用户名: 密码: 验证码:
神经退行性疾病的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病( Alzheimer’s disease , AD)和帕金森氏病( Parkinson’s disease,PD)是两种最为常见的老年性神经退行性疾病。在这两种疾病中,患者脑内都对称性丢失了某些特定的神经元,并且这些特定的神经元丢失引起了患者的运动,感觉或是意识功能障碍。大部分的AD和PD病例都发生于晚年,表现为没有明显遗传特征的散发疾病,小部分则呈现为早期发生并与特定基因突变相关的遗传性病例。这两种疾病的病理发生机制尚不清楚,研究显示基因多态性、生活环境以及应激等多种因素都可以影响个体的易感性。到目前为止,还没有有效的药物可以治愈AD和PD。
     Tau蛋白的过度磷酸化是AD的一个主要病理特征,而蛋白激酶A (protein kinase A, PKA)则是AD样过度磷酸化Tau蛋白的关键激酶之一。为探讨Tau蛋白的异常磷酸化的机制,我们在大鼠双侧海马内定位注射PKA的激动剂异丙去甲肾上腺素(isoproterenol, ISO)。免疫印迹结果显示,在海马内注射0.02μM ISO能激活PKA并能引起Tau蛋白在PHF-1和tau-1等疾病相关磷酸化位点的过度磷酸化。同时,大鼠脑内还表现出过氧化应激激活的相关指征,如过氧化物歧化酶的激活及malondialdehyde (MDA)的升高。腹腔内预注射褪黑素能部分逆转ISO引起的Tau蛋白过度磷酸化。低剂量的褪黑素(1mg/kg)连续注射4周即能逆转Tau蛋白PHF-1位点的异常磷酸化。而高剂量的褪黑素(10mg/kg)连续注射2周就能逆转PHF-1和tau-1两个位点的过度磷酸化。同时,连续2周注射10mg/kg的褪黑素可以明显地抑制ISO引起的PKA过度激活、过氧化物歧化酶的激活及MDA的升高。我们的研究表明,ISO引起Tau蛋白过度磷酸化的机制可能不仅仅只是通过激活PKA,还包括引起过氧化应激。褪黑素则能同时抑制激酶激活和过氧化应激,从而降低Tau蛋白过度磷酸化。
     近年的研究表明,PINK1基因的突变能导致常染色体隐性PD,但PINK1的正常生理功能以及PINK1突变引起PD的病理机制尚不清楚。我们的研究表明,用RNA干扰的方法基因沉默果蝇的PINK1基因可以导致进行性发展的多巴胺能神经元丢失和果蝇小眼的退行性病变,而过表达人的PINK1基因可以逆转所有这些病理改变。同时,在果蝇体内表达人过氧化物歧化酶1也能抑制由PINK1基因沉默引起的神经退行性病变。给果蝇喂食抗氧化剂如过氧化物歧化酶1和维生素E也能明显地改善果蝇小眼的退行性改变。因此本研究提示果蝇的PINK1基因通过抑制过氧化损伤而起到保护神经元的作用,在因为PINK1基因突变而引起常染色体隐性PD的病人中,则可能由于正常PINK1基因功能的丢失而引起疾病。
     尽管PD患者脑中选择性神经元死亡和Lewy小体形成的机制尚不清楚,但近年来,通过对早发家族性的PD病例的分析,已在PD的分子遗传学研究方面取得了重大成果。目前,已发现至少有六个基因与家族性PD相关,其中α-synuclein、uchL1和LRRK2基因的突变可导致常染色体显性遗传PD,parkin、PINK1和DJ-1基因的突变则导致常染色体隐性PD。我们的研究表明,parkin、PINK1和DJ-1形成E3泛素连接酶复合体(以下称PPD复合体)以促进parkin底物的泛素化及降解。去除PINK1或DJ-1会导致过量表达的parkin底物降解减少,聚集增加。而PD相关的parkin和PINK1突变能抑制这一E3泛素连接酶复合体的正常功能。我们的研究发现了一个全新的由parkin、PINK1和DJ-1等PD相关基因产物而组成的E3泛素连接酶复合体,揭示了这些疾病基因的相关性和相互作用性。同时我们还发现疾病基因突变能抑制正常的E3泛素连接酶功能,从而可能导致疾病。
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common aging dependent neurodegenerative diseases. AD and PD are both characterized by a selective and symmetric loss of neurons in specific brain regions, resulting disruption of motor, sensory or cognitive nervous systems, eventually various severe disabilities of the affected individuals. Most cases of AD and PD occur sporadically and late in life, rare familial forms of these diseases are also identified. Studies of the familial forms of the diseases revealed number of mutations in different causative genes. The causes of sporadic cases of the diseases remain elusive. Genetic polymorphisms and/or environmental stresses are indicated to increase the vuleraibility of affected individuals. Currently, there is no cure for both AD and PD. Understanding the molecular mechanism of these dieases will be essential to design effective treatment stratatgies.
     Hyperphosphorylation of microtubule-associated protein tau at specific sites is a key pathological furture of AD. Protein kinase A (PKA) is a crucial kinase to generate AD-like hyperphosphorylation of tua protein in the cell. In the study presented in Chapter 1, we found that injection of isoproterenol (ISO), a PKA specific activator, into hippocampus of rat brain induced PKA overactivation, activation of superoxide dismutase (SOD), elevation of malondialdehyde (MDA), and eventual tau hyperphosphorylation. The results suggest that ISO causes oxidative stress in rat brain. Pre-infusion of melatonin intraperitoneally partially reversed ISO-induced tau hyperphosphorylation. Furthermore, melatonin inhibits ISO-induced PKA activation, enhanced SOD activity, decreased the level of MDA in rat brain tissues. This study suggested that ISO likely induce abnormal hyperphosphorylation of tau via activation of PKA and increase of oxidative stress. Melatonin protects against ISO-induced tau hyperphosphorylation through suppression of both PKA overactivation and oxidative stress.
     Mutations in the PINK1 gene are linked to autosomal recessive early onset familial form of PD. The physiological function of PINK1 and pathological abnormality of PD-associated PINK1 mutants are largely unknown. In studies presendeted in Chapeter 2, I show that inactivation of Drosophila PINK1 (dPINK1) using RNAi results in progressive loss of dopaminergic (DA) neurons and in ommatidial degeneration of the compound eye, which is rescued by expression of human PINK1 (hPINK1). Expression of human SOD1 suppresses neurodegeneration induced by dPINK1 inactivation. Moreover, treatment of dPINK1 RNAi flies with the antioxidants SOD and vitamin E significantly inhibits ommatidial degeneration. Thus, dPINK1 plays an essential role in maintaining neuronal survival by preventing neurons from undergoing oxidative stress, thereby suggesting a potential mechanism by which a reduction in PINK1 function leads to PD-associated neurodegeneration.
     Mutations in parkin, the PTEN-induced kinase 1 (PINK1) and DJ-1 are individually linked to autosomal recessive early-onset familial forms of PD. Despite the fact that mutations in these genes cause the same disease, their functional relationships and how respective disease-associated mutations cause selective neuronal loss and Lewy body formation are largely unknown. In the study presented in Chapter 4, we demonstrate that parkin, PINK1 and DJ-1 form a complex to promote ubiquitination and degradation of parkin substrates, including parkin itself and synphilin-1. Genetic ablation of either PINK1 or DJ-1 resulted in decreased acute degradation and increased accumulation of parkin substrates. PD-pathogenic parkin and PINK1 mutations impair degradation activity of the complex. This study identifies a novel functional ubiquitin E3 ligase complex consisting of parkin, PINK1 and DJ-1 and suggests that PD-pathogenic parkin, PINK1, or DJ-1 mutations disrupt E3 ligase activity of the complex, which may constitute a mechanism underlying PD pathogenesis.
引文
1. Muqit, M.M. and M.B. Feany, Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Rev Neurosci, 2002. 3(3): p. 237-43.
    2. Hardy, J. and K. Gwinn-Hardy, Genetic classification of primary neurodegenerative disease. Science, 1998. 282(5391): p. 1075-9.
    3. Palop, J.J., J. Chin, and L. Mucke, A network dysfunction perspective on neurodegenerative diseases. Nature, 2006. 443(7113): p. 768-73.
    4. Cutler, N.R. and J.J. Sramek, Review of the next generation of Alzheimer's disease therapeutics: challenges for drug development. Prog Neuropsychopharmacol Biol Psychiatry, 2001. 25(1): p. 27-57.
    5. Braak, H. and E. Braak, Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl), 1991. 82(4): p. 239-59.
    6. Silvestrelli, G., et al., Treatment of Alzheimer's disease: from pharmacology to a better understanding of disease pathophysiology. Mech Ageing Dev, 2006. 127(2): p. 148-57.
    7. Golde, T.E., The Abeta hypothesis: leading us to rationally-designed therapeutic strategies for the treatment or prevention of Alzheimer disease. Brain Pathol, 2005. 15(1): p. 84-7.
    8. Greenfield, J.P., et al., Cellular and molecular basis of beta-amyloid precursor protein metabolism. Front Biosci, 2000. 5: p. D72-83.
    9. Bartus, R.T., et al., The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982. 217(4558): p. 408-14.
    10. Coyle, J.T., D.L. Price, and M.R. DeLong, Alzheimer's disease: a disorder of cortical cholinergic innervation. Science, 1983. 219(4589): p. 1184-90.
    11. Farlow, M., et al., A controlled trial of tacrine in Alzheimer's disease. The Tacrine Study Group. Jama, 1992. 268(18): p. 2523-9.
    12. Rogers, S.L., et al., Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med, 1998. 158(9): p. 1021-31.
    13. Enz, A., et al., Pharmacologic and clinicopharmacologic properties of SDZ ENA 713, a centrally selective acetylcholinesterase inhibitor. Ann N Y Acad Sci, 1991. 640: p. 272-5.
    14. Gotz, M.E., et al., Platelet monoamine oxidase B activity in dementia. A 4-year follow-up. Dement Geriatr Cogn Disord, 1998. 9(2): p. 74-7.
    15. Birks, J. and L. Flicker, Selegiline for Alzheimer's disease. Cochrane Database Syst Rev, 2000(2): p. CD000442.
    16. Lee, H.G., et al., Tau phosphorylation in Alzheimer's disease: pathogen or protector? Trends Mol Med, 2005. 11(4): p. 164-9.
    17. Braak, H. and E. Braak, Evolution of neuronal changes in the course of Alzheimer's disease. J Neural Transm Suppl, 1998. 53: p. 127-40.
    18. Arriagada, P.V., et al., Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology, 1992. 42(3 Pt 1): p. 631-9.
    19. Salehi, A., J.D. Delcroix, and W.C. Mobley, Traffic at the intersection of neurotrophic factor signaling and neurodegeneration. Trends Neurosci, 2003. 26(2): p. 73-80.
    20. Alonso, A.D., et al., Interaction of tau isoforms with Alzheimer's disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem, 2001. 276(41): p. 37967-73.
    21. Alonso, A.C., I. Grundke-Iqbal, and K. Iqbal, Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med, 1996. 2(7): p. 783-7.
    22. Ebneth, A., et al., Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol, 1998. 143(3): p. 777-94.
    23. Spittaels, K., et al., Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol, 1999. 155(6): p. 2153-65.
    24. Morishima-Kawashima, M., et al., Hyperphosphorylation of tau in PHF. Neurobiol Aging, 1995. 16(3): p. 365-71; discussion 371-80.
    25. Lovestone, S. and C.H. Reynolds, The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience, 1997. 78(2): p. 309-24.
    26. Hanger, D.P., et al., New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry. J Neurochem, 1998. 71(6): p. 2465-76.
    27. Johnson, G.V. and J.A. Hartigan, Tau protein in normal and Alzheimer's disease brain: an update. J Alzheimers Dis, 1999. 1(4-5): p. 329-51.
    28. Avila, J., et al., Tau function and dysfunction in neurons: its role in neurodegenerative disorders. Mol Neurobiol, 2002. 25(3): p. 213-31.
    29. Lau, L.F., et al., Tau protein phosphorylation as a therapeutic target in Alzheimer's disease. Curr Top Med Chem, 2002. 2(4): p. 395-415.
    30. Singh, T.J., et al., Non-proline-dependent protein kinases phosphorylate several sites found in tau from Alzheimer disease brain. Mol Cell Biochem, 1996. 154(2): p. 143-51.
    31. Wang, J.Z., et al., Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Lett, 1998. 436(1): p. 28-34.
    32. Liu, S.J., et al., Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem, 2004. 279(48): p. 50078-88.
    33. Costa, E.J., R.H. Lopes, and M.T. Lamy-Freund, Permeability of pure lipid bilayers to melatonin. J Pineal Res, 1995. 19(3): p. 123-6.
    34. Shida, C.S., A.M. Castrucci, and M.T. Lamy-Freund, High melatonin solubility in aqueous medium. J Pineal Res, 1994. 16(4): p. 198-201.
    35. Brzezinski, A., Melatonin in humans. N Engl J Med, 1997. 336(3): p. 186-95.
    36. Wu, Y.H., et al., Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab, 2003. 88(12): p. 5898-906.
    37. Ferrari, E., et al., Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol, 2000. 35(9-10): p. 1239-50.
    38. Ohashi, Y., et al., Daily rhythm of serum melatonin levels and effect of light exposure in patients with dementia of the Alzheimer's type. Biol Psychiatry, 1999. 45(12): p. 1646-52.
    39. Liu, R.Y., et al., Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer's disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab, 1999. 84(1): p. 323-7.
    40. Zhou, J.N., et al., Early neuropathological Alzheimer's changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res, 2003. 35(2): p. 125-30.
    41. Savaskan, E., et al., Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer's disease patients. J Pineal Res, 2002. 32(1): p. 59-62.
    42. Baydas, G., et al., Inhibitory effects of melatonin on neural lipid peroxidation induced by intracerebroventricularly administered homocysteine. J Pineal Res, 2003. 34(1): p. 36-9.
    43. Allegra, M., et al., The chemistry of melatonin's interaction with reactive species. J Pineal Res, 2003. 34(1): p. 1-10.
    44. Lang, A.E. and A.M. Lozano, Parkinson's disease. First of two parts. N Engl J Med, 1998. 339(15): p. 1044-53.
    45. Lang, A.E. and A.M. Lozano, Parkinson's disease. Second of two parts. N Engl J Med, 1998. 339(16): p. 1130-43.
    46. Braak, H., et al., Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging, 2003. 24(2): p. 197-211.
    47. Moore, D.J., et al., Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci, 2005. 28: p. 57-87.
    48. Dawson, T.M. and V.L. Dawson, Molecular pathways of neurodegeneration in Parkinson's disease. Science, 2003. 302(5646): p. 819-22.
    49. Valente, E.M., et al., Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 2004. 304(5674): p. 1158-60.
    50. Paisan-Ruiz, C., et al., Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron, 2004. 44(4): p. 595-600.
    51. Zimprich, A., et al., Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004. 44(4): p. 601-7.
    52. Wood-Kaczmar, A., S. Gandhi, and N.W. Wood, Understanding the molecular causes of Parkinson's disease. Trends Mol Med, 2006. 12(11): p. 521-8.
    53. Chua, C.E. and B.L. Tang, alpha-synuclein and Parkinson's disease: the first roadblock. J Cell Mol Med, 2006. 10(4): p. 837-46.
    54. Clayton, D.F. and J.M. George, The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci, 1998. 21(6): p. 249-54.
    55. Uversky, V.N., A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn, 2003. 21(2): p. 211-34.
    56. Irizarry, M.C., et al., Characterization of the precursor protein of the non-A beta component of senile plaques (NACP) in the human central nervous system. J Neuropathol Exp Neurol, 1996. 55(8): p. 889-95.
    57. Kahle, P.J., et al., Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol, 2001. 159(6): p. 2215-25.
    58. Fortin, D.L., et al., Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci, 2004. 24(30): p. 6715-23.
    59. Abeliovich, A., et al., Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 2000. 25(1): p. 239-52.
    60. Davidson, W.S., et al., Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem, 1998. 273(16): p. 9443-9.
    61. Jenco, J.M., et al., Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry, 1998. 37(14): p. 4901-9.
    62. Cole, N.B., et al., Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein. J Biol Chem, 2002. 277(8): p. 6344-52.
    63. Murphy, D.D., et al., Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci, 2000. 20(9): p. 3214-20.
    64. Conway, K.A., J.D. Harper, and P.T. Lansbury, Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med, 1998. 4(11): p. 1318-20.
    65. Lashuel, H.A., et al., Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature, 2002. 418(6895): p. 291.
    66. Conway, K.A., et al., Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science, 2001. 294(5545): p. 1346-9.
    67. Bennett, M.C., et al., Degradation of alpha-synuclein by proteasome. J Biol Chem, 1999. 274(48): p. 33855-8.
    68. Lindersson, E., et al., Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biol Chem, 2004. 279(13): p. 12924-34.
    69. Snyder, H., et al., Aggregated and monomeric alpha-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function. J Biol Chem, 2003. 278(14): p. 11753-9.
    70. Petrucelli, L., et al., Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron, 2002. 36(6): p. 1007-19.
    71. Tanaka, M., et al., Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem, 2004. 279(6): p. 4625-31.
    72. Gosavi, N., et al., Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J Biol Chem, 2002. 277(50): p. 48984-92.
    73. Lee, M., et al., Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem, 2001. 76(4): p. 998-1009.
    74. Cuervo, A.M., et al., Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 2004. 305(5688): p. 1292-5.
    75. Ko, L., et al., Sensitization of neuronal cells to oxidative stress with mutated human alpha-synuclein. J Neurochem, 2000. 75(6): p. 2546-54.
    76. Tabrizi, S.J., et al., Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum Mol Genet, 2000. 9(18): p. 2683-9.
    77. Lucking, C.B., et al., Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med, 2000. 342(21): p. 1560-7.
    78. Lucking, C.B., et al., Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. The European Consortium on Genetic Susceptibility in Parkinson's Disease and the French Parkinson's Disease Genetics Study Group. Lancet, 1998. 352(9137): p. 1355-6.
    79. Mata, I.F., P.J. Lockhart, and M.J. Farrer, Parkin genetics: one model for Parkinson's disease. Hum Mol Genet, 2004. 13 Spec No 1: p. R127-33.
    80. Shimura, H., et al., Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet, 2000. 25(3): p. 302-5.
    81. Zhang, Y., et al., Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A, 2000. 97(24): p. 13354-9.
    82. Glickman, M.H. and A. Ciechanover, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 2002. 82(2): p. 373-428.
    83. Ciechanover, A. and P. Brundin, The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron, 2003. 40(2): p. 427-46.
    84. Smalle, J. and R.D. Vierstra, The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004. 55: p. 555-90.
    85. Mizuno, Y., et al., Parkin and Parkinson's disease. Curr Opin Neurol, 2001. 14(4): p. 477-82.
    86. Chung, K.K., V.L. Dawson, and T.M. Dawson, The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci, 2001. 24(11 Suppl): p. S7-14.
    87. Shimura, H., et al., Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science, 2001. 293(5528): p. 263-9.
    88. Imai, Y., et al., An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell, 2001. 105(7): p. 891-902.
    89. Huynh, D.P., et al., The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum Mol Genet, 2003. 12(20): p. 2587-97.
    90. Staropoli, J.F., et al., Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron, 2003. 37(5): p. 735-49.
    91. Corti, O., et al., The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum Mol Genet, 2003. 12(12): p. 1427-37.
    92. Ren, Y., J. Zhao, and J. Feng, Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci, 2003. 23(8): p. 3316-24.
    93. Feany, M.B. and L.J. Pallanck, Parkin: a multipurpose neuroprotective agent? Neuron, 2003. 38(1): p. 13-6.
    94. Hatano, Y., et al., Novel PINK1 mutations in early-onset parkinsonism. Ann Neurol, 2004. 56(3): p. 424-7.
    95. Gandhi, S., et al., PINK1 protein in normal human brain and Parkinson's disease. Brain, 2006. 129(Pt 7): p. 1720-31.
    96. Valente, E.M., et al., PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol, 2004. 56(3): p. 336-41.
    97. Bossy-Wetzel, E., R. Schwarzenbacher, and S.A. Lipton, Molecular pathways to neurodegeneration. Nat Med, 2004. 10 Suppl: p. S2-9.
    98. Bonifati, V., B.A. Oostra, and P. Heutink, Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson's disease. J Mol Med, 2004. 82(3): p. 163-74.
    99. van Duijn, C.M., et al., Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet, 2001. 69(3): p. 629-34.
    100. Lockhart, P.J., et al., DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function. J Med Genet, 2004. 41(3): p. e22.
    101. Morris, C.M., et al., Polymorphism in the human DJ-1 gene is not associated with sporadic dementia with Lewy bodies or Parkinson's disease. Neurosci Lett, 2003. 352(2): p. 151-3.
    102. Bandopadhyay, R., et al., The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain, 2004. 127(Pt 2): p. 420-30.
    103. Olzmann, J.A., et al., Familial Parkinson's disease-associated L166P mutation disrupts DJ-1 protein folding and function. J Biol Chem, 2004. 279(9): p. 8506-15.
    104. Neumann, M., et al., Pathological properties of the Parkinson's disease-associated protein DJ-1 in alpha-synucleinopathies and tauopathies: relevance for multiple system atrophy and Pick's disease. Acta Neuropathol (Berl), 2004. 107(6): p. 489-96.
    105. Rizzu, P., et al., DJ-1 colocalizes with tau inclusions: a link between parkinsonism and dementia. Ann Neurol, 2004. 55(1): p. 113-8.
    106. Moore, D.J., et al., Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet, 2005. 14(1): p. 71-84.
    107. Canet-Aviles, R.M., et al., The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A, 2004. 101(24): p. 9103-8.
    108. Mitsumoto, A., et al., Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res, 2001. 35(3): p. 301-10.
    109. Taira, T., et al., DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep, 2004. 5(2): p. 213-8.
    110. Yokota, T., et al., Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun, 2003. 312(4): p. 1342-8.
    111. Bonifati, V., et al., Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003. 299(5604): p. 256-9.
    112. Miller, D.W., et al., L166P mutant DJ-1, causative for recessive Parkinson's disease, is degraded through the ubiquitin-proteasome system. J Biol Chem, 2003. 278(38): p. 36588-95.
    113. Takahashi-Niki, K., et al., Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease patients. Biochem Biophys Res Commun, 2004. 320(2): p. 389-97.
    114. Berg, D., et al., Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson's disease*. Brain, 2005. 128(Pt 12): p. 3000-11.
    115. Khan, N.L., et al., Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson's disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain, 2005. 128(Pt 12): p. 2786-96.
    116. Mata, I.F., et al., Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics, 2005. 6(4): p. 171-7.
    117. Farrer, M., et al., LRRK2 mutations in Parkinson disease. Neurology, 2005. 65(5): p. 738-40.
    118. Zabetian, C.P., et al., A clinic-based study of the LRRK2 gene in Parkinson disease yields new mutations. Neurology, 2005. 65(5): p. 741-4.
    119. Lesage, S., et al., LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N Engl J Med, 2006. 354(4): p. 422-3.
    120. Lesage, S., et al., LRRK2 haplotype analyses in European and North African families with Parkinson disease: a common founder for the G2019S mutation dating from the 13th century. Am J Hum Genet, 2005. 77(2): p. 330-2.
    121. Aasly, J.O., et al., Clinical features of LRRK2-associated Parkinson's disease in central Norway. Ann Neurol, 2005. 57(5): p. 762-5.
    122. Simon-Sanchez, J., et al., LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain. Eur J Neurosci, 2006. 23(3): p. 659-66.
    123. Manning, G., et al., The protein kinase complement of the human genome. Science, 2002. 298(5600): p. 1912-34.
    124. Bosgraaf, L. and P.J. Van Haastert, Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta, 2003. 1643(1-3): p. 5-10.
    125. Andrade, M.A., C. Perez-Iratxeta, and C.P. Ponting, Protein repeats: structures, functions, and evolution. J Struct Biol, 2001. 134(2-3): p. 117-31.
    126. Reiter, R.J., Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol, 1998. 56(3): p. 359-84.
    127. Koh, J.Y., L.L. Yang, and C.W. Cotman, Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res, 1990. 533(2): p. 315-20.
    128. Lee, V.M., et al., A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science, 1991. 251(4994): p. 675-8.
    129. Smith, M.A., et al., Radical AGEing in Alzheimer's disease. Trends Neurosci, 1995. 18(4): p. 172-6.
    130. Markesbery, W.R., Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med, 1997. 23(1): p. 134-47.
    131. Srinivasan, V., Melatonin oxidative stress and neurodegenerative diseases. Indian J Exp Biol, 2002. 40(6): p. 668-79.
    132. Pratico, D., et al., Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci, 2001. 21(12): p. 4183-7.
    133. Busciglio, J., et al., beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron, 1995. 14(4): p. 879-88.
    134. Limson, J., T. Nyokong, and S. Daya, The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study. J Pineal Res, 1998. 24(1): p. 15-21.
    135. Liu, S.J. and J.Z. Wang, Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin, 2002. 23(2): p. 183-7.
    136. Li, S.P., et al., Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res, 2004. 36(3): p. 186-91.
    137. Avila, J., Tau aggregation into fibrillar polymers: taupathies. FEBS Lett, 2000. 476(1-2): p. 89-92.
    138. Pei, J.J., et al., Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol, 1997. 56(1): p. 70-8.
    139. BenZikri, A., Cerenkov counting. Health Phys, 2000. 79(5 Suppl): p. S70-1.
    140. Hsu, C.H., B.C. Chi, and J.E. Casida, Melatonin reduces phosphine-induced lipid and DNA oxidation in vitro and in vivo in rat brain. J Pineal Res, 2002. 32(1): p. 53-8.
    141. Shen, Y.X., et al., The protective effects of melatonin from oxidative damage induced by amyloid beta-peptide 25-35 in middle-aged rats. J Pineal Res, 2002. 32(2): p. 85-9.
    142. Shen, Y.X., et al., Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res, 2002. 32(3): p. 173-8.
    143. Frank, D.A. and M.E. Greenberg, CREB: a mediator of long-term memory from mollusks to mammals. Cell, 1994. 79(1): p. 5-8.
    144. Musshoff, U., et al., Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus, 2002. 12(2): p. 165-73.
    145. Picinato, M.C., et al., Melatonin inhibits insulin secretion and decreases PKA levels without interfering with glucose metabolism in rat pancreatic islets. J Pineal Res, 2002. 33(3): p. 156-60.
    146. Peschke, E., et al., Receptor (MT(1)) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J Pineal Res, 2002. 33(2): p. 63-71.
    147. Rathore, N., et al., Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues. Pharmacol Res, 1998. 38(4): p. 297-303.
    148. Mazur, A., S. Green, and E. Shorr, The oxidation of adrenaline by ferritin iron and hydrogen peroxide. J Biol Chem, 1956. 220(1): p. 227-35.
    149. Smith, M.A., et al., Oxidative stress in Alzheimer's disease. Biochim Biophys Acta, 2000. 1502(1): p. 139-44.
    150. Sayre, L.M., M.A. Smith, and G. Perry, Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem, 2001. 8(7): p. 721-38.
    151. Hardeland, R., et al., On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation, and scavenging of free radicals. J Pineal Res, 1995. 18(2): p. 104-11.
    152. Reiter, R.J., Antioxidant actions of melatonin. Adv Pharmacol, 1997. 38: p. 103-17.
    153. Poeggeler, B., et al., Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J Pineal Res, 1993. 14(4): p. 151-68.
    154. Rodriguez, C., et al., Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res, 2004. 36(1): p. 1-9.
    155. Gulcin, I., M.E. Buyukokuroglu, and O.I. Kufrevioglu, Metal chelating and hydrogen peroxide scavenging effects of melatonin. J Pineal Res, 2003. 34(4): p. 278-81.
    156. Zatta, P., G. Tognon, and P. Carampin, Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions [Al(III), Zn(II), Cu(II), Mn(II), Fe(II)]. J Pineal Res, 2003. 35(2): p. 98-103.
    157. Spillantini, M.G., et al., Alpha-synuclein in Lewy bodies. Nature, 1997. 388(6645): p. 839-40.
    158. Conway, K.A., et al., Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A, 2000. 97(2): p. 571-6.
    159. Li, Y., et al., Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism. Neurology, 2005. 64(11): p. 1955-7.
    160. Silvestri, L., et al., Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet, 2005. 14(22): p. 3477-92.
    161. Tang, B., et al., Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease. Hum Mol Genet, 2006. 15(11): p. 1816-25.
    162. Neckameyer, W., et al., Dopamine and sensory tissue development in Drosophila melanogaster. J Neurobiol, 2001. 47(4): p. 280-94.
    163. Parkes, T.L., et al., Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet, 1998. 19(2): p. 171-4.
    164. Whitworth, A.J., et al., Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc Natl Acad Sci U S A, 2005. 102(22): p. 8024-9.
    165. Tilly, J.L. and K.I. Tilly, Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology, 1995. 136(1): p. 242-52.
    166. Skorohod, N. and D.B. Yeates, Superoxide dismutase failed to attenuate allergen-induced nasal congestion in ragweed-sensitized dogs. J Appl Physiol, 2005. 98(4): p. 1478-86.
    167. Kennerdell, J.R. and R.W. Carthew, Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol, 2000. 18(8): p. 896-8.
    168. Feany, M.B. and W.W. Bender, A Drosophila model of Parkinson's disease. Nature, 2000. 404(6776): p. 394-8.
    169. Wittmann, C.W., et al., Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science, 2001. 293(5530): p. 711-4.
    170. Woods, D.F. and P.J. Bryant, The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell, 1991. 66(3): p. 451-64.
    171. Hay, B.A., D.A. Wassarman, and G.M. Rubin, Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell, 1995. 83(7): p. 1253-62.
    172. Uversky, V.N., Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res, 2004. 318(1): p. 225-41.
    173. Petit, A., et al., Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem, 2005. 280(40): p. 34025-32.
    174. Beilina, A., et al., Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci U S A, 2005. 102(16): p. 5703-8.
    175. Menzies, F.M., S.C. Yenisetti, and K.T. Min, Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol, 2005. 15(17): p. 1578-82.
    176. Meulener, M., et al., Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol, 2005. 15(17): p. 1572-7.
    177. Goldberg, M.S., et al., Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem, 2003. 278(44): p. 43628-35.
    178. Palacino, J.J., et al., Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem, 2004. 279(18): p. 18614-22.
    179. Clark, I.E., et al., Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 2006. 441(7097): p. 1162-6.
    180. Park, J., et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 2006. 441(7097): p. 1157-61.
    181. Coulom, H. and S. Birman, Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J Neurosci, 2004. 24(48): p. 10993-8.
    182. Kitada, T., et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998. 392(6676): p. 605-8.
    183. Giasson, B.I. and V.M. Lee, Are ubiquitination pathways central to Parkinson's disease? Cell, 2003. 114(1): p. 1-8.
    184. Ross, C.A. and C.M. Pickart, The ubiquitin-proteasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends Cell Biol, 2004. 14(12): p. 703-11.
    185. Leroy, E., et al., The ubiquitin pathway in Parkinson's disease. Nature, 1998. 395(6701): p. 451-2.
    186. Price, D.L., S.S. Sisodia, and D.R. Borchelt, Genetic neurodegenerative diseases: the human illness and transgenic models. Science, 1998. 282(5391): p. 1079-83.
    187. Yamamoto, A., J.J. Lucas, and R. Hen, Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell, 2000. 101(1): p. 57-66.
    188. Saudou, F., et al., Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell, 1998. 95(1): p. 55-66.
    189. Cummings, C.J., et al., Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron, 1999. 24(4): p. 879-92.
    190. Warrick, J.M., et al., Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet, 1999. 23(4): p. 425-8.
    191. Klement, I.A., et al., Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell, 1998. 95(1): p. 41-53.
    192. Reddy, P.H., et al., Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet, 1998. 20(2): p. 198-202.
    193. Ellgaard, L. and A. Helenius, ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol, 2001. 13(4): p. 431-7.
    194. Hammond, C. and A. Helenius, Quality control in the secretory pathway. Curr Opin Cell Biol, 1995. 7(4): p. 523-9.
    195. Johnson, J.L. and E.A. Craig, Protein folding in vivo: unraveling complex pathways. Cell, 1997. 90(2): p. 201-4.
    196. Ellgaard, L., M. Molinari, and A. Helenius, Setting the standards: quality control in the secretory pathway. Science, 1999. 286(5446): p. 1882-8.
    197. Wickner, S., M.R. Maurizi, and S. Gottesman, Posttranslational quality control: folding, refolding, and degrading proteins. Science, 1999. 286(5446): p. 1888-93.
    198. Imai, Y., et al., CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell, 2002. 10(1): p. 55-67.
    199. Imai, Y., M. Soda, and R. Takahashi, Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem, 2000. 275(46): p. 35661-4.
    200. Joazeiro, C.A., et al., The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 1999. 286(5438): p. 309-12.
    201. Petroski, M.D. and R.J. Deshaies, Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol, 2005. 6(1): p. 9-20.
    202. Jiang, H., et al., Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet, 2004. 13(16): p. 1745-54.
    203. Chen, L., et al., Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem, 2005. 280(22): p. 21418-26.
    204. Zhang, Z., et al., Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature, 1998. 395(6703): p. 698-702.
    205. Didier, C., et al., RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol Cell Biol, 2003. 23(15): p. 5331-45.
    206. Chung, K.K., et al., Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med, 2001. 7(10): p. 1144-50.
    207. Mattson, M.P., Neurobiology: Ballads of a protein quartet. Nature, 2003. 422(6930): p. 385, 387.
    208. Okochi, M., et al., Presenilins mediate a dual intramembranous gamma-secretase cleavage of Notch-1. Embo J, 2002. 21(20): p. 5408-16.
    209. Kim, D.Y., L.A. Ingano, and D.M. Kovacs, Nectin-1alpha, an immunoglobulin-like receptor involved in the formation of synapses, is a substrate for presenilin/gamma-secretase-like cleavage. J Biol Chem, 2002. 277(51): p. 49976-81.
    210. Lammich, S., et al., Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide. J Biol Chem, 2002. 277(47): p. 44754-9.
    211. Ikeuchi, T. and S.S. Sisodia, The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent "gamma-secretase" cleavage. J Biol Chem, 2003. 278(10): p. 7751-4.
    212. Kaether, C., et al., Presenilin-1 affects trafficking and processing of betaAPP and is targeted in a complex with nicastrin to the plasma membrane. J Cell Biol, 2002. 158(3): p. 551-61.
    213. Leem, J.Y., et al., A role for presenilin 1 in regulating the delivery of amyloid precursor protein to the cell surface. Neurobiol Dis, 2002. 11(1): p. 64-82.
    214. De Strooper, B., Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 2003. 38(1): p. 9-12.
    215. Li, T., et al., Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals. J Neurosci, 2003. 23(8): p. 3272- 7.
    216. Takasugi, N., et al., The role of presenilin cofactors in the gamma-secretase complex. Nature, 2003. 422(6930): p. 438-41.
    217. van Laar, T., A.J. van der Eb, and C. Terleth, Mif1: a missing link between the unfolded protein response pathway and ER-associated protein degradation? Curr Protein Pept Sci, 2001. 2(2): p. 169-90.
    218. Chen, Q., et al., Presenilin binding protein is associated with neurofibrillary alterations in Alzheimer's disease and stimulates tau phosphorylation. Am J Pathol, 2001. 159(5): p. 1597-602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700