and Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest, 1994.94(1): 110-117.
    
    9. Kaji Y, Amano S, Usui T, et al. Expression and function of receptors for advanced glycation end products in bovine corneal endothelial cells. Invest Ophthalmol Vis Sci, 2003. 44(2):521-528.
    
    10. Pugliese G, Pricci F, Romeo G, et al. Upregulation of mesangial growth factor and extracellular matrix synthesis by advanced glycation end products via a receptor-mediated mechanism. Diabetes,1997.46(11):1881-1887.
    11.王瑞良 和 苏青.RAGE及其配体的临床意义研究进展.国际内分泌代谢杂志,2006.26(3):160-162.
    12.Ritthaler U,Deng Y,Zhang Y,et al.Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease.Am J Pathol,1995.146(3):688-694.
    13.Santana RB,Xu L,Chase HB,et al.A role for advanced glycation end products in diminished bone healing in type 1 diabetes.Diabetes,2003.52(6):1502-1510.
    14.Hein G,Wiegand R,Lehmann G,et al.Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis.Rheumatology(Oxford),2003.42(10):1242-1246.
    15.Ding KH,Wang ZZ,Hamrick MW,et al.Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss.Biochem Biophys Res Commun,2006.340(4):1091-1097.
    16.McCarthy AD,Etcheverry SB,Bruzzone L,et al.Non-enzymatic glycosylation of a type Ⅰcollagen matrix:effects on osteoblastic development and oxidative stress.BMC Cell Biol,2001.2:16.
    17.Hein G,Weiss C,Lehmann G,et al.Advanced glycation end product modification of bone proteins and bone remodelling:hypothesis and preliminary immunohistochemical findings.Ann Rheum Dis,2006.65(1):101-104.
    18.Schwartz AV.Diabetes Mellitus:Does it Affect Bone? Calcif Tissue Int,2003.73(6):515-519.
    19.Yamamoto T,Ozono K,Miyauchi A,et al.Role of advanced glycation end products in adynamic bone disease in patients with diabetic nephropathy.Am J Kidney Dis,2001.38(4Suppl 1):S161-164.
    20.Franke S,Siggelkow H,Wolf G,et al.Advanced glycation endproducts influence the mRNA expression of RAGE,RANKL and various osteoblastic genes in human osteoblasts.Arch Physiol Biochem,2007.113(3):154-161.
    21.McCarthy AD,Etcheverry SB,Bruzzone L,et al.Effects of advanced glycation end-products on the proliferation and differentiation of osteoblast-like cells.Mol Cell Biochem,1997.170(1-2):43-51.
    22.Cortizo AM,Lettieri MG,Barrio DA,et al.Advanced glycation end-products(AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases(ERK).Mol Cell Biochem,2003.250(1-2):1-10.
    23.Ogawa N,Yamaguchi T,Yano S,et al.The combination of high glucose and advanced glycation end-products(AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs.Horm Metab Res,2007.39(12):871-875.
    24.Alikhani M,Alikhani Z,Boyd C,et al.Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways.Bone,2007.40(2):345-353.
    25.Takagi M,Kasayama S,Yamamoto T,et al.Advanced glycation endproducts stimulate interleukin-6 production by human bone-derived cells.J Bone Miner Res,1997.12(3):439-446.
    26.蔡德鸿,陈宏 和 张桦.高度糖基化终产物对破骨细胞酸性磷酸酶和抗酒石酸酸性磷酸酶活性的影响.中国骨质疏松杂志,2002.8:300-302.
    27.Kume S,Kato S,Yamagishi S,et al.Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue,cartilage,and bone.J Bone Miner Res,2005.20(9):1647-1658.
    28.Stitt AW,Hughes SJ,Canning P,et al.Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor.Diabetologia,2004.47(10):1735-1746.
    29.Gu L,Hagiwara S,Fan Q,et al.Role of receptor for advanced glycation end-products and signalling events in advanced glycation end-product-induced monocyte chemoattractant protein-1 expression in differentiated mouse podocytes.Nephrol Dial Transplant,2006.21(2):299-313.
    30.Charoonpatrapong K,Shah R,Robling AG,et al.HMGB 1 expression and release by bone cells.J Cell Physiol,2006.207(2):480-490.
    31.Bidweil JP,Yang J and Robling AG.Is HMGB1 an osteocyte alarmin? J Cell Biochem,2007.
    32.Zhou Z,Han JY,Xi CX,et al.HMGB1 Regulates RANKL-Induced Osteoclastogenesis in a Manner Dependent on RAGE.J Bone Miner Res,2008.23(7):1084-1096.
    33.Zhou Z,Immel D,Xi CX,et al.Regulation of osteoclast function and bone mass by RAGE.J Exp Med,2006.203(4):1067-1080.
    34.Simonet WS,Lacey DL,Dunstan CR,et al.Osteoprotegerin:a novel secreted protein involved in the regulation of bone density.Cell,1997.89(2):309-319.
    35.Wada T,Nakashima T,Hiroshi N,et al.RANKL-RANK signaling in osteoclastogenesis and bone disease.Trends Mol Med,2006.12(1):17-25.
    36.Suda T,Takahashi N,Udagawa N,et al.Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families.Endocr Rev,1999.20(3):345-357.
    37.Boyce BF and Xing L.Biology of RANK,RANKL,and osteoprotegerin.Arthritis Res Ther,2007.9 Suppl 1:S1.
    38.Morinaga T,Nakagawa N,Yasuda H,et al.Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis-inhibitory factor.Eur J Biochem,1998.254(3):685-691.
    39.Hsu H,Lacey DL,Dunstan CR,et al.Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand.Proc Natl Acad Sci U S A,1999.96(7):3540-3545.
    40.Roux S and Orcel P.Bone loss.Factors that regulate osteoclast differentiation:an update.Arthritis Res,2000.2(6):451-456.
    41.Xing L,Schwarz EM and Boyce BF.Osteoclast precursors,RANKL/RANK,and immunology.Immunol Rev,2005.208:19-29.
    42.Bezerra MC,Carvalho JF,Prokopowitsch AS,et al.RANK,RANKL and osteoprotegerin in arthritic bone loss.Braz J Med Biol Res,2005.38(2):161-170.
    43.Bucay N,Sarosi I,Dunstan CR,et al.osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification.Genes Dev,1998.12(9):1260-1268.
    44.Price PA,June HH,Buckley JR,et al.Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D.Arterioscler Thromb Vasc Biol,2001.21(10):1610-1616.
    45.Anand DV,Lahiri A,Lim E,et al.The relationship between plasma osteoprotegerin levels and coronary artery calcification in uncomplicated type 2 diabetic subjects.J Am Coll Cardiol,2006.47(9):1850-1857.
    46.Duarte PM,Neto JB,Casati MZ,et al.Diabetes modulates gene expression in the gingival tissues of patients with chronic periodontitis.Oral Dis,2007.13(6):594-599.
    47.Kayal RA,Tsatsas D,Bauer MA,et al.Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity.J Bone Miner Res,2007.22(4):560-568.
    48.周玮,张南雁 和 姬秋和.不同浓度葡萄糖对MG63细胞株护骨素及其配件mRNA表达的影响.医学临床,2005.22(12):1651-1653.
    49.Secchiero P,Corallini F,Pandolfi A,et al.An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction.Am J Pathol,2006.169(6):2236-2244.
    50.Samelson EJ,Broe KE,Demissie S,et al.Increased Plasma Osteoprotegerin Concentrations are Associated with Indices of Bone Strength of the Hip.J Clin Endocrinol Metab,2008.93(5):1789-1795.
    51.Galluzzi F,Stagi S,Salti R,et al.Osteoprotegerin serum levels in children with type 1 diabetes:a potential modulating role in bone status.Eur J Endocrinol,2005.153(6):879-885.
    52.Rasmussen LM,Tarnow L,Hansen TK,et al.Plasma osteoprotegerin levels are associated with glycaemic status,systolic blood pressure,kidney function and cardiovascular morbidity in type 1 diabetic patients.Eur J Endocrinol,2006.154(1):75-81.
    53.Suzuki K,Kurose T,Takizawa M,et al.Osteoclastic function is accelerated in male patients with type 2 diabetes mellitus:the preventive role of osteoclastogenesis inhibitory factor/osteoprotegerin(OCIF/OPG) on the decrease of bone mineral density.Diabetes Res Clin Pract,2005.68(2):117-125.
    54.Boyce BF and Xing L.Biology of RANK,RANKL,and osteoprotegerin.Arthritis Res Ther,2007.9(S1).
    55.Bikle D,Majumdar S,Laib A,et al.The skeletal structure of insulin-like growth factor I-deficient mice.J Bone Miner Res,2001.16(12):2320-2329.
    56.Camacho-Hubner C,Woods KA,Miraki-Moud F,et al.Effects of recombinant human insulin-like growth factor Ⅰ(IGF-Ⅰ) therapy on the growth hormone-IGF system of a patient with a partial IGF-I gene deletion.J Clin Endocrinol Metab,1999.84(5):1611-1616.
    57.Zhao G,Monier-Faugere MC,Langub MC,et al.Targeted overexpression of insulin-like growth factor Ⅰ to osteoblasts of transgenic mice:increased trabecular bone volume without increased osteoblast proliferation.Endocrinology,2000.141(7):2674-2682.
    58. Jiang J, Lichtler AC, Gronowicz GA, et al. Transgenic mice with osteoblast-targeted insulin-like growth factor-I show increased bone remodeling. Bone, 2006.39(3): 494-504.
    
    59. Rosen CJ. Serum insulin-like growth factors and insulin-like growth factor-binding proteins: clinical implications. Clin Chem, 1999.45(8 Pt 2): 1384-1390.
    
    60. McCarthy TL and Centrella M. Local IGF-I expression and bone formation. Growth Horm IGF Res, 2001.11(4): 213-219.
    
    61. Rosen CJ. Insulin-like growth factor I and bone mineral density: experience from animal models and human observational studies. Best Pract Res Clin Endocrinol Metab, 2004.18(3):423-435.
    
    62. Fang Y, Wang ZY, Mao Y, et al. Effects of insulin-like growth factor I on the development of osteoblasts in hyperglycemia. Diabetes Res Clin Pract, 2006. 73(1): 95-97.
    
    63. Rubin J, Ackert-Bicknell CL, Zhu L, et al. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo. J Clin Endocrinol Metab,2002.87(9): 4273-4279.
    
    64. Nakasaki M, Yoshioka K, Miyamoto Y, et al. IGF-I secreted by osteoblasts acts as a potent chemotactic factor for osteoblasts. Bone, 2008.43(5):869-879.
    
    65. Mochizuki H, Hakeda Y, Wakatsuki N, et al. Insulin-like growth factor-I supports formation and activation of osteoclasts. Endocrinology, 1992.131(3): 1075-1080.
    
    66. Wang Y, Nishida S, Elalieh HZ, et al. Role of IGF-I signaling in regulating osteoclastogenesis.J Bone Miner Res, 2006.21(9): 1350-1358.
    
    67. Yakar S, Liu JL, Stannard B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci U S A, 1999.96(13): 7324-7329.
    
    68. Ueki I, Ooi GT, Tremblay ML, et al. Inactivation of the acid labile subunit gene in mice results in mild retardation of postnatal growth despite profound disruptions in the circulating insulin-like growth factor system. Proc Natl Acad Sci U S A, 2000. 97(12): 6868-6873.
    
    69. Bach LA, Dean R, Youssef S, et al. Aminoguanidine ameliorates changes in the IGF system in experimental diabetic nephropathy. Nephrol Dial Transplant, 2000.15(3): 347-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700