用户名: 密码: 验证码:
动载荷识别应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于结构的复杂性和动载荷本身的复杂性,很多情况下不能直接测量动载荷,因此由结构的动响应和结构的动态特性来反演动载荷是非常必要的,这方面的研究已经取得了令人瞩目的进展。单点和多点动载荷的识别技术逐渐成熟,但是对于结构上连续分布的动载荷的识别技术几乎处于空白。
     本文主要研究分布动载荷的识别问题,建立了矩量法和小波方法识别动载荷的识别模型。运用矩量法正交基函数的收敛特性,将待识别的复杂动载荷转化为在广义正交域中求解基函数的拟合系数,从而使复杂问题简单化。运用有限元分析软件并基于线性系统的叠加性质,建立了该方法的通用识别模型,该模型适用于工程中复杂的结构和任意的边界条件。该方法的识别精度高,有很强的抗干扰性能,且对测量点位置的要求较宽松,适合工程运用。通过仿真算例和实验验证了方法的可行性和正确性。本文的主要研究内容如下:
     (一)将矩量法引入到移动载荷的识别中。文中首先以车桥系统为工程背景,讨论了几种车桥耦合系统简化的建模方法,并用动响应实验数据进行比较,得出了适用于工程的二自由度车桥简化模型。在此基础上研究了一类特殊的分布载荷—移动载荷的识别,建立了基于矩量法的移动载荷识别的通用模型,解决了移动载荷识别受限于结构的复杂程度和结构边界条件的缺点。
     (二)将矩量法正交基函数扩展成二维,并应用在频域二维分布动载荷的识别中。用二维正交基函数拟合待识别载荷函数中的两个未知量,以有限元分析软件为平台,建立了基于复杂结构的有限元模型的二维分布动载荷识别模型的频域方法,并用算例进行了验证。
     (三)运用分布动载荷识别频域方法的思想,用三维正交基函数拟合待识别二维分布动载荷函数中的三个待识别量,直接在时域中识别二维分布动载荷。
     (四)讨论了矩量法中如何用尽量少的测量点来识别分布动载荷的问题。在有限元模型中,将二维分布动载荷等效成有限元节点载荷,将节点载荷以某一方式排列在一假定的坐标轴上,则二维分布动载荷就成了该坐标轴上的节点载荷,运用一维分布动载荷的识别技术来识别这些点载荷,从而达到降维的目的。优化节点载荷序列在假想一维坐标轴上的排列顺序就可以降低拟合阶数,从而达到减少分布动载荷识别中需求的测量点数的目标。
     (五)引入小波理论到动载荷的识别中,建立了基于结构动力学有限元方程小波方法的动载荷识别模型,用仿真算例验证了方法的正确性。
     (六)分别用移动载荷和分布载荷试验来验证文中方法的工程可行性。
Load cannot be measured in most conditions because of complexity of the structure and the load.So, it is necessary to inverse it from the response and the characteristic of the structure.This study has acquired outstanding achievements.The technology of points-load-identification are very better and better. However the technology of identification for structurally distributed load in succession is seldom.
     In this dissertation, The main work is to study the technology for distributed load identification.and establish identification models based on the moment method and wavelet method. Based on the vonvergence of basis function for moment method, A complex dynamic load to be identified is simplized by solving the coefficients of the orthogonal basis function. According to the linear principle, A general identification model is established in the software for finite element anaylsis. It includes all complex structure under arbitrary boundary conditions. The method possesses of the abilities of high identification precision, anti-interference and nonrestraint of the measure position. The feasibility and correctness of these methods are verified by testing instance and experiment. The primary contents are as follows:
     1. A moment method is applied to moving load identification. First three methods for establishing simple model are discussed for the coupling interaction system between vehicle and bridge .These simulating results generated by three methods are contrasted with each other and with experiment data, A conclusion is drawn that the two degrees of freedom model is best.Then the identification of moving load, A special distributed load, is studied in this dissertation, A general model for moving load identification is established on a base of the moment method and some shorcomings are overcomed.
     2. The basis functions for the moment method are defined in a two-dimension orthogonal space and used for identifying two-dimension distributed load. The two variables of the unknown load are fitted by the basis functions.A model in frequence domain is established for identifying two-dimension distributed load, acting on a complex constructure, in the finite-element-analysis software and it is verified by testing instance.
     3. Based on the ideas of the frequence domain method of a distributed load identificaition, A two-dimension distributed load can be identified directly in time domain by using three-dimension basis function to fit the three vaiable of unknown load.
     4. A problem is dicussed that how to reduce the number of measure points to identify the distributed load equally. A two-dimension distributed load can be equaled to the node loads in finite element model.when these node loads are arranged on a supposed axis, they can be identified by a one-dimension method, so the aim for reducing dimension can be reached. When these node loads on the supposed axes are arrayed in an optimized order, the fitting order can be reduced and the object of reducing the number of measure points can be reached.
     5. The wavelet theory is introduced into dynamic identification and a model based on dynamic finite element is established for wavelet method whose correctness is verified by testing instance.
     6. The practical feasibility for these methods is verified by moving and distruted load experiment.
引文
[1] Bartlett F.D., Flannelly W.D., Modal verification of force determination for measuring vibration loads, Journal of the American Helicopter Society, 1979:10~18
    [2] Giansamte N., Jones R., Calapodas N.J. , Determination of in-flight helicopter loads, Journal of the American Helicopter Society, 1982:58~64
    [3] Hillary B.,Ewins D.J., The use of strain gauges in force determination and frequence response function measurements,Proceedings of the 2nd International Modal Analysis Conference, 1984:627~634
    [4] Okubo N., Tanabe S., Tatsuno T., Identification of force generated by a machine under operating condition, Proceedings of the 3rd IMAC,1985:920~927
    [5] Starkey J.M., Merrill G.L., On the ill-condition nature of indirect force measurement techniques, International Journal of Analysis and Experimental Modal Analysis, 1989,4(3):103~108
    [6] Hansen M., Starkey J.M., On predicting and improving the condition of Modal-Model-based indirect force measurement algorithms, Proceedings of the 8th IMAC,1990:115~120
    [7] Doyle J.F., Forcee identification from dynamic response of a bi-material beam, Experimental Mechanics, 1993,33:64~69
    [8] Doyle J.F., Reconstructing dynamic events from time limited spatially distributed data, International Journal for Numerical Methods in Engineering, 2002,53:2721~2734
    [9] Karlsson S.E.S. Identification of external structural loads from measured harmonic responses, Journal of Sound and Vibration, 1996,196(1):59~74
    [10] Law S.S., Chan T.H.T. and Zeng Q.H. , Moving force identification: a frequency-time domain method, Journal of Dynamic System, Measurement Control, ASME 1999, 121: 394~401
    [11] Yu L., Chan T.H.T., Moving force identification based on the frequency–time domain method, Journal of Sound and Vibration, 2003, 261:329~349
    [12] Desanghere G., Snoeys R., Indirect identification of excitation forces by modal coordinate transformation, Proceedings of the 3rd IMAC, 1985:685~690
    [13] H. Ory, H. Glaser, D. holzdeppe, The reconstruction of forcing function based on measured structural responses, Proceeding of 2nd Int. Symp. on Aeroelasticity and Structural Dynamics, Aachen, FRG, 1985
    [14] H. Ory, H. Glaser, D. Holzdeppe, Quality of model analysis and reconstruction of forcing functions based on measured output data, Proc. of the 4th IMAC, 1986
    [15] Zhang Y., Mann III J.A., Measuring the structural intensity and force distribution in plates, Journal of Acoustical Society of America, 1996,99:345~353
    [16] Zhang Y., Mann III J.A., Examples of using structural intensity and the force distribution to study vibrating plates, Journal of Acoustical Society of America, 1996,99:353~361
    [17] Law S.S., Chan T.H.T. and Zeng Q.H., Moving force identification: a time domain method., Journal Sound and Vibration , 1997,201(1): 1~22
    [18] Law S.S., Chan T.H.T., Zhu X.Q., etal, Regularization in moving force identification, Journal of Engineering Mechanics ASCE, 2001,127(2): 136~148
    [19] Law S.S. and Zhu X.Q., Study on different beam models in moving force identification, Journal of Sound and Vibration, 2000, 234(4): 661~679
    [20] Law S.S. and Fang Y.L., Moving force identification: optimal state estimation approach, Journal of Sound and Vibration, 2001, 239(2): 233~254
    [21] Law S.S., Bu J.Q., Zhu X.Q., etal, Vehicle axle loads identification using finite element method, Engineering Structures, 2004, 26: 1143~1153
    [22] Law S.S. and Zhu X.Q., Dynamic behavior of damaged concrete bridge structures under moving vehicular loads, Engineering Structures, 2004, 26: 1279~1293
    [23] Law S.S. and Zhu X.Q., Practical aspects in moving load identification, Journal of Sound and Vibration, 2002, 258(1): 123~146
    [24] Law S.S. amd Zhu X.Q., Identification of moving interaction forces with incomplete velocity information, Mechanical Systems and Signal Processing, 2003, 17(6): 1349~1366
    [25] Zhu X.Q. and Law S.S., Orthogonal function in moving loads identification on a multi-span bridge, Journal of Sound and Vibration, 2001, 245(2): 329~345
    [26] Zhu X.Q. and Law S.S., Moving forces identification on a multi-span continuous bridge, Journal of Sound and Vibration, 1999, 228: 377~396
    [27] Zhu X.Q. and Law S.S., Identification of vehicle axle loads from bridge dynamic responses, Journal of Sound and Vibration, 2000, 236(4): 705~724
    [28] Zhu X.Q. and Law S.S., Dynamic axle and wheel loads identification: laboratory studies, Journal of Sound and Vibration, 2003, 268: 855~879
    [29] Chan T.H.T., Law S.S. and Yung T.H., Moving force identification using an existing pre-stressed concrete bridge, Engineering Structures, 2000, 22: 1261~1270.
    [30] Chan T.H.T., Law S.S., Yung T.H., etal, An interpretive method for moving force identification, Journal of Sound and Vibration, 1999, 219(3): 503~524
    [31] Chan T.H.T. and Yung T.H., A theoretical study of force identification using pre-stressed concrete bridges Engineering Structures, 2000, 23: 1529~1537
    [32] Chan T.H.T., Yu L., Law S.S., etal, Moving force identification studies, I: theory, Journal of Sound and Vibration, 2001, 247(1): 59~76
    [33] Chan T.H.T., Yu L., Law S.S., etal, Moving force identification studies, II: comparative studies, Journal of Sound and Vibration, 2001, 247(1): 77~95
    [34] Chan T.H.T., Yu L. and Law S.S., Comparative studies on moving force identification from bridge strains in laboratory, Journal of Sound and Vibration, 2000, 235(1): 87~104
    [35] Yu L. and Chan T.H.T., Moving force identification based on the frequency–time domain method, Journal of Sound and Vibration, 2003, 261: 329~349
    [36] Yu L. and Chan T.H.T., Moving force identification from bending moment responses of bridge, Structural Engineering and Mechanics, 2002, 2(14): 151~170
    [37] Yu L. and Chan T.H.T., Identification of multi-axle vehicle loads on bridges, Journal of Vibration and Acoustics, 2004, Vol. 126: 17~26
    [38] C.Pezerat, J.L. Guyader, Force analysis technique:reconstruction of force distribution on plates, Acustica united with Acta Acustica, 2000,86:322~332
    [39] C.Pezerat, J.L. Guyader, Identification of vibration sources,Applied Acustics , 2000, 61:309~324
    [40] C.Pezerat, J.L. Guyader, Two inverse methods for localization of external sources exciting a beam, Acta Acustica, 1995,3(1):1~10
    [41] Mita Mitra, Gopalakrishnan S., Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides.International Journal of Solids and Structures , 2005,42:4695~4721
    [42] Djamaa M.C., Ouelaa N., Reconstruction of a distributed force applied on a thin cylindrical shell by an inverse method and spatial filtering.Journal of Sound and Vibration, 2007,3-5(301):560~575
    [43]李万新,张景绘,载荷确定方法和直升机六力素识别,航空工业部飞行试验中心科技报告,1884
    [44]唐秀近,动态力识别的时域方法,大连工学院学报,1987,26(4):21~27
    [45]唐秀近,时域识别动态载荷的精度问题,大连理工大学学报,1990,30(1):31~37
    [46]唐秀近,动态载荷的识别,第三届时序分析及其在机械工程中的应用学术会议,1987, 4
    [47]初良成,曲乃泗,乌瑞峰,动态载荷识别的时域正演方法,应用力学学报,1994,11(2):9~9
    [48]时战,许士斌等,利用脉冲响应函数识别载荷的时序法,振动工程学报,1995,8(3):235~242
    [49]高宝成,刘红霞,杨叔子,神经网络用于结构动载荷识别的研究,郑州工学院学报,1995,8(3):235~242
    [50]张方,朱德懋,基于广义正交域的一种动载荷时域识别方法研究,南京航空航天大学学报,1996,28(6):755~760
    [51]张方,朱德懋,动态载荷时域识别的级数方法,振动工程学报,1996,9(1):1~8
    [52]张方,朱德懋,张福祥,动载荷识别的时间有限元模型理论及运用,振动与冲击,1998,17(2):1~4
    [53]林家浩,智浩,郭杏林,平稳随机振动载荷识别逆虚拟激励法(一),计算力学学报,1998,15(4):395~428
    [54]智浩,郭杏林,林家浩,平稳随机振动载荷识别逆虚拟激励法(二),计算力学学报,1998,17(2):1-5
    [55]满洪高,卜建清,袁向荣,基于广义正交域理论识别桥上移动载荷的方法研究,石家庄铁道学院学报,1999,12(4):40~43.
    [56]袁向荣,卜建清,满红高,高勇利,移动荷载识别的函数逼近法,振动与冲击,2000,19(1):58~60
    [57]陈锋,袁向荣,李明,移动载荷识别的B-样条函数逼近法[J],石家庄铁道学院学报,2003,16(1):11~14
    [58]满洪高,袁向荣,高勇利等,由广义正交多项式函数逼近法识别桥上移动载荷,工程力学增刊,1999:169~174
    [59]黄林,袁向荣,桥上移动荷载识别的幂级数曲线拟合法,铁道学报增刊,1998,20: 79~83
    [60]袁向荣,高勇利,卜建清,满洪高,板梁桥上移动荷载识别,工程力学增刊,1998:523~527
    [61]赵玉成,袁树清,动态载荷的小波正交算子变换识别法,机械强度,1998,20(2):127~133
    [62]杨萍,胡立志,基于正交算子的动力学模型建立,甘肃工业大学学报,1998,24(4):33~38
    [63]裴焕斗,孟松,动态随机载荷识别研究,测试技术学报,1998,12(3):507~511
    [64]许锋,动载荷识别若干前沿理论及应用研究,南京航空航天大学博士论文,2001,8
    [65]张方,秦远田,复杂结构连续分布动载荷识别技术探讨及研究,振动工程学报,2006,19(1):81~85
    [66]秦远田,复杂结构的分布动载荷识别技术研究,南京航空航天大学硕士论文,2004,2
    [67]余岭,陈鸿天,罗绍湘,用时域法和频域法识别桥面移动车载,工程力学,2001,18(5):100~107
    [68]余岭,陈鸿天,罗绍湘,移动车载识别的两种解法及其试验验证,长江科学院院报,2001,18(5):84~87
    [69]黄林,袁向荣,小波分析在桥上移动荷载识别中的应用,铁道学报,2003,25(4):97~101
    [70]李东升,郭杏林,随机激励下载荷谱识别,大连理工大学学报,2003,45(5):561~566
    [71]吴邵庆,基于有限元—小波伽辽金法的车桥系统移动载荷识别,南京航空航天大学硕士论文,2006,1
    [72]陈玉东,二维连续复小波变换识别重力场源,物探与化探,2006,30(2):141~147
    [73]崔锦泰,小波分析导论,程正兴译,西安:交通大学出版社,1995
    [74]李建平,张万萍,陈延槐等,小波分析的一些有前景的应用领域,重庆大学学报,1999,22(1):121~125
    [75] Mallat S.G., A theory for multiresolution signal decomposition:the wavelet representation,IEEE Transactions on pattern Analysis and Machine Intelligence, 1989,11(7):674~693
    [76] Daubechies I,Orthonormal bases of compactly supported wavelets,Communications on Pure and Apploied Mathematics,1988,XII:909~996
    [77] Daubechies I, The Wavelet transform,time-frequence localization and signal analysis , IEEE Trans.on Information Theory, 1990,36(5):961~1006
    [78] Bertoluzza S., Naldi G., A Wavwlet Collocation Method for the Numerical Solution of Partial Differential Equations, Applied and Computational Harmonic Analysis, 1996,3:1~9
    [79] Valeriano Cmincioli, Giovanni Naldi, Terenzio Sscpolla,A Wavelet-based method for numerical solution of nonlinear evolution equations, Applied Numerical Mathematics, 2000,33:291~297
    [80] Inoue H., Kishimoto K., Shibuya T., Experimental wavelet analysis of flecural waves in beams, Experimental Mechanics, 1996,36(3):212~217
    [81] Doyle J.F., A wavelet deconvolution method for impact force identification, Experimental Mechanics, 1997,37(4):403~408
    [82] Ghanem R., Romeo F., A wavelet based approach for the identification of linear time-varying dynamical systems, Journal of Sound and Vibration, 2000,234(4):555~576
    [83] Ghanem R., Romeo F., A wavelet based approach for model and parameter identification of non-linear systems, International Journal of Non-Linear Mechanics, 2001,36:835~859
    [84] Kevin Amaratunga, John R Williams, Sam Qian, etal, Wavelet-Galerkin solutions fordimensional partial differential equations, International Journal for Numerical Methods in Engineering, 1994,37:2703~2716
    [85] Harrington, Field Computation by Moment Methods, New York:Wiley-IEE Press, 1968
    [86]朱军华,桥梁移动载荷识别技术的适用性研究,长江科学院硕士学位论文,2006,4
    [87]柳重堪,正交函数及其应用,北京:国防工业出版社,1982
    [88] Pesterev A V, Bergman L A., Response of a nonconservative continuous system to a moving concentrated load, J.Appl.Mech., 1998,65: 436~444.
    [89] Yang F, Fonder G A, Dynamic response of cable-stayed bridges under moving loads, J.Engrg.Mech., ASCE, 1998,124(7):741~747
    [90]谢伟平,于艳丽,李红兵,高速移动荷载下轨道系统振动模拟的数值算法,武汉理工大学学报,2001,,23(12):57~59
    [91]盛国刚,赵冰,移动振动系统作用下梁的动力分析,长沙交通学院学报,2002,18(2):16~22
    [92] Verichev S.N., Metrikine A.V., Instability of a bogie moving on a flexibly supported Temoshenko beam, Journal of sound and vibration, 2002,253:653~668
    [93]单德山,李乔,荷载列作用下简支曲线梁的动力响应,重庆交通学院学报,2001,20(1):6~18
    [94] Verichev S.N., Metrikine A.V., Instability of vibrations of a mass that moving uniformly along a beam on a periodically inhomogeneous foundation, Journal of sound and vibrations, 2003,260:901~925
    [95] Vostroukhov A.V., Metrikine A.V., Periodically supported beam on a viso-elastic layer as a model for dynamic analysis of a high-speed railway track., International Journal of Solids and Structures, 2003,40(21):5723~5752
    [96] Zheng D,Y., Fan S.C., Instabliity of vibration of a moving-train-and rail coupling system, Journal of Sound and vibration, 2002,255:243~259
    [97]单德山,李乔,车桥耦合振动分析的数值方法,重庆交通学院学报,1999,18(3):14~20
    [98]李小珍,强士中,列车-桥梁耦合振动研究的现状与发展趋势,铁道学报,2002,24(5):112~120
    [99] Lee H. P., Dynamic response of a beam with intermediate point constraints subject to a moving load, Journal of Sound and Vibration, 1994, 171:361~368
    [100] Henchi K., Fafard M., Dynamic behaviour of multi-span beams under moving loads, Journal of Sound and Vibration, 1997, 199:33~50
    [101] Lin J. C., Rockwell D., Force identification by vorticity fields: techniques based on flow imaging, Journal of Fluids and Structure, 1996, 10: 663~668
    [102] Tasker F., Real-time modal parameter estimation using subspace methods: theory, Mechanical Systems and Signal Processing, 1998, 12(6):797~808
    [103] Tasker F., Real-time modal parameter estimation using subspace methods: Applications, Mechanical Systems and Signal Processing, 1998, 12(6):809~823
    [104] Granger S., Perotion L., An inverse methods for the identification of a distributed random excition acting on a vibration structure Part1: Theory, Mechanical Systems and Signal Processing, 1999, 13(1):53~65
    [105]刘恒春,动载荷识别技术研究,南京航空学院硕士论文,1989
    [106]李方泽,刘馥清,王正,工程振动测试与分析,高等教育出版社,1992
    [107]周传荣,赵淳生,机械振动参数识别及其应用,科学出版社,1989
    [108]傅志方,振动模态分析与参数识别,北京:机械工业出版社,1990
    [109]胡海岩,机械振动与冲击,北京:航空工业出版社,1998
    [110]傅志方,华宏星,模态分析理论与应用,上海:上海交通大学出版社,2000
    [111]李世雄,刘家琦编著,小波变换和反演数学基础,地质出版社,1995,5
    [112]石智,宋国乡,二元正交多项式小波,西北大学学报(自然科学版),2003,33(1):5~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700