用户名: 密码: 验证码:
隔水管涡激动力响应及疲劳损伤可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隔水管是海洋浮式生产系统中的重要附属设备。为了进一步探讨在波浪、海流等外载荷作用下隔水管的运动特性,以便更好地应用于工程实际中,本文对隔水管的涡激动力响应及疲劳损伤可靠性等进行了深入的研究。
     采用Morison方程对属于小尺度结构物的隔水管进行受力计算,其中的关键是阻尼系数C_d和惯性力系数C_m的确定。本文基于人工神经网络技术,构造具有一层隐含层的BP网络来获得合适的水动力系数。在网络中运用附加动量法和自适应学习速率进行改造,其中的影响参数选定为雷诺数Re、Keulegan-Carpenter数KC和粗糙度参数κ.另外,在涡激动力计算中还考虑了横向涡激对C_d的影响。结果表明,采用这种方法所得到的水动力系数与试验结果符合得较好。
     通过变分法和最小势能原理推导了隔水管的运动控制方程,该方程在顺流向和横流向上具有类似的形式。在涡激振动计算中,以Matteoluca改进的Van der Pol尾流振子模型为基础计算横流向上隔水管与流体之间的相互作用。这里的隔水管涡激动力响应问题是一个存在多重非线性的问题,首先隔水管的受力计算中存在速度的平方项;其次水动力系数的确定受很多因素的影响,是一个严重非线性问题;再者,涡激问题本身也是一个非线性问题,在流体载荷的作用下隔水管产生运动,流体和隔水管之间存在相互作用,即流固耦合非线性;另外,隔水管的运动还呈现出大位移小变形的几何非线性等等。本文综合考虑了以上各种非线性的影响,通过Hermite插值函数对隔水管的动力微分方程进行有限元离散,利用UL法描述几何非线性的影响,并采用Newton-Raphson迭代法和Newmark方法相结合的过程建立了空间隔水管非线性涡激动力响应的迭代算法。频域内分析了隔水管固有频率特征,时域内考虑了不同海流分布情况、不同波浪参数、不同顶部预张力、浮体的水平和升沉运动等任意组合的影响,给出了以上不同参数组合下相应的位移分布包络线以及横向涡激振动响应曲线。通过大量的计算实例,验证了本文计算方法及程序设计的有效性和适用性。
     正因为在外力作用下隔水管在平衡位置附近来回振动,使得隔水管产生疲劳损伤,严重时甚至产生疲劳断裂,造成重大的经济损失和环境污染等。因此,如果能够很好地抑制隔水管的振动,则在很大程度上可以降低危险发生的概率。针对目前的抑制装置及其研究成果,本文选择螺旋边条作为抑制隔水管涡激振动的装置。为了寻找到螺旋边条的最优形式以便于最大程度地抑制隔水管的涡激振动,本文利用Fluent软件模拟了三维空间中隔水管周围的流场,给出了不同流态下安装不同螺旋边条的模拟结果,最后建立优化模型并对模型进行分析求解得到了螺旋边条的最优形式,为其实际工程应用提供了理论依据。
     很多学者都只考虑涡激振动对隔水管引起的疲劳损伤进行分析,事实上,隔水管的顺向振动同样重要,尤其是水深不大的情况下。本文通过Von Mises应力处理隔水管多轴应力问题,并考虑了平均应力的影响,计算得到隔水管关键点处的应力时间历程,再根据雨流计数法、S-N曲线和Miner线性累积损伤模型估算隔水管的疲劳寿命,并采用Wirching方法进行了可靠性分析。计算结果表明,所采用的方法正确、有效,可以为隔水管的疲劳可靠性分析提供依据。
Marine riser is an important appertain equipment of ocean oil producing system. An investigation emphasizing on dynamic response including VIV of marine riser subjected to waves and ocean currents in 3-D space was presented in this paper in order to be used in the actual engineering.
     The key is to determine the hydrodynamic coefficients C_d and C_m in Morison equation for the force calculation of marine riser. The two coefficients were calculated by applying BP neural network which had one hidden layer, then used additional momentum method and auto-adjustive learning rate to modify the network. Results indicate that this method is reliable and it can calculate Morison equation's hydrodynamic coefficients according to different Re、KC and roughness number k.
     Based on the minimum potential energy principle, the marine riser model was developed containing the strain energy due to bending and effective tension, the kinetic energy due to both the riser and the internal fluid motions, the work due to external forces. Then the governing equation of marine riser was derived through functional variation method, and the forms of the equation at inline and transverse direction are similar. And, VIV calculation was based on Matteoluca's wake oscillator model. The dynamic response problem of marine riser is a highly nonlinear problem, including the square term of the velocity, the determination of the hydrodynamic coefficients, VIV, fluid-solid coupling between the riser and fluid and geometrical nonlinearities. All these nonlinear factors were considered in this paper, the governing equation is dispersed by using Hermite interpolation function. An iterative-incremental method based on the updated Lagrangian formulation of beam element, Newton-Raphson and Newmark method was used to solve the nonlinear problems. Finally, the natural frequency characteristics of the marine riser were given in the frequency domain. And in the time domain, the displacements in the direction of in-line and cross-flow were given under different currents, waves, pretensions, movement of the platform etc. The results demonstrate that the dynamic response of marine riser was described well by using these methods.
     The flow over a marine riser with and without helical strakes was modeled to explore the VIV phenomena through FLUENT software. The simulation model can be specified over a range of Res. The number of the strake, the strake width and the pitch were variable in order to find the better form to suppress VIV. Finally, the instantaneous vorticity and total pressure, drag and lift coefficients were displayed. The results indicate that the response characters of a bare riser can be quite distinct from that of a riser with helical strakes, and their performances were dependent on their geometry. Finally an optimization model was built and solved, thus the optimal form of the helical strake was obtained in this problem, and these results may provide a theoretical basis for the practical engineering application.
     Many fatigue damage of marine riser were only analyzed to VIV. Acturally, it is also important to in-line vibration especially for the small sea depth. The time history of marine riser's key point's stress can be got through Von Mises method including the effect of multiaxial stress and mean stress. Thus the fatigue life of the marine riser can be solved through rain-flow method, S-N curve and Miner linear cumulative law model and the reliability analysis can also be solved through Wirching method. The results demonstrate that these methods are valid and they can provide basises for the analysis of fatigue damage and reliability.
引文
[1]方华灿.海洋石油钻采装备与结构.北京:石油工业出版社,1990.
    [2]W.H.Petersen,J.L.Thorogood.Deep water riser system design and management.LADC/SPE 39295.
    [3]E.B.Denision.A comprehension approach to deepwater marine riser management.OTC 4811.
    [4]周俊昌.海洋深水钻井隔水管系统分析.西南石油学院博士学位论文.
    [5]Sparks C.P.Mechanical behaviour of marine risers mode of influence of principal parameters.Proc.Winter Annual Meeting of the American Society of Mechanical Engineers,1979,7:2-7.
    [6]Bratu.Ch.,Narzul P..Dynamic behaviour of flexible riser.BOSS,1985.
    [7]De Oliveria J.G.,Goto Y.,Okarmoto T..Theoretical and methodological approaches to flexible pipe design and application.17th Annual Offshore Technology Coference,OTC 5004,1985.
    [8]Owen,D.G.and Qin,J.J..Non-linear dynamics of flexible risers by the finite element method.OMAE 1987,Houston,TX.
    [9]Engseth,A,Beth,A.,and Larsen,C.M..Efficient method for analysis of flexible risers.Boss 88,Trondheim,Norway,1988.
    [10]Wu,S.C.,McDermott,J.R..The effects of current on dynamic response of offshore structures.OTC 2540;Dallas,TX,1976.
    [11]Kirk,C.L.,Etok,E.U.,Cooper,M.T..Dynamic and static analysis of a marine riser.Appl.Ocean Res,1979,1(3):125-135.
    [12]Huang,T.,Chucheepsakul,S..Large displacement analysis of a marine riser.OMAE,1985,Houston,TX.
    [13]Huang,T.,Rivero,C.E..On the functional in a marine riser analysis.OMAE,1986,Tokyo,Japan.
    [14]Bernitsas,M.M.,Kokarakis,J.E.and Imron,A.Large deformation three-dimensional static analysis of deep water marine risers.Appl.Ocean Res,1985,7(4):178-187.
    [15]Bernitsas,M.M,Hoff,C.J and Kokarakis,J.E..Non-linear inverse perturbation in structural dynamics redesign of risers.OMAE 1985,Houston,TX.
    [16]S.K.Chakrabarti and R.E.Frampton.Review of riser analysis techniques.Applied Ocean Research,1982,4(2):73-90.
    [17]Nicholas M.,Patrikalakis,N.M.,Nicholas M..Theoretical and experimental procedures for the prediction of the dynamic behavior of marine risers.Massachusetts Institute of Technology,1983.
    [18]Burke B.G..An analysis of marine risers for deep water.Journal of Petroleum Technology,1974,5(4):123-131.
    [19]Krolikowski L P,Gay T A..An improved lineadzation technique for frequency domain riser analysis.Paper No.OTC 3777.In:Offshore Technology Conference.Houston,Texas,USA,1980:341-353.
    [20]J.M.Niedzwecki,P.Y.F.Liagre.System identification of distributed-parameter marine riser models.Ocean Engineering,2003,30:1387-1415.
    [21]Y.Cheng,J.Kim Vandiver.The linear vibration analysis of marine risers using the wkb-based dynamic stiffness method.Journal of Sound and Vibration-2002,251(4):750-760.
    [22]熊汉桥,吴竟择.中、深水条件下隔水管频域动力响应精确数值分析.中国海洋平台,1996,11(5):210-213.
    [23]孙意卿.隔水管随机运动管线应力及其统计分布.海洋工程,1987年11月,第5卷第4期:22-31.
    [24]李军强,刘宏昭,何钦象,方同.波浪力作用下海洋钻井隔水管随机振动研究.机械科学与技术,2004,(23):7-10.
    [25]Azar J.J..A comprehensive study of marine drilling risers.American Society of Mechanical Engineers Petroleum Division,1978,PET-61.
    [26]Bernitsas M.M..Three-Dimensional Nonlinear Large Deflection Model for Dynamic Behavior of Risers,Pipelines and Cables.J.Ship Res.,1982,26(1):59-64.
    [27]Kokarakis J.E.,Bernitsas M.M..Nonlinear three-dimentional dynamic analysis of marine risers.ASME J.Energy Resour.Technol,1987,109:105-111.
    [28]贾星兰,方华灿.海洋钻井隔水管的动力响应.石油机械,1995,23(8):18-28.
    [29]李华桂.海洋钻井隔水管的动力分析.石油学报,1996,17(1):122-127.
    [30]李华桂,吴竟择.海洋钻井隔水管顶张力分析.西南石油学院学报,1994,16(4):85-90.
    [31]郭海燕,王树青,刘德辅.海洋环境荷载下输液隔水管的静、动力特性研究.青岛海洋大学学报,2001,31(4):605-611.
    [32]刘德辅,王树青,郭海燕.海洋隔水管综合环境条件设计标准研究.海洋工程,2001,1(2):13-17.
    [33]王树青,郭海燕.水下输液管到动力特性研究.青岛海洋大学学报,2002,32(1):127-132.
    [34]石晓兵,郭昭学,聂荣国,陈平,周俊昌,罗平亚.海洋深水钻井隔水管变形及载荷分布规律研究.钻井工程,天然气工业,2004,24(3):88-90.
    [35]J.Aitken.an account of some experiments on rigidity produced by centrifugal force.Philosophical magazine,1878,5:81-105.
    [36]M.P.Paidoussis and N.T.Issid.Dynamic stability of pipes conveying fluid.Journal of Sound and Vibration,1974,33(3):267-294.
    [37]Shilling,R.Ⅲ and Lou,Y.K.An experimental study on the dynamic response of a vertical cantilevel pipe conveying fluid.Journal of Energy Resources Technology,1980,102:129-135.
    [38]Moe,G.and Chucheepsakul,S..The effect of internal flow on marine risers.Proceeding of Seventh International Conference of Offshore Mechanics and Arctic Engineering,1988:375-382.
    [39]M.C.Wu and J.Y.K.Lou.Effect of rigidity and internal flow on marine riser dynamics.Applied Ocean Research,1991,13(5):235-244.
    [40]L.V.S.Sagrilo,M.Q.Siqueira,G.B.Ellwanger,E.C.P.Lima,E.J.B.Ribeiro,C.A.D.Lemos.On the extreme response of heave-excited flexible risers.Applied Ocean Research,2000,22:225-239.
    [41]Y.T.Chai,K.S.Varyani,N.D.P.Barltrop.Three-dimensional lump-mass formulation of a catenary riser with bending torsion and irregular seabed interaction effect.Ocean Engineering,2002,29:1503-1525.
    [42]J.M.Niedzwecki,P.Y.F.Liagre.System identification of distributed-parameter marine riser models.Ocean Engineering,2003,30:1387-1415.
    [43]Sakdirat Kaewunruen,Julapot Chiravatchradej,Somchai Chucheepsakul.Nonlinear free vibrations of marine risers/pipes transporting fluid.Ocean Engineering,2005,32:417-440.
    [44]郭海燕,吴世明,王优龙.输液管道地震反应分析.地震工程与工程振动,1997,17(1):219-224.
    [45]Guo Hai-yan,Wang Yuan-bin and Fu Qiang.The effect of internal fluid on the response of vortex-induced vibration of marne risers.China Ocean Engineering,18(1):11-20.
    [46]Warburton,G.B..The dynamical behaviour of structures.McGraw Hill,1982.
    [47]Amreican Petroleum Institute.Comparison of marine drilling riser analysis.APAAI,Washington DC,1977.
    [48]Patel,M.H.,Sarohia,S.and Ng,K.F..Finite element analysis of the marine riser.Engng Struct,1984,6:175-184.
    [49]McNamara,J.F.,O'Brien,P.J.and Gilroy.S.G..Nonlinear analysis of flexible risers using hybrid finite elements.OMAE 1986,Tokyo,Japan.
    [50]Leira,B.J.and Remseth,S.N.A comparison of linear and nonlinear methods for dynamics analysis of marine risers.BOSS 1985,Amsterdam,The Netherlands.
    [51]Seyed.F.B.and Patel,M.H..Considerations in design of flexible riser systems.Proc.ISOPE-92,San Francisco,USA,1992.
    [52]Seyed,F.B.and Patel,M.H..Parametric studies of flexible risers.Proc,ISOPE-91,Edinburgh,ULK,1991.
    [53]Larsen,C.M..Flexible riser analysis-comparison of results from computer programs.Marine Struct.(special flexible riser issue),1992,5:103-119.
    [54]Felippa,C.A.and Park,K.C..Computational aspects of time integration procedures in structural dynamics.Part 1:Implementation.Part2:Error propagation,J.Appl.Mech.1978,45:595-602 and 603-611.
    [55]Patel,M.H.and Seyed,F.B.Review of flexible riser modeling and analysis techniques.Engineering Structures,1995,17(4):293-304.
    [56]T.Sarpkaya.Vortex-induced oscillations.Journal of Applied Mechanics,1979,46:241-258.
    [57]D.W.Allen.Vortex-induced vibration of deepwater risers.OTC 8703.
    [58]J.K.Vandiver.Research challenges in the vortex-induced vibration prediction of marine risers.OTC 8698.
    [59]L.Foulhoux,V.Saubestre.An engineering approach to characterize the look-in phonomenan Generated by a current on a Flexible Column.International Journal of Offshore and Polar Engineering,1994,4(3):231-233.
    [60]K.H.Halse.Norweigian Deepwater Program:Improved Predictions of Vortex-induced Vibrations.OTC 11996.
    [61]C.M.Larse,K.H.Halse.Comparison of models for vortex induced vibration of marine structures. Marine Structures, 1997, 10(6): 413-441.
    [62] P.W.Bearman. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics, 1984,16:195-222.
    [63] T.Sarpkaya. Fluid forces on oscillating cylinders. Journal of Waterway, Port, Coastal and Ocean Engineering, 1978, 104:275-291.
    [64] C.H.K. Williamson. The existence of two stages in the transition to three-dimensionality of a cylinder wake. Physics of Fluids, 1988, 31(11): 3165-3168.
    [65] C.H.K. Williamson. Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, 1996, 28:477-539.
    [66] C.H.K. Williamson. Advances in our understanding of vortex dynamics in bluff body wakes. Journal of Wind Engineering and Industrial Aerodynamics, 1997,69-71:3-32.
    [67] J.C. Lin, D.Rockwell. Horizontal oscillations of a cylinder beneath a free surface: Vortex formation and loading. Journal of Fluid Mechanics, 1999,389:1-26.
    [68] J. Sheridan, J.C. Lin, D. Rockwell. Flow over a cylinder close to a free surface. Journal of Fluid Mechanics, 1997,330:1-30.
    [69] J. Sheridan, J. Carberry, D. Rockwell. Cylinder wake states—the influence of free surfaces. in: Proceedings of the Conference on Bluff Body and Vortex Induced Vibration, Port Douglas, Australia, 2002.
    [70] D, Rockwell, M.Ozgoren, N.Saelim. Self-excited oscillations of vertical and horizontal cylinders in the presence of a free-surface, in: Proceedings of the IUTAM Symposium on Integrated Modeling of Fully Coupled Fluid-Structure Interactions Using Analysis. Computations and Experiments, 2003.
    [71] C.H.K.Williamson, A.Roshko. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 1988,2:355-381. M.M.Zdravkovich. Different modes of vortex shedding: an overview. Journal of Fluids and Structures, 1996, 10(5): 427-437.
    [72] M.M.Zdravkovich. Different modes of vortex shedding: an overview. Journal of Fluids and Structures, 1996, 10(5):427-437.
    [73] K. Vikestad, J.K. Vandiver, C.M. Larsen. Added mass and oscillatory frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance. Journal of Fluids and Structures, 2000, 14(7): 1071-1088.
    [74] C.C.Feng. The Measurement of Vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders. Master's Thesis, University of British Columbia, 1968.
    [75] A.Khalak, C.H.K. Williamson. Dymamics of a hydroelastic cylinder with very low mass and damping. Journal of Fluids and Structures, 1996, 10(5): 455-472.
    [76] A.Khalak, C.H.K.Williamson. Motions forces and mode transitions in vortex-induced vibrations at low mass damping. Journal of Fluids and Structures, 1999, 13(7-8): 813-851.
    [77] A.Khalak, C.H.K. Williamson. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. Journal of Fluids and Structures, 1997, 11(8): 973-982.
    [78] R.Govardhan, C.H.K.Williamson. Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics, 2000,420:85-130.
    [79] R. Govardhan, C.H.K. Williamson. Resonance forever: existence of a critical mass and infinite regime of resonance in vortex-induced vibration. Journal of Fluid Mechanics, 2002,473:147-166.
    [80] R.Govardhan, C.H.K.Williamson. Frequency response and the existence of a critical mass for an elastically mounted cylinder. in: Proceedings of the IUTAM Symposium on Integrated Modeling of Fully Coupled Fluid-Structure Interactions Using Analysis, Computations, and Experiments, New Brunswick, NJ, USA, June 2003.
    [81] P.Dong, H. Benaroya, T. Wei. Integrating experiments into an energy-based reduced-order model for vortex-induced-vibrations of a cylinder mounted as an inverted pendulum. Journal of Sound and Vibration, 2004, 276(1-2): 45-63.
    [82] A. Voorhees, T. Wei. Three-dimensionality in the wake of a surface piercing cylinder mounted as an inverted pendulum. in: Proceedings of the Conference on Bluff Body Wakes and Vortex Induced Vibration, Port Douglas, Australia, December 2002.
    [83] J. C. Owen, P. W. Bearman. Passive control of VIV with drag reduction. Journal of Fluids and Structures, 2001,15:597-605.
    [84] A. D. Trim, H. Braaten, H. Lie, M. A. Tognarelli. Experimental investigation of vortex-induced vibration of long marine risers. Journal of Fluids and Structures, 2005, 21:335-361.
    [85] Gro Sagli Baarholm, Carl Martin Larsen, Halvor Lie. Reduction of VIV using suppression devices—An empirical approach. Marine Structures, 2005,18:489-510.
    [86] P.Bearman, M.Brankovic. Experimental studies of passive control of vortex-induced vibration. European Journal of Mechanics B/Fluids, 2004,23:9-15.
    [87] A.Baz, M.Kim. Active model control of vortex-induced vibration of a flexible cylinder. Journal of Sound and Vibration, 1993,165(1): 69-84.
    [88] J.R.Meneghini, P.W.Bearman. Numerical simulation of high amplitude oscillatory flow about a circular cylinder. Journal of Fluids and Structures, 1995, 9(4): 435-455.
    [89] T.Sarpkaya. Computational methods with vortices. Journal of Fluids Engineering, 1989,111(1): 5-52.
    [90] T.Sarpkaya. Vortex element methods for flow simulation. Advances in Applied Mechanics, 1994, 31:113-247.
    [91] C.Y.Zhou, R.M.So, K.Lam. Vortex-induced vibrations of an elastic circular cylinder. Journal of Fluids and Structures, 1999,13(2): 165-189.
    [92] C.Evangelinos, D.Lucor, G.ElKarniadakis. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration. Journal of Fluids and Structures, 2000,14(3): 429-440.
    [93] E.Guilmineau, P.Quetey. A numerical simulation of vortex sheeding from an oscillating circular cylinder. Journal of Fluids and Structures, 2002, 16(6): 773-794.
    [94] R.H.J.Willden, J.M.R.Graham. Numerical prediction of VIV on long flexible circular cylinders. Journal of Fluids and Structures,2001,15(3-4):659-669.
    [95]H.M.Blackburn,R.N.Govardhan,C.H.K.Williamson.A complementary numerical and physical investigation of vortex-induced.Journal of Fluids and Structures,2000,15(3-4):481-488.
    [96]H.M.Blackbum,R.D.Henderson.A study of the two-dimensional flow past an oscillating cylinder.Journal of Fluid Mechanics,1999,385:255-286.
    [97]H.Barhoush,A.H.Namini,R.A.Skop.Vortex shedding analysis by finite elements.Journal of Sound and Vibration,1995,184(1):111-127.
    [98]T.Nomura.Finite element analysis of vortex-induced vibrations of bluff cylinders.Journal of Wind Engineering and Industrial Aerodynamics,1993,46-47:587-594.
    [99]S.Mittal,V.Kumar.Finite element study of vortex-induced cross-flow and in-line oscillations of a circular cylinder.International Journal for Numerical Methods in Fluids,1999,31:1087-1120.
    [100]X.Q.Wang,R.M.C.So,Y.Liu.Flow-induced vibration of an Euler-Bernoulli beam.Journal of Sound and Vibration,2001,243(2):241-268.
    [101]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004.
    [102]W.D.Iwan,R.D.Blevins.A model for the vortex-excited oscillation of structures.ASME Journal of Applied Mechanics,1973,27:225-233.
    [103]O.M.Griffm,R.A.Skop,S.E.Ramberg.the resonant vortex excited vibrations of structures and cable systems.Proceedings of Offshore Technology Conference,Houston,Texas,1975 OTC2319.
    [104]T.Sarpkaya.In-Line and Transverse Forces on Cylinders in Oscillatory Flows at High Reynolds Numbers.Journal of Ship Research,1977,21:200-216.
    [105]G.Parkison.Phenomena and modeling of flow-induced vibrations of bluff bodies.Progress in Aerospace Sciences,1989,26(2):169-224.
    [106]Hartlen R T,Currie I G..Lift-oscillator model of vortex-induced vibration.ASCE Journal of the Engineering Mechanics,1970,96:577-591.
    [107]Skop R A.Griffin O M.A model for the vortex-excited response of bluff cylinders.Journal of Sound and Vibration,1973,27:225-233.
    [108]Skop R A,Griffin O M..On a theory for the vortex-excited oscillations of flexible cylindrical structures.Journal of Sound and Vibration,1975,41:263-274.
    [109]W.D.Iwan,R.D.Blevins.A model for vortex-induced oscillation of structures.Journal of Applied Mechanics,1974,41(3):581-586.
    [110]Iwan,W.D..The vortex induced oscillation of non-uniform structure systems.Journal of sound and Vibration,1981,79(2):291-301.
    [111]Skop R A.,Griffin O M.A model for the vortex-excited response of bluff cylinders.Journal of Sound and Vibration,1973,27:225-233.
    [112]Griffin,O.M.,Skop,R.A.and Koopman,G.H..The vortex-excited resonant vibration of circular cylinders.Journal of Sound and Vibration,1973,31:235-249.
    [113]Landle,R..a mathematical model for the vortex-excited vibrations of bluff bodies.Journal of Sound and Vibration,1975,42:219-234.
    [114]Balasubramanian,S.,Skop,R.A..A new twist on and old model for vortex-excited vibrations.Journal of Fluids and Structures,1997,11:395-412.
    [115]Balasubramaniart,S.,Skop,R.A.,Haan,F.L.,Szewczyk,A.A.Vortex-excited vibrations of uniform pivoted cylinders in uniform and shear flow.Journal of Fluids and Structures,2000,14:65-85.
    [116]Krenk,S.,Nielsen,S.R.K..Energy balanced double oscillator model for vortex-induced vibrations.ASCE Journal of Engineering Mechanics,1999,125:263-271.
    [117]Facchinetti M L,de Langre E,Biolley F.Coupling of structure and wake oscillators in vortex-induced vibrations.Journal of Fluids and Structures,2004,19:123-140.
    [118]R.A.Skops,S.Balasubramania.a nonlinear oscillator model for vortex shedding from a forced cylinder,Part 1:Uniform Flow and Model Parameters.International Journal of Offshore and Polar Engineering,1995,15(4):251-255.
    [119]R.A.Skop,S.Balasubramania.a nonlinear oscillator model for vortex shedding from a forced cylinder,Part 2:Shear Flow and Axial Diffusion.International Journal of Offshore and Polar Engineering,1995,15(4):256-260.
    [120]Matteoluca F.,Emanuel D.L..Coupling of structure and wake oscillators in vortex-induced vibrations.Journal of Fluids and Structures,2004,1:116-133.
    [121]董艳秋.波、流联合作用下海洋平台张力腿的涡激非线性振动.海洋学报,1994,16(3):121-129.
    [122]王东耀,凌国灿.在平台振荡条件下TLP张力腿的涡激非线性响应.海洋学报,1998,20(期):119-128.
    [123]Guocan Ling,Dongyao Wang.Prediction of dynamic response of TLP thers to vortex shadding under circumstances of platform oscillation.International Offshore and Polar Engineering Conference,1996:26-31.
    [124]R.A.Skop,S.Balasubramanian.A new twist on an old model for vortex-excited vibrations.Journal of Fluids and Structures,1997,11(4):395-412.
    [125]R.I.Basu,B.J.Vickery.Across-wind vibrations of structures of circular cross-section--part 2:development of a mathematical model for full-scale application.Journal of Wind Engineering and Industrial Aerodynamics,1983,12(1):75-97.
    [126]I.Goswami,R.H.Scanlan,N.P.Jones.Vortex-induced vibration of circular cylinders-Part 2:new model.Journal of Engineering Mechanics,1993,119(11):2288-2302.
    [127]S.S.Chen,S.Zhu,Y.Cai.An unsteady flow theory for vortex-induced vibration.Journal of Sound and Vibration,1995,184(1):73-92.
    [128]T.Sarpkaya.Fluid forces on oscillating cylinders.Journal of Waterway,Port,Coastal and Ocean Engineering,1978,104:275-291.
    [129]Staubli T..Calculation of the vibration of an elastically mounted cylinder using experimental data from forced oscillation.ASME Journal of Fluids Engineering,1983,105:225-229.
    [130]O.M.Griffin,G..H.Koopman.The vortex-excited lift and reaction forces on resonantly vibrating cylinders.Journal of Sound and Vibration,1977,54(3):435-448.
    [131]O.M.Griffin.Vortex-excited cross-flow vibrations of a single cylindrical tube.Journal of Pressure Vessel Technology,1980,102:158-166.
    [132]X.Q.Wang,R.M.C.So,K.T.Chan.A non-linear fluid force model for vortex-induced vibration of an elastic cylinder.Journal of Sound and Vibration,2003,260(2):287-305.
    [133]C.Y.Zhou,R.M.So,K.Lam.Vortex-induced vibrations of an elastic circular cylinder.Journal of Fluids and Structures,1999,13(2):165-189.
    [134]I.Goswami,R.H.Scanlan,N.P.Jones.Vortex-induced vibration of circular cylinders--part 1:experimental data.Journal of Engineering Mechanics,1993,119(11):2288-2302.
    [135]H.Benaroya,T.Wei.Hamilton's principle for external viscous fluid-structure interaction.Journal of Sound and Vibration,2000,238(1):113-145.
    [136]潘志远,崔维成,刘应中.低质量-阻尼因子圆柱体的涡激振动预报模型.船舶力学,2005,9(5):115-124.
    [137]T.Sarpkaya.A critical review of the intrinsic nature of VIV.Journal of Fluids and Structures,2004,19(4):389-447.
    [138]Vikestad K.Multi-frequency response of a cylinder subjected to vortex shedding and support motions.Ph.D.Thesis,Department of Marine Structures Faculty of Marine Technology,Norwegian University of Science and Technology,1998.
    [139]Baarholm G S,Larsen C M,Lie H.On fatigue damage accumulation from in- line and cross- flow vortex- induced vibration on risers.Journal of Fluids and Structures,2006,22:109-127.
    [140]Meling T S,Elk K J,Nygaard E.An assessment of EOF current scatter diagrams with respect to riser VIV fatigue damage.Proceedings of the 21th OMAE 2002,Oslo,Norway,2002.
    [141]谢彬,段梦兰,秦太验,孙政策,李杰.海洋深水隔水管的疲劳断裂与可靠性评估研究进展.石油学报,25(3):95-100.
    [142]Sparks C.P,Odru P..Composite riser tubes:Defect tolerance ssessment and nondestru ctive testing.OTC 6894 1992:191-198.
    [143]Nilsen A U,Hanson T D..Reliability based design of a 15"dynamic flexible gas export riser.Proc.of the Fifth International Offshore and Polar Engineering Conference,1995,4:373-382.
    [144]Karunakaran D,Olufsen A..Reliability analysis of a deep water flexible riser system.Proc.of the Fifth International Offshore and Polar Engineering Conference,1995,4:365-372.
    [145]Leira B J,Mathisen J..Reliability-based safety factors for flexible risers.ASME,1995,OMAE,Ⅱ:295-312.
    [146]Leira B J,Torhaug R,Kirkvik R H..Reliability aspects of deep-water risers design.ASME,1997,OMAE,Ⅱ:315-325.
    [147]SouzaGFM,GoncalvesE..Fatigue performance of deep waterrigid marine risers.7~(th) International Offshore and Polar Engineering Conference,Hono-lulu,USA,1997,Ⅱ:144-151.
    [148]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析.北京:人民交通出版社,1996.
    [149]王一飞,潘志远,黄小平,崔维成.深海隔水管涡激振动疲劳损伤影响因素分析.船舶力学,10(5):76-83.
    [150]Y.Y.Wang.Waves and wave loads on offshore structures.Dalian:Dalian Maritime University Press,2003.
    [151]缪国平.挠性部件力学导论.上海:上海交通大学出版社,1995.
    [152]张颖,刘艳秋.软计算方法.北京:科学出版社,2002.
    [153]张际先.神经网络及其在工程上的应用.北京:机械工业出版社,1996.
    [154]Turgut Sarpkaya,Michael Isaacson.Mechanics of wave forces on offshore struetrues.New York:Van Nostrand,1981.
    [155]T.L.Shaw.Mechanics of wave--induced forces on cylinders.San Francisco:Pitman Advanced Publishing Program,1979.
    [156]李玉成,何明.作用于小尺度方柱上的正向波浪力.海洋学报,1996,18(3):107-120.
    [157]李玉成,王凤龙,何明.方柱水动力系数确定方法的探讨.海洋通报,1994,13(2):62-79.
    [158]V.Vengatesan,K.S.Varyani,N.Barltrop.An experimental investigation of hydrodynamic coefficients for a vertical tnmcated rectangular cylinder due to regular and random waves.Ocean Engineering,2000,27:291-313.
    [159]V.Sundar,V.Vengatesan,G..Anandkumant,A.Schlenkhoff.Hydrodynamic coefficients for inclined cylinders.Ocean Engineering,1997,25:277-294.
    [160]谢祚水,王自力,吴剑国.计算结构力学.武汉:华中科技大学出版社,2004.
    [161]Lin haihua,Wang yanying.Analysis of marine riser's dynamic response subjected to waves and ocean curRents.The 3~(rd) Asia-Pacific Workshop on Marine Hydrodynamics.Shanghai:2006.
    [162]黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应.上海:上海交通大学出版社,1992.
    [163]王勖成,邵敏.有限单元法基本原理和数值方法(第2版).北京:清华大学出版社,1996.
    [164]聂武,刘玉秋.海洋工程结构动力分析.哈尔滨:哈尔滨工程大学出版社,2002.
    [165]J.R.Chaplin,P.W.Bearman,F.J.Huera,Huarte,R.J.Pattenden.Laboratory measurements of vortexinduced vibrations of a vertical tension riser in a stepped current.Journal of Fluids and Structures,2005,21:3-24.
    [166]戴光清,Lam KM.圆柱振荡流中的斜向涡街.水动力学研究与进展,2003,A辑,13(8),224-232.
    [167]4L.Mathelin,E.de LangRe.Vortex-induced vibrations and waves under shear flow with a wake oscillator model.European Journal of Mechanics B/Fluids,2005,24:478-490.
    [168]傅强.海洋输液隔水管动力特性及涡激振动响应理论研究.青岛:中国海洋大学,2004.
    [169]W.J.Kim,N.C.Perkins.Two-dimensional vortex-induced vibration of cable suspensions.Journal of Fluids and Structures,2002,16(2):229-245.
    [170]S.Mittal,V.Kumar.Flow-induced vibrations of a light circular cylinder at Reynolds numbers 10~3 to 10~4.Journal of Sound and Vibration,2001,245(5):923-946.
    [171]S.Hong,Y.R.Choi.Experimental study on the vortex-induced vibration of towed pipes.Journal of Sound and Vibration,2002,249(4):649-661.
    [172]S.Tang,N.Aubry.Suppression of vortex shedding inspired by a low-dimensional model.Journal of Fluids and Structures,2000,14:443-468.
    [173]Huseyin Akilli,Besir Sahin,N.Filiz Tumen.Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate.Flow Measurement and Instrumentation,2005,16:211-219.
    [174]C.Dalton,Y.Xu,J.C.Owen.The suppression of lift on a circular cylinder due to vortex shedding at moderate Reynolds numbers.Journal of Fluids and Structures,2001,15:617-628.
    [175]李华英,李贵荣.振动控制的发展及趋势.云南农业大学学报,2001,16(1):77-81.
    [176]Kalro V.,Tezduyar T..Parallel 3D computation of unsteady flows around circular cylinders.Parallel Computing,1997,23:1235-1248.
    [177]Zhang J.,Dalton C..A three-dimensional simulation of a steady approach flow past a circular cylinder at low Reynolds number.International Journal for Numerical Methods in Fluids,1998,26:1003-1022.
    [178]Breuer,M..Numerical and modelling influences on large eddy simulations for the flow past a circular cylinder.International Journal of Heat and Fluid Flow,1998,19:512-521.
    [179]Breuer M..A challenging test case for large eddy simulation:high Reynolds number circular cylinder flow.International Journal of Heat and Fluid Flow,2000,21:648-654.
    [180]Labbé,D.F.L.and Wilson,P.A..A numerical investigation of the effects of the spanwise length on the 3-D wake of a circular cylinder,Journal of Fluids and Structures,2007,23(8):1168-1188.
    [181]王亚玲,刘应中,缪国平.圆柱绕流的三维数值模拟.上海交通大学学报,2001,35(19):1464-1469,
    [182]C.Lei,L.Cheng,K.Kavanagh.Spanwise length effects on three-dimentional modeling of flow over a circular cylinder.Comput.Methods Appl.Mech.Engrg,2001,190:2909-2923.
    [183]张兆顺,崔桂香,许春晓.湍流理论与模型.北京:清华大学出版社,2005:256-260.
    [184]王福军,计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004.
    [185]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [186]唐焕文,秦学志.实用最优化方法.大连:大连理工大学出版社,2004.
    [187]宋天霞.非线性结构有限元计算.武汉:华中理工大学出版社,1996.
    [188]丁浩江,何福保,谢贻权,徐兴.弹性和塑性力学中的有限单元法(修订本).北京:机械工业出版社,1989.
    [189]潘永仁.悬索桥结构非线性分析理论与方法.北京:人民交通出版社,2004.
    [190]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003.
    [191]郑学祥.船舶及海洋工程结构的疲劳与断裂分析.北京:海洋出版社,1988.
    [192]鲍莹斌,李润培,顾永宁.张力腿平台系索疲劳可靠性研究.上海交通大学学报,2000,34(1):87-90.
    [193]倪侃.随机疲劳累积损伤理论研究进展.力学进展,1999,29(1):43-65.
    [194]Cui Weicheng.A preliminary review of recent developments in life prediction methods of marine structures.Journal of Ship Mechanics,1999,3(6):55-79.
    [195]俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2003.
    [196]杨怀平,孙家广.基于海浪谱的波浪模拟.系统仿真学报,2002,14(9):1175-1178.
    [197]API.Design of risers for floating production systems and tension-leg platforms.America,1998.
    [198]Downing,S,Socie,D.Simplified rain flow counting algorithms.Int J Fatigue,1982,4:31-40.
    [199]Sayan Gupta,Igor Rychlik.Rain-flow fatigue damage due to nonlinear combination of vector Gaussian loads.Probabilistic Engineering Mechanics,2007,22:231-249.
    [200]中国船级社.钢质海船入级与建造规范.北京:人民交通出版社,2006.
    [201]余建星.船舶与海洋结构物可靠性原理.天津:天津大学出版社,2001.
    [202]Howells H,Hatton S.Drilling riser fatigue and wear in deep water environments.2H Offshore Engineering Ltd,Presented at Ⅱ R Deep tee 2000,Aberdeen,2000.
    [203]Wirsching P H.Fatigue reliability for offshore structures.Journal of Structural Engineering,1984,110(10):2230-2257.
    [204]Ni Kan,Zhang Shengkun,Qian Renjie.Modification of wirsching's model for fatigue reliability analysis.China Ocean Engineering,1998,12(2):163-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700