用户名: 密码: 验证码:
蔗糖酯的区域选择性合成、结构分析与物化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔗糖酯由于其卓越的应用性能和良好的生物降解性能和毒理学性质已被广泛应用于食品、医药、化妆品和洗涤剂中,而具有优良杀虫活性的蔗糖酯是一类极具商业前景的绿色环保型杀虫剂,它的研究和开发对作为农业大国的我国有着特殊而重要的意义。
     本论文以DMF为反应溶剂,用酰氯直接酯化法和酯交换法分别合成了具有生物活性的蔗糖酯化合物,研究了反应条件对酰化试剂的转化率及产品酯化度的影响,结果表明酰化试剂的用量是控制产品酯化度的最直接因素;反应中蔗糖分子中羟基的反应活性基本遵循OH-6>OH-6'>OH-1'>secondary-OHs的顺序。
     通过蔗糖锡醛缩合物中间体在吡啶存在下与酰氯直接酯化,同时得到了高区域选择性的6-O-蔗糖酯和6,3'-Di-O-蔗糖二酯,并用此方法合成了一系列具有不同脂肪链长的6-O-蔗糖酯和6,3'-Di-O-蔗糖二酯产品。通过探讨反应过程中吡啶的作用,并基于蔗糖锡醛缩合物的结构,提出生成6,3'-Di-O-蔗糖二酯的两种可能机理。对蔗糖酯化合物的杀虫和杀菌活性的研究结果表明,蔗糖辛酸单酯杀虫活性最高,杀虫范围最广,值得被开发为新型环保型杀虫剂。
     用FT-IR、ESI-MS与NMR对蔗糖酯产品的结构进行了表征,重点对产品的一维和二维NMR的结构表征方法进行了深入讨论。通过对~1H NMR、~(13)C NMR、HSQC、~1H-~1HCOSY与HMBC谱综合运用分析,对糖骨架中各个碳和氢信号进行了准确的归属,提出了用HMBC谱来确定蔗糖酯产品酯化位置的新方法,该方法直观且准确,非常适合蔗糖酯化反应的被酯化羟基位置的确定。
     采用HPLC-ELSD,通过优化流动相、洗脱梯度等色谱条件,对不同脂肪链长度的蔗糖酯产品中的主要成分如单酯、二酯及多酯进行了有效分离,并结合ESI-MS对蔗糖酯样品进行了定性分析。对外标校正的纯蔗糖酯化合物的HPLC-ELSD准确定量方法进行了探讨,建立了实验室和工业化生产蔗糖酯产品的反应监控及质量控制的分析方法,对该类化合物在某些应用中的准确定量方法进行了探讨,满足了不同的要求。
     测定了不同脂肪酸链长的纯蔗糖酯化合物以及组成不同的蔗糖酯混合物的水溶液的表面性质和界面性质,并利用两维溶解度参数模型,对该类化合物的溶解性和疏水性进行了量化,在此基础上对其界面现象进行了分析和解释。结果表明,该模型适用于对糖基表面活性剂界面行为的解释。研究了蔗糖酯化合物的其它物化性能如HLB值、乳化力、硬水稳定性和发泡力及泡沫稳定性与结构和产品组成的关系。
Sucrose esters(SE) have attracted continual interest in the past decades owing to their superior performance and compatibility in the health and environmental arenas and are currently being employed in the food,cosmetic and detergent industries.In addition,several types of synthetic SE have shown potent insecticidal activities and could be a new kind of insecticide with a brilliant commercial prospect.Research and development of it will be particularly important for China which is a big agricultural country.
     SE compounds were prepared in this work by esterification and transesterification of sucrose using DMF as reaction solvent.The influences of reaction conditions on the conversion of acylating agent and degree of substitution were investigated.Molar ratio of acylating agent to sucrose was found to be the critical factor to the degree of substitution.The reaction activities of free hydroxyl groups in sucrose follows the order OH-6>OH-6'>OH-1'>secondary-OHs.
     Regioselective formation of 6-O-acylsucroses and 6,3'-di-O-acylsucroses in one pot with good yields were achieved by a typical acylation method of sucrose via dibutylstannylene acetal.Explanations for the regioselectivities observed during this stannylene acetal mediated reaction were also proposed based on the structures of stannylene acetal in solution and the intramolecular migration of stannylenes.C_8SE provides high levels of mortality against broad range of arthropods and will have a bright commercial future.
     6-O-acylsucroses and 6,3'-di-O-acylsucroses were fully characterized using FT-IR, ESI-MS and NMR spectroscopy.Spectral assignments of ~1H and ~(13)C NMR spectra were performed using ~1H-~1H COSY,~1H-~(13)C COSY and HMBC techniques.It was found that HMBC experiment was a convenient method to determine the position of acylation.
     A high performance liquid chromatographic method has been developed for the separation and quantitation of sucrose ester analogs using an evaporative light scattering detector(ELSD) in combination with the electrospray ionization mass spectrum(ESI-MS) technology.By varying the mobile phases and gradient conditions,the complex mixtures of synthetic or commercial sucrose esters were completely separated into several fractions such as mono-,dior higher esters with different regioisomers in each one on a single run.A separation and quantitative method of ten pure monoesters and diesters was also described to evaluate the method's potential application in the quantitiation of all sucrose ester analogs using external standards.The described method is found to be accurate,relatively inexpensive, straight-forward and reproducible and in principle can be readily applied to the analysis of any sucrose ester analogs of interest with little variation to meet all requirements of qualitative and quantitative analytical procedure.
     In order to get some precise structure-activity relationships in this series of compounds, surface properties and interfacial properties of pure SE compounds and sucrose esters mixtures with different hydrophobic chain lengths were investigated.A two-dimensional model of solubility parameters was developed to interpret the interfacial phenomena of these compounds.Some physiochemical properties of these compounds,such as HLB value, emulsifying power,stability in hard water,foamability and form stability were also investigated.
引文
[1]Queneau Y,Fitremann J,Trombotto S.The Chemistry of Unprotected Sucrose:the Selectivity Issue.C.R.Chimie,2004,7:177-188.
    [2]Puterka G J,Farone W,Palmer T,et al.Structure-Function Relationships Affecting the Insecticidal and Miticidal Activity of Sugar Esters.J.Econ.Entomol.,2003,96:636-644.
    [3]蔡孟深,李中军.糖化学.基础、反应、合成、分离及结构.北京:化学工业出版社,2007.
    [4]陈华乐.蔗糖的化学.化学教育,1998,(6):1-7.
    [5]Garti N,Clement V,Leser M,et al.Sucrose ester microemulsions.Journal of Molecular Liquids,1999,80:253-296.
    [6]Severson R F,Arrendale R F,Chortyk O T.Quantitation of the majoy cuticular composnents from green leaf of different tobacco types.J.Agric.Food chem.,1984,32:566-570.
    [7]Severson R F,Jackson A W,Johnson D M.Factors affecting their production and their role in insect and disease resistance and smoke quality.Recent Adv.Tob.Sci.,1985,11:105-174.
    [8]King R R,Calhoun L A,Singh R P,et al.Characterization of 2,3,4,3'-tetra-O-acylated sucrose esters associated with the glandular trichomes of lycopersicon typicum.J.Agric.Food Chem.,1993,41(3):469-473.
    [9]Neal J J,Tingey W M,Steffens J C.Sucrose esters of carboxylic acids in glandular tricomes of Solanum Berthaultii deter settling and probing by green peach aphid.J Chem.Ecol.,1990,16(20):487-497.
    [10]Holley J D,King R R,Singh R P.Glandular trichomes and the resistance if Solanum berthaultti to infection from phytophthorn infectans.Can.J.Plant.Path.,1987,9(4):291-294.
    [11]Severson R F,Chortyk O T,Stephenson M G,et al.Characterization of natural pesticide from nicotiana gossei.ACS Symp.Set.,1994,38:109-121.
    [12]Buta G J,Lusby W R,Neal J W,et al.Sucrose esters from Nicotiana Gossi active against the greenhouse whitefly Trialeuroides vaporarorium.Phytochemistry,1993,32(4):859-864.
    [13]Severson R F,Arrendale R F,Chortyk O T,et al.Isolation and characterization of the sucrose esters of the cuticular waxes of green tobacoo leaf.J.Agric.Food Chem.,1985,33:870-875
    [14]Arrendale R F,Severson R F,Sisson V A,et al.Characterization of the sucrose ester fraction from nicotiana glutinosa.J.Agric.Food Chem.,1990,38:75-78.
    [15]George W,Hyattsville P,Buta J G,et al.Biological pesticide derived from nicotiana plants.US:5260281,1993.
    [16]Severson R F,Jackson D M,Johnson A W,et al.Ovipositional behavior of Tobacco budworm and tobacco hornworm.ACS Sym.Set.,1991,449:264-277.
    [17]Chortyk O T,Pomonis J G,Johnson A W.Syntheses and Characterizations of Insecticidal Sucrose Esters.J.Agric.Food Chem.,1996,44:1551-1557.
    [18]Kandra L,Wagner G J.Study of the site and mode of biosynthesis of tobacco trichome exudate compenents.Arch.Biochem.Biophys.,1988,265:425-432.
    [19]King R R,Singh R P,Calhoun L A.Elucidation of Structures for a unique class of 2,3,4,3'-tetra-O-acylated sucrose esters from type B.glandular trichomes of solarium Neocardenasii Hawkes & Hjerting.Carbohydrate Research,1988,173:235-241.
    [20]Sallay P,Farkas L,Rusznak Iet al.Nonionic fatty acid based surfactants.Production of sugar esters.Olaj,Szappan,Kozmet.,2000,49(3):122-125.
    [21]Cruces M A,Plou F J,Ferrer Met al.Improved synthesis of sucrose fatty acid monoesters.J.Am.Oil Chem.Sot.,2001,78(5):541-546.
    [22]Osipow L,Rosenblatt W,Snell F D.Microi-emulsion process for the preparation of sucrose esters.J.Am.Oil Chem.Soc.,1967,44(5):307-309.
    [23]LeCoent A L,Fayolle M T,Couenne F et al.Kinetic parameter estimation and modeling of sucrose esters synthesis without solvent.Chemical Engineering Science,2003,58:367-376.
    [24]Fitremann J,Queneau Y,Maitre J Pet al.Co-melting of solid sucrose and multivalent cation soaps for solvent-free synthesis of sucrose esters.Tetrahedron Letters,2007,48:4111-4114.
    [25]Kea S,Walker C E.Sugar esters and improved anhydrous method of manufacture.US:4683299,1987.
    [26]Nakamura S,Nagahara S,Kawaguchi J.Process for production of high-monoesters sucrose higher fatty acid esters.US:5453498,1995.
    [27]Wilson D C.Continuous process for the synthesis of sucrose fatty acid esters.US:5872245,1999.
    [28]李延科.糖基表面活性剂蔗糖酯的研究:博士学位论文.大连:大连理工大学,2004.
    [29]朱金丽.硬脂酸蔗糖系表面活性剂的研究:博士学位论文.大连:大连理工大学,2007.
    [31]Vermeire A,Demuynck C,Vandenbossche G.,et al.Sucrose laurate gels as percutaneous delivery system for oestradiol in rabbits.J Pharm.Pharmacol,1996,48:463-467.
    [32]Abran D,Boucher F,Hamamaka T,et al.On some physicochemical properties of sucrose esters and the stability they confer to membrane proteins.J.Colloid and Interface Sci.,1989,128(1):230-236.
    [33]Abouhllale S,Greiner J,Riess J G.Perfluoroalkylated fatty acid monoesters of trehalose and sucrose for biomedical applications:remarkable emulsifying properties of 6-O-[3'-(perfluoroctyl)propanoyl]-Trehalose.J.Am.Oil Chem.Soc.,1992,69(I):1-8.
    [34]Habulin M,Sabeder S,Knez Z.Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity.J.of Supercritical Fluids,2008,45:338-345.
    [35]Devulapalle K S,de Segura A G,Ferrer M,et al.Effect of Carbohydrate Fatty Acid Esters on Streptococcus Sobrinus and Glucosyltransferase Activity.Carbohydrate Research,2004,339:1029-1034.
    [36]李延科,张淑芬,杨锦宗.蔗糖酯活性杀虫剂的研究进展.现代化工,2002,22增刊:47-50.
    [37]黄文诚.蔗糖辛酸酯.环保型杀螨剂.密蜂杂志,2005,8:29-30.
    [38]Mckenzie C L,Puterka G J.Effect of sucrose octanoate on survival of nymphal and adult Diaphorina cirri(homoptera:psyllidae).J.Econ.Entomol.,2004,97(3):970-975.
    [39]Mckenzie C L,Weathersbee A A,Hunter W Bet al.Sucrose octanoate toxicity to brown citrus aphid (homoptera:aphididae) and the parasitoid lysiphlebus testaceipes(hymenoptera:aphidiidae).J.Econ.Entomol.,2004,97(4):1233-1238.
    [40]Mckenzie C L,Weathersbee A A,Puterka G J.Toxicity of sucrose octanoate to egg,nymphal,and adult bemisia tabaci(hemiptera:aleyrodidae).J.Econ.Entomol.,2005,98(4):1242-1247.
    [41]Simonovska B,Srbinoska M,Vovk I.Analysis of Sucrose esters-insecticides from the surface of tobacco plant leaves.Journal of Chromatography A,2006,1127:273-277.
    [42]Ferrer M,Comelles F,Plou F J,et al.Comparative Surface Activities of Di-and Trisaccharide Fatty Acid Esters.Langmuir,2002,18:667-673.
    [43]Mollee H M,Steenvoorden D P T,De Vringer T,et al.The Influence of the Incorporation of Cholesterol and Water on the Particle Size,Bilayer Thickness,Melting Behavior,and Relative Sucrose Ester Composition of Reversed Vesicles.J.Pharm.Sci.,2001,90:588-598.
    [44]van den Bergh B A I,Wertz P W,Junginger H E,et al.Elasticity of Vesicles Assessed by Electron Spin Resonance,Electron Microscopy and Extrusion Measurements.Int.J.Pharm.,2001,217:13-24.
    [45]Haines A H.Selective removal of protecting groups in carbohydrates.Adv.Carbohydr.Chem.Biochem.,1981,39:13-70.
    [46]Molinier V,Fitremann J,Bouchu A,et al.Sucrose esterification under Mitsunobu conditions:evidence for the formation of 6-O-acyl-3',6'-anhydrosucrose besides mono and diesters of fatty acids.Tetrahedron:Asymm.,2004,15:1753-1762.
    [47]Chauvin C,Plusquellec D.A new chemoenzymatic synthesis of 6'-O-acylsucroses.Tetrahedron Lett.,1991,32:3495-3498.
    [48]Chauvin C,Baczko K,Plusquellec D.New Highly Regioselective Reactions of Unprotected Sucrose.Synthesis of 2-O-Acylsucroses and 2-O-(N-Alkylcarbamoyl) sucroses.J.Org.Chem.,1993,58:2291-2295.
    [49]Baczko K,Chauvin C,Banoub J,et al.A new synthesis of 6-O-acylsucroses and of mixed 6,6'-di-O-acylsucroses.Carbohydrate Research,1995,269:79-88.
    [50]Molinier V,Wisniewski K,Bouchu A,et al.Transesterification of sucrose in organic medium:study of acyl group migrations.Journal of Carbohydrate Chemistry,2003,22(7):657-669.
    [51]Martinelli M J,Vaidyanathan R,Pawlak J M,et al.Catalytic regioselective sulfonylation of α-chelatable alcohols:scope and mechanistic insight.J.Am.Chem.Soc.,2002,124:3578-3585.
    [52]Fasoli E,Caligiuri A,Servi S,et al.Diol-tin ketal as effective catalyst in the tin mediated benzoylation of polyols.Journal of Molecular Catalysis A:Chemical,2006,244:41-45.
    [53]Lin W,Long L,Peng D,et al.A novel application of tin-based alkoxide anion for deacetylation.Journal of Organometallic Chemistry,2007,692:1619-1622.
    [54]Kaji E,Shibayama K,In K.Regioselectivity shift from β-(1→6)-toβ-(1→3)-glycosylation of non-protected methylβ-D-galactopyranosides using the stannylene activation method.Tetrahedron Letters,2003,44:4881-4885.
    [55]David S,Malleron A.The intermolecular migration of polyol stannylenes as a reaction contributing to the regioselectivity of substitution.Carbohydrate Research,2000,329:215-218.
    [56]Teranishi K.Direct regioselective 2-O-(p-toluenesulfonylation) of sucrose.Carbohydrate Research,2002,337:613-619.
    [57]Vlahov I R,Vlahova P I,Linhardt R J.Regioselective Synthesis of Sucrose Monoesters as Surfactants.J.Carbohydr.Chem.,1997,16(1):1-10.
    [58]韦异,粟晖,张英等.蔗糖-6-乙酸酯的合成方法研究.化学世界,2002,10:551-555.
    [59]韦异,粟晖,张英等.蔗糖-6-苯甲酸酯的合成研究.精细化工,2002,19(4):208-210.
    [60]Plou F J,Cruces M A,Bernabe M,et al.Annals NY Acad.Sci.,1995,750:332-337.
    [61] Rich J O, Bedell B A, Dordick J S. Controlling enzyme-catalyzed regioselectivity in sugar esters synthesis. Biotechnol. Tech., 1995, 45: 426-434.
    
    [62] Soedjak H S, Spradlin J E. Enzynatic transesterification of sugars in anhydrous pyridine. Biocatalysis, 1994, 11: 241-248.
    
    [63] Sarney D B, Kapeller H, Fregapane G. Chemoenzymatic synthesis of Dissaccharide fatty-acid esters. J. Am. Oil Chem. Soc., 1994, 71:711-714.
    
    [64] Ikeda I, Klibanov A M. Lipase-catalyzed acylation of sugars solubilized in Hydrophobic solvents by complexation. Biotechnol. Bioeng., 1993, 42: 788-791.
    
    [65] Haines A H. Relative reactivities of hydroxyl groups in carbohydrate chemistry. Adv. Carbohydr. Chem. Biochem., 1976, 33: 11-109.
    
    [66] Patil D R, Rethwisch D G, Dordick J S. Enzymatic synthesis of a sucrose-containing polyester in nearly anhydrous organic media. Biotechnol Bioeng, 1991, 37: 639-656.
    
    [67] Riva S, Chopineau J, Kieboom A P G, et al. Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. J. Am. Chem. Soc., 1988, 110: 584-588.
    
    [68] Potier P, Bouchu A, Descotes G, et al. Proteinase N-catalysed transesterifications in DMSO-water and DMF-water: preparation of sucrose monomethacrylat. Tetrahedron Letters, 2000, 41: 3597-3600.
    
    [69] Potier P, Bouchu A, Gagnaire J, et al. Proteinase N-catalysed regioselective esterification of sucrose and other mono- and disaccharides. Tetrahedron: asymmetry, 2001, 12: 2409-2419.
    
    [70] Takao R, Masaru K, Hiromi S, et al. Enzymatic synthesis of hydrophilic undecylenic acid sugar esters and their biodegradability. Biotechnology Letters, 2003,25(2): 161-166.
    
    [71] Sarney D B, Barnard M J, Macmanus D A. Application of lipase to the regioselective sythesis of sucrose fatty acid monoesters. J. Am. Oil Chem. Soc, 1996, 73: 1481-1487.
    
    [72] Kim J E, Han J J, Yoon J H, et al. Effect of salt hydrate pair on lipase-catalyzed regioselective monoacylation of sucrose. Biotechnol. Bioeng., 1998, 57:121-125.
    
    [73] Ferrer M, Cruces M A, Bernabe M, et al. Lipase-Catalyzed Regioselective Acylation of Sucrose in Two-Solvent Mixtures. Biotechnol. Bioeng., 1999, 65 (1): 10-16.
    
    [74] Woudenberg-van M, Rantwijk F V, Sheldon R A. Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by C. Antarctica lipase. Biotechnol. Bioeng., 1996, 49: 328-333.
    
    [75] Antczak T, Hiler D, Krystynowicz A, et al. Activity of immobilised in situ intracellular lipases from Mucor circinelloides and Mucor racemosus in the synthesis of sucrose esters. Prog. Biotechnol., 2000, 17: 221-227.
    
    [76] Potier P, Bouchu A, Descotes G, et al. Lipase-catalyzed selective synthesis of sucrose mixed diesters. Synthesis, 2001, 3: 458-462.
    
    [77] Peter D, Wolfgang Z. Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica. Biotechnol. Bioeng., 2001, 76 (6): 483-491.
    
    [78] Zeringue H J J, Feuge R O. Purification of Sugar Esters by Ultrafiltration. J. Am. Oil Chem. Soc., 1976, 53 (12): 719-721.
    
    [79] Weiss T J, Brown M, Zeringue H J J, et al. Quantitative Estimation of Sucrose Esters of Palmitic Acid. J. Am. Oil Chem. Soc, 1971, 48 (4):145-148.
    
    [80] Gupta R K, James K, Smith F J. Analysis of Sucrose Dono- and Diesters Prepared from Triglycerides Containing C_(12)-C_(18) Fatty Acids. J. Am. Oil Chem. Soc, 1983, 60: 1908-1913.
    [81] Karrer H, Herberg H. Analysis of Sucrose Fatty Acid Esters by High Temperature Gas Chromatography. Journal of High Resolution Chromatography, 1992, 15: 585-589.
    
    [82] Kaufman V R, Garti N. Analysis of Sucrose Esters Composition by HPLC. Journal of Liquid Chromatography, 1981,7: 1195-1205.
    
    [83] Seino H, Uchibori T. Enzymatic synthesis of Carbohydrate Esters of Fatty Acid (1) Esterifiation of Sucrose, Glucose, Fructose and Sorbitol. J. Am. Oil Chem. Soc., 1984, 73: 1481-1487.
    
    [84] Jaspers M E A P, van Leewen F F, Nieuwenhuls H J W, et al. High Performance Liquid Chromatographic Separation of Sucrose Fatty Acid Esters. J. Am. Oil Chem. Soc, 1987, 64: 1020-1025.
    
    [85] Moh M H, Tang T S, Tan G H. Improved Separation of Sucrose Ester Isomers Using Gradient High Performance Liquid Chromatography with Evaporative Light Scattering Detection. Food chemistry, 2000, 69: 105-110.
    
    [86] 云自厚,欧阳津,张晓彤. 液相色谱检测方法. 北京: 化学工业出版社, 2005.
    
    [87] Tsavas P, Polydorou S, Voutsas E C, et al. Sucrose Solubility in Mixtures of Water, Alcohol, Ester, and Acid. Journal of Chemical and Engineering Data, 2002, 47 (3): 513-517.
    
    [88] Becerra N, Toro C, Zanocco A L, et al. Characterization of micelles formed by sucrose 6-O-monoesters. Colloids and Surfaces A: Physicochem. and Eng. Aspects, 2008, 327: 134-139.
    
    [89] Molinier V, Kouwer P J J, Fitremann J, et al. Self-organizing properties of monosubstituted sucrose fatty acid esters: the effects of chain length and unsaturation. Chem. Eur. J., 2006, 12: 3547-3557.
    
    [90] Molinier V, Kouwer P J J, Fitremann J, et al. Shape dependence in the formation of condensed phases exhibited by disubstituted sucrose esters. Chem. Eur. J., 2007, 13: 1763-1775.
    
    [91] Kutschmann E M, Findenegg G H, Nickel D, et al. Interfacial tension of alkylglucosides in different APG/oil/water system. Colloid polym. Sci., 1995, 273: 565-569.
    
    [92] Rodriguez C, Acharya D P, Hinata S, et al. Effect of ionic surfactants on the phase behavior and structure of sucrose ester/water/oil systems. Journal of Colloid and Interface Science, 2003, 262 (2): 500-505.
    
    [93] Garofalakis G, Murray B S, Sarney D B. Surface and critical aggregation concentration of pure sugar esters with different sugar head groups. J. Colloid Science, 2000, 229: 391-398.
    
    [94] Donneylly M J, Bulock J D. Sucrose esters as model compounds for synthetic glycolipid surfactants. J. Am. Oil Chem. Soc, 1988, 65(2): 284-287.
    
    [95] Akoh C C. Emulsification properties of polyesters and sucrose ester blends I : Carbohydrate fatty acid polyesters. J. Am. Oil Chem. Soc, 1992, 69 (1): 9-13.
    
    [96] Akoh C C, Nwosu C V. Emulsification properties of polyesters and sucrose ester blends II: Carbohydrate fatty acid polyesters. J. Am. Oil Chem. Soc, 1992, 69 (1): 14-19.
    
    [97] Husband F A, Sarney D B, Barnard M J, et al. Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations. Food Hydrocolloids, 1998, 12: 237-244.
    
    [98] Glatter O, Orthaber D, Stradner A, et al. Sugar-Ester Nonionic Microemulsion: Structural Characterization. J. Colloid Interface Sci., 2001, 241 (1): 215-225.
    
    [99] The D P, Peroval C, Debeaufort F, et al. Arabinoxylan-Lipids-Based Edible Films and Coatings. 2. Influence of Sucroester Nature on the Emulsion Structure and Film Properties. Journal of Agricultural and Food Chemistry, 2002, 50 (2): 266-272.
    [100]Muller A S,Gagnaire J,Queneau Y,et al.Winsor behaviour of sucrose fatty acid esters:choice of the cosurfactant and effect of the surfactant composition.Colloids and Surfaces,A:Physicochemical and Engineering Aspects,2002,203(1-3):55-66.
    [101]Kabir M H,Aramaki K,Ishitobi M,et al.Colloids and Surfaces,A:Physicochemical and Engineering Aspects,2003,226(1-3):87-94.
    [102]Garti N,Clement V,Fanun M,et al.Some Characteristics of Sugar Ester Nonionic Microemulsions in View of Possible Food Applications.J.Agric.Food Chem.,2000,48(9):3945-3956.
    [103]Awad T,Sato K.Effects of hydrophobic emulsifier additives on crystallization behavior of palm mid fraction in oil-in-water emulsion.J.Am.Oil Chem.Soc.,2001,78(8):837-842.
    [104]Kubouchi H,Kai H,Miyashita K,et al.Effects of emulsifiers on the oxidative stability of soybean oil TAG in emulsions.J.Am.Oil Chem.Soc.,2002,79(6):567-570.
    [105]Uchil S P,Nikolov A D,Wasan D T,et al.Texture and stability of emulsions:Role of oscillatory structural forces.Journal of Dispersion Science and Technology,2002,23(1-3):187-198.
    [106]Lim W H.Stability,droplet size and flow behavior of O/W emulsions of sucrose esters.Tenside,Surfactants,Detergents,2002,39(4):104-107.
    [107]Becerra N,de la Nuez L R,Zanocco A L,et al.Solubilization of dodac small unilamellar vesicles by sucrose esters a fluorescence study.Colloids and Surfaces A:Physicochem.Eng.Aspects,2006,272:2-7.
    [108]Tual A,Bourles E,Barey P,et al.Effect of surfactant sucrose ester on physical properties of dairy whipped emulsions in relation to those of O/W interfacial layers.Journal of Colloid and Interface Science,2006,295:495-503.
    [109]Braga C F,Abreu C A M,Lima Filho N M,et al.Kinetics of catalytic sucrose esterification in aqueous media.React.Kinet.Catal.Lett.,2002,77(1):91-102.
    [110]Thevenet S,Wernicke A,Belniak S,et al.Esterification of unprotected sucrose with acid chlorides in aqueous medium:kinetic reactivity versus acyl-or alkyloxycarbonyl-group migrations.Carbohydrate Research,1999,318:52-66.
    [111]霍姆博格K,琼森B,科隆博格B等著.韩丙勇,张学军译.水溶液中的表面活性剂和聚合物.北京:化学工业出版社,材料科学与工程出版中心,2005.
    [112]Bunger H,Pison U.Quantitative analysis of pulmonary surfactant phospholipids by high-performance liquid chromatography and light-scattering detection.J.Chromatogr.B,1995,672:25-31.
    [113]Avery B A,Venkatesh K K,Avery M A.Rapid Determination of Artemisinim and Related Analogues using High-Performance Liquid Chromatography and an Evaporative Light Scattering Detector.J.Chromatogr.B,1999,730:71-80.
    [114]Li W,Fitzloff J F.Determination of 24(R)-Pseudoginsenoside F_(11) in North American Ginseng using high performance liquid chromatography with evaporative light scattering detection.J.Pharm.Biomed.Anal.,2001,25:257-265.
    [115]Wang J,Hu X,Tu Y,et al.Determination of spectinomycin hydrochloride and its related substances by HPLC-ELSD and HPLC-MS~n.J.Chromatogr.B,2006,834:178-182.
    [116]施耐德L R,格莱吉克J L,柯克兰J J著.王杰,赵岚峰,王树力等译.实用高效液相色谱法的建立.北京:科学出版社,1998.
    [117]王军,曹玉英,程玉梅等.烷基多苷物化性能的研究.日用化学品科学,1999,(增刊):55-59.
    [118]赵国玺,朱步瑶.表面活性剂作用原理.北京:中国轻工业出版社,2003.
    [119]赵国玺.表面活性剂物理化学.北京:北京大学出版社,1991.
    [120]Fedors R F.A Method for estimating both the solubility parameters and molar volumes of liquids.Polym.Eng.Sci.,1974,14(2):147-154.
    [121]Barton A F M.CRC Handbook of Solubility Parameters and Other Cohesion Parameters.Boca Raton (FL):CRC Press,1983.
    [122]Hansen C M.Three dimensional parameter key to paint component affinities:I solvents,plasticizer,polymers,and resins.J.Paint.Techonol.,1967,39:104-117.
    [123]Balzer G.Cloud point phenomena in the phase behavior of alkyl polyglucosides in water.Langmuir,1993,9:3375-3384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700