用户名: 密码: 验证码:
选择性激光烧结热物理过程分析与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速原形制造技术使用逐层累加材料的方法制造零件,从制造哲理上突破了传统切削加工(材料去除)的思想桎梏。选择性激光烧结(SLS)技术是快速原形技术的一个重要分支,其工艺涉及机械、材料、粉末烧结、激光加工和传热等相关学科。本论文针对SLS中激光与粉末材料相互作用过程、激光烧结过程3D有限元仿真、基于材料特性的自适应切片技术及SLS虚拟试验系统等开展了研究工作。
     分析了SLS粉末材料的构成特点,借鉴国际上流行的收集/重排堆垛模型的思想,应用Monte Carlo随机数仿真方法,构建了一种SLS粉末颗粒的新型堆垛模型,对SLS用单一尺寸和二元混合粉末材料的堆垛构形进行了仿真研究,为理论研究激光束与粉末材料相互作用提供了研究基础。在此基础上,讨论了粉末颗粒对激光束的吸收机理,建立了一种SLS光线跟踪模型,对激光束在SLS粉末颗粒中的传递、穿透行为进行了研究。综合使用所构建的SLS粉末堆垛模型和光线跟踪模型,探讨了激光波长、粉末材料组成特性等因素对吸收率的影响,同时对激光束在粉末材料中的穿透深度以及烧结区域进行了仿真研究,仿真结果与试验吻合。
     针对SLS热物理过程,构建了3D温度场、应力场有限元分析模型,该模型不仅考虑了对流、辐射边界条件,以及材料热物理属性的非线性特征,而且,考虑了在粉末材料烧结成固体块材过程中热物理属性剧烈改变的问题,同时考虑了相变和激光束高斯分布特征等问题。利用有限元分析模型,对SLS过程不同的扫描路径进行了优化研究,发现在分形扫描方式中,Hilbert扫描方式达到的温度最高,烧结过程产生的平均温度梯度最小。通过仿真与树脂砂SLS的试验研究发现,与传统的“S”形扫描方式比较,Hilbert扫描方式烧结的薄板零件的变形降低了55.7%,烧结件的抗压强度提高20%左右。
     开发了基于Pro/E的零件直接切片算法,该直接切片策略避免了因转换为STL文件导致的误差,可以安全、高效、精确地获取3D CAD模型的切片轮廓数据。在研究了几何自适应切片算法的基础上,提出了一种基于材料热物理特性的自适应切片方案,该切片策略综合考虑了3D模型的几何特性和SLS的工艺参数、材料热物理特性等信息,将自适应切片策略从几何层面推向物理层面进行了尝试。
     综合上述研究成果开发了SLS虚拟试验系统,该虚拟试验系统能够从几何和物理层面对选择性激光烧结零件的过程进行仿真,可以对SLS激光扫描运动过程、铺粉运动过程,以及烧结过程温度场等物理信息进行3D动态显示。结合使用有限元分析工具,对SLS过程中温度场、应力场以及变形进行计算,从而为SLS的工艺优化研究开辟了一条新的途径。
Rapid prototyping & manufacturing (RP&M) as material additive manufacturing process makes a significant breakthrough in manufacturing philosophy, which is different from traditional material removal manufacturing processes e.g. metal cutting processes. Selective laser sintering (SLS) which is related to many subjects such as mechanical, material, powders sintering, laser processing, heat transfer is an important branch of RP&M. Seveal fundamental problems including interaction between powders and laser beam, 3D finite element analysis of SLS process, adaptive slicing based on material thermophysical performance are deeply investigated in this dissertation.
     The characteristics of powders packing are analysed. Drawing on the ideas of collective rearrangement model and Monte Carlo stochastic simulation method, the powders packing model in SLS is proposed. The packing of the same size particles and bidisperse particles are simulated by using the model. The packing results can provide for the theoretical study on the interaction of powders and laser beam. Then, the mechanism of absorption of powders for the laser beam is disscused and the laser ray tracing (LRT) model is established. The transmission and penetrating behaviors of the laser beam within the powders are simulated by the LRT model developed. Combining the powders packing model and the LRT model, the influences of laser and powder performance on the absorption are studied. At the same time, the laser penetration depth and sintered zone are simulated and the calculated results match with that from experiments.
     A 3D finite element model for calculating the evolution of temperature and thermal stresses is proposed. The model allows for the heat loss through convection and radiation, the non-linear behavior of the thermophysical performance of powders, phase change, Gaussian laser distribution, as well as the radical change of thermophysical performance during the powder-to-solid transition. The scanning patterns are optimized by using the FE model. The highest temperature and the smallest temperature gradient can be arrived by using the Hilbert scanning pattern. Compared with the traditional“S”scanning pattern, the Hilbert scanning pattern can make the maximum distortion decrease by 55.7 percent and the compressive strength increase by about 20 percent through checking the SLS parts of resin sand.
     Direct slicing based on Pro/E software is proposed according to analysis of slicing strategy based on STL file. The strategy avoids the slicing errors caused by conversion from 3D CAD to STL file. The slicing contour of 3D CAD model can be arrived through the safe, efficient, accurate direct slicing method. Adaptive slicing strategy based on thermophysical performance is proposed. The strategy considers a few of aspects including geometric features of 3D CAD model, SLS processing parameters, as well as thermophysical characteristics etc. An effort is made for pushing geometric adaptive slicing to physical adaptive slicing.
     A SLS virtual experimental system is developed by integration with the research fruits obtained herein. The system can simulate the SLS machining process from geometric and physical level, including 3D dynamic display of the laser scanning system, spreading powder system, temperature evolution. Using FE tools, temperature, stresses and distortion in SLS process can be caculated. The system will be benefit for the optimization of SLS process.
引文
[1] Sanjay K. Selective laser sintering: a qualitative and objective approach. JOM, 2003, 55(10): 43-47.
    [2] J.P. Kruth, M.C. Leu*, T. Nakagawa. Progress in Additive Manufacturing and Rapid Prototyping. Annals of the CIRP, 1998, 47(2): 525-540.
    [3] Gideon N. Levy, Ralf Schindel, J.P. Kruth. Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives. Annals of the CIRP, 2003, 52(2): 589-609.
    [4]宾鸿赞,杨明。生长型制造技术-制造技术的新突破.中国机械工程,1993,4(6): 22-24.
    [5]杨明,宾鸿赞.生长型制造应用系统变厚度切片软件.湖北工学院学报,1994,9(3):81-83.
    [6]宾鸿赞,张小波,刘征宇,等.生长型制造中薄层分形扫描路径的生成与控制系统.中国机械工程,1998,26(8):32-34.
    [7]刘征宇,宾鸿赞,张小波.生长型制造中分形扫描路径对薄层残余应力场的影响.中国机械工程,1999,10(8):848-850.
    [8]张小波,宾鸿赞,刘征宇.激光烧结分形路径的二维数控系统.仪器仪表学报,1999,(4)增刊.
    [9]阳佳,宾鸿赞.任意边界薄层FASS分形曲线的裁剪.华中科技大学学报,2001, 29(7): 41-43.
    [10]阳佳,宾鸿赞.基于B-rep的精确切片原理和方法.中国机械工程,2002, 13(12): 1022-1024.
    [11] Yang Jia, Bin Hongzan. Research on Fractal-Scanning Path for Arbitrary Boundary Layer in Layered Manufacturing. Journal of Shanghai University (Natural Science), 2002, 6(4): 337-341.
    [12] J. Yang, H. Bin, X. Zhang, et al. Fractal scanning path generation and control system for Selective Laser Sintering. International Journal of Machine Tools and Manufacture, Elsevier Science, UK. 2003, 43(3): 293-300.
    [13]刘征宇.生长型制造中分形扫描路径与烧结成型性能的研究:[博士学位论文].武汉:华中理工大学,1999.
    [14]张小波.选择性激光烧结分形扫描及激光功率的控制与实验研究:[博士学位论文].武汉:华中理工大学,2001.
    [15]阳佳.生长型制造分形扫描规划及适应性切片的研究:[博士学位论文].武汉:华中科技大学,2003.
    [16] http://www.3dsystems.com.
    [17]王秀峰,罗宏杰.快速原型制造技术.北京:中国轻工业出版社. 2001.
    [18]果世驹.粉末烧结理论.北京:冶金工业出版社. 1998.
    [19]蒋玮,徐志祥,赵福令.直接金属激光烧结成形的机理及实验研究.中国机械工程,2003, 14(15):1322-1325.
    [20]张剑峰,管荣根,沈以赴,等.金属粉末激光选区烧结过程的特征探讨.南开大学学报(自然科学版),2004,34(1):54-57.
    [21]徐之光,王宏杰,吕福云,等.激光相对移动速度对物质熔化和汽化过程的影响.南开大学学报(自然科学版),2003,36(2):59-62.
    [22]白培康,刘斌,程军.覆膜金属粉末激光烧结成型机理实验研究.仪器仪表学报,2003,8:479-480.
    [23]薛春芳,田欣利,董世运,谭永生.激光烧结金属粉末涂层组织和凝固特征.金属热处理,2004,2:31-34.
    [24]顾冬冬,沈以赴,潘琰峰,胥橙庭.直接金属粉末激光烧结成形机制的研究.材料工程,2004,5:42-48
    [25] J.P. Kruth, B. Van der Schueren, J.E. Bonse, B. Morren. Basic Powder Metallurgical Aspects in Selective Metal Powder Sinitering. Annals of the CIRP, 1996, 45(1): 183-186.
    [26] Nikolay K. Tolochko, Maxim K. Arshinov, Andrey V. Gusarov, et al. Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyping Journal, 2003, 9(5): 314-326.
    [27] Nikolay Tolochko, Sregei Mozzharov, Tahar Laoui, et al. Selective laser sintering of single- and two-component metal powders. Rapid Prototyping Journal, 2003, 9(2): 68-78.
    [28] Nikolay K. Tolochko, Sergei E. Mozzharov, Igor A. Yadroitsev, et al. Balling processes during selective laser treatment of powders. Rapid Prototyping Journal, 2004, 10(2): 78-87.
    [29] F. Klocke, C. Wagner. Coalescence Behaviour of Two Metallic Particles as Base Mechanism of Selective Laser Sintering. Annals of the CIRP, 2003, 52(1): 177-180.
    [30] Suman Das. Physical Aspects of Process Control in Selective Laser Sintering of Metals. Advanced Engineering Materials, 2003, 5(10): 701-711.
    [31] J.P. Kruth, P. Mercelis, F. Van Vaerenbergh. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2005, 11(1): 26-36.
    [32] David Bourell, Martin Wohlert, Nicole Harlan, et al. Powder Densification Maps in Selective Laser Sintering. Advanced Engineering materials, 2002, 4(9): 663-669.
    [33] Suman Das, Joseph J. Beama, Martin Wohlert, et al. Direct laser freeform fabrication of high performance metal components. Rapid Prototyping Journal, 1998, 4(3): 112.
    [34] Suman Das, Martin Wohlert, Joseph J Beaman, et al. Producing metal parts with selective laser sintering/hot isostatic pressing. JOM, 1998, 50(12): 17-21.
    [35] J. Kim, T.S. Creasy. Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite. Polymer Testing, 2004, 23: 629-636.
    [36] Xiaoxuan Li,Leno L. Shaw. Microstructure of dental porcelains in a laser-assisted rapid prototyping process. Dental Materials, 2005, 21: 336-346.
    [37] K.Dai, X. Li, L. Shaw. Thermal Analysis of Laser-Densified Dental Porcelain Bodies: Modeling and Experiments. ASME Journal of Heat Transfer, 2004, 126: 818-825)
    [38] K. Dai, X-X Li, L.L. Shaw. Comparisons between thermal modeling and experiments: effects of substrate preheating. Rapid Prototyping Journal, 2004, 10(1): 24-34.
    [39] K. Dai, L. Shaw. Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Materialia, 2004, 52: 69-80.
    [40] K. Dai, L. Shaw. Finite-Element Analysis of Effects of the Laser-Processed Bimaterial Component Size on Stresses and Distortion. Metallurgical and Materials Transactions A, 2003, 34A: 1133-1145.
    [41] K. Dai, L. Shaw. Distortion minimization of laser-processed components through control of laser scanning patterns. Rapid Prototyping Journal, 2002, 8(5): 270-276.
    [42] M. Kandis, T.L. Bergman. A Simulation-Based Correlation of the Density and Thermal Conductivity of Objects Produced by Laser Sintering of Polymer Powders. Journal of Manufacturing Science and Engineering, 2000, 122: 439-444.
    [43] Yuwen Zhang, A. Faghri, C.W. Buckley, et al. Three-Dimensional Sintering of Two-component Metal Powder with Stationary and Moving Laser Beams. Journal of Heat Transfer, 2000, 122: 150-158.
    [44] C.W. Buckley, T.L. Bergman. An Experimental Investigation of Heat Affected Zone Formation and Morphology Development During Laser Processing of Metal Powder Mixtures. ASME Journal of Heat Transfer, 2001, 123: 586-592.
    [45] Yuwen Zhang, Amir Faghri. Melting of a subcooled mixed powder bed with constant heat flux heating. International Journal of Heat and Mass Transfer, 1999, 42: 775-788.
    [46] X.C. Wang, T. Laoui, J. Bonse, J.P. Kruth, B. Lauwers, L. Froyen. Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation. TheInternational Journal of Advanced Manufacturing Technology, 2002, 19: 351-357.
    [47] J.P. Kruth, L. Froyen, M. Rombouts, J. Van Vaerenbergh, P. mercelis. New Ferro Powder for Selective Laser Sintering of Dense Parts. Annals of the CIRP, 2003, 52(1): 139-142.
    [48] J.P. Kruth, L. Froyen, J. Van Vaerenbergh, et al. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149: 616-622.
    [49] P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, R. Glardon. Sintering of Commercially Pure Titanium Powder with a Nd:YAG Laser Source. Acta Materialia, 2003, 51: 1651-1662.
    [50] P. Fischer, V. Romano, H.P. Weber, S. Kolossov. Pulsed laser sintering of metallic powders. The Solid Films, 2004, 453-454: 139-144.
    [51] P. Fischer, H. Leber, V. Romano, H.P. Weber, N.P. Karapatis, C. Andre, R. Glardon. Microstructure of near-infrared pulsed laser sintered titanium samples. Applied Physics A, 2004, 78: 1219-1227.
    [52] P. Fischer, N. Karapatis, V. Romano, R. Glardon, H.P. Weber. A model for the interaction of near-infrared laser pulsed with metal powders in selective laser sintering. Applied Physics A, 2002, 74: 467-474.
    [53] P. Fischer, M. Locher, V. Romano, H.P. Weber, S. Kolossov, R. Glardon. Temperature measurements during selective laser sintering of titanium powder. International Journal of Machine Tools & Manufacture, 2004, 44: 1293-1296.
    [54] R. Glardon, N. Karapatis, V. romano. Influence of Nd:YAG Parameters on the Selective Laser Sintering of Metallic Powders. Annals of the CIRP, 2001, 50(1): 133-136.
    [55] S. Kolossov, E. Boillat, R. Glardon, P. Fischer, M. Locher. 3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process. International Journal of Machine Tools & Manufacture, 2004, 44: 117-123.
    [56] Nikolay K. Tolochko, Sergei E. Mozzharov, Igor A. Yadroitsev, Tahar Laoui, Ludo Froyen, Victor I. Titov, Michail B. Ignatiev. Selective laser sintering and cladding of single-component metal powders. Rapid Prototyping Journal, 2004, 10(2): 88-97.
    [57] M. Berzins, T.H.C. Childs, G.R. Ryder. The Selective Laser Sintering of Polycarbonate. Annals of the CIRP, 1996, 45(1): 187-190.
    [58] T.H.C. Childs, C. Hauser, M. Badrossamay. Mapping and Modelling Single Scan Track Formation in Direct Metal Selective Laser Melting. Annals of the CIRP, 2004, 53(1): 191-194.
    [59] K. Maeda*, T.H.C. Childs. Laser sintering (SLS) of hard metal powders for abrasion resistant coatings. Journal of Materials Processing Technology, 2004, 149: 609-615.
    [60] K.K.B. Hon, T.J. Gill. Selective Laser Sintering of SiC/Polyamide Composites. Annalsof the CIRP, 2003, 52(1): 173-176.
    [61] S.R. Pogson, P. Fox, C.F. Sutcliffe, et al. The production of copper parts using DMLR. Rapid prototyping Journal, 2003, 9(5): 334-343.
    [62] R.H. Morgan, A.J. Papworth, C. Sutcligge, P. Fox, W. O’Neill. High Density Net Shape Components by Direct Laser Re-melting of Single-phase Powders. Journal of Materials Science, 2002, 37: 3093-3100.
    [63] H.J. Niu, I.T.H. Chang. Selective laser sintering of gas atomized M2 high speed steel powder. Journal of Materials Science, 2000, 35: 31-38.
    [64] W-N Su, P. Erasenthiran, P.M. Dichens. Investigation of Fully Dense Laser Sintering of Tool Steel Powder Using a Pulsed Nd:YAG(neodymium-doped yttrium aluminium garnet Laser. Proceedings of the Institution of Mechanical Engineers, 2003, 217(1): 127-138.
    [65] A.V. Gusarov, T. Laoui, L. Froyen, V.I. Titov. Contact thermal conductivity of a powder bed in selective laser sintering. International Journal of Heat and Mass Transfer, 2003, 46(6): 1103-1109.
    [66] F. Klocke, C. Wagner. Coalescence Behaviour of Two Particles as Base Mechanism of Selective Laser Sintering. Annals of the CIRP, 2003, 52(1): 177-180.
    [67] J. Duck, F. Niebling, T. Neebe, A. Otto. Infiltration as post-processing of laser sintered metal parts. Powder Technology, 2004, 145: 62-68.
    [68] M. Matsumoto, m. Shiomi, K. Osakada, F. Abe. Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. International Journal of Machine Tools and Manufacture, 2003, 42: 61-67.
    [69] M. Shiomi, A. Yoshidome, F. Abe, K. Osakada. Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders. International Journal of Machine Tools and Manufacture, 1999, 39: 237-252.
    [70] M. Shiomi, K. Osakada, K. Nakamura, et al. Residual Stress within Metallic Model Made by Selective Laser Sintering. Annals of the CIRP, 2004, 53(1): 195-198.
    [71] H.-J. Yang, P.-J. Hwang, S.-H. Lee. A study on shrinkage compensation of the SLS process by using the Taguchi method. International Journal of Machine Tools & Manufacture, 2002, 42: 1203-1212. South Korea.
    [72] Z. katz*, P.E.S. Smith. On process modeling for selective laser sintering of stainless steel. Proc Instn Mech Engrs, 2001, 215(Part B): 1497-1504.
    [73] G. Casalino, L.A.C. De Filippis, A.D. Ludovico, et al. An investigation of rapid prototyping of sand casting molds by selective laser sintering. Journal of Laser Applications, 2002, 14(2): 100-106.
    [74] S. Rossi, F. Deflorian, F. Venturini. Improvement of surface finishing and corrosionresistance of prototypes produced by direct metal laser sintering. Journal of Materials Processing Technology, 2004, 148: 301-309.
    [75] K. Murali, A.N. Chatterjee, P. Saha, R. Palai, S. Kumar, S.K. Roy, P.K. Mishra, A. Roy Choudhury. Direct Laser Sintering of Iron-graphite Powder Mixture. Journal of Materials Processing Technology, 2003, 136: 179-185.
    [76] A.N. Chatterjee, Sanjay Kumar, P. Saha, R.K. Mishra, A. Roy Choudhury. An experimental design approach to selective laser sintering of low carbon steel. Journal of Materials Processing Technology, 2003, 136: 151-157.
    [77] A. Simchi, H. Poh. Effects of Laser Sintering Processing Processing Parameters on the Microstructure and Densification of Iron Powder. Materials and Engineering A, 2003, 359: 119-128.
    [78] A. Simchi, F. Petaoldt, H. Pohl. On the Development of Direct Metal Laser Sintering for Rapid Tooling. Journal of Materials Processing Technology, 2003, 141: 319-328.
    [79] A. Simchi, H. Pohl. Direct laser sintering of iron-graphite powder mixture. Materials Science and Engineering A, 2004, 383: 191-200.
    [80] H.H. Zhu, L. Lu, J.Y.H. Fuh. Development and Characterization of Direct Laser Sintering Cu-Based Metal Powder. Journal of Materials Processing Technology, 2003, 140: 314-317.
    [81] H.H. Zhu, L. Lu, J.Y.H. Fuh. Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder. Materials Science and Engineering A, 371(2004), pp. 170-177.
    [82] Y. Tang, H.T. Loh, Y.S. Wong, J.Y.H. Fuh, L. Lu, X. Wang. Direct Laser Sintering of a Copper-based Alloy for Creating Three-dimensional Metal Parts. Journal of Materials Processing Technology, 2003, 140: 368-372.
    [83] Y. Tang, J.Y.H. Fuh. Direct laser sintering of a silica sand. Materials and Design, 2003, 24: 623-629.
    [84]史玉升,黄树槐,潘传友.选择性激光烧结工艺参数智能优化方法研究.机械科学与技术,2003,(3):259-264.
    [85]史玉升,孙海宵,攀自田,黄乃瑜,黄树槐.基于选择性激光烧结方法的金属零件快速制造技术研究.铸造,2003,(10):749-752.
    [86]李湘生,史玉升,王从军,黄树槐.激光选区烧结(SLS)成型机的粉末预热过程的实验研究.热能动力工程,2001,(7):412-414.
    [87]李湘生,莫健华,蔡道生,黄树槐. SLS成型机的粉末预热过程研究.华中科技大学学报,2001,(2):102-104.
    [88]李湘生,韩明,史玉升,黄树槐. SLS成形件的收缩模型和翘曲模型.中国机械工程,2001,(8):887-889.
    [89]李湘生,殷燕芳,黄树槐.激光选区烧结的成型收缩研究.材料科学与工程学报,2003,(6):830-832.
    [90]蔡道生,史玉升,陈功举,黄树槐. SLS快速成形系统扫描路径优化方法的研究.锻压机械,2002,(2):18-20.
    [91]林柳兰,史玉升,曾繁涤,黄树槐.树脂增强SLS烧结件的研究.华中科技大学学报(自然科学版),2003,(3):99-101.
    [92]林柳兰,史玉升,曾繁涤,黄树槐.高分子粉末烧结件的增强后处理的研究.功能材料,2003,(1):67-68.
    [93]刘锦辉,史玉升,陈康华,黄树槐.选择性激光烧结复合粉末法制造合金零件.华中科技大学学报(自然科学版),2006,34(5):83-85.
    [94]刘锦辉,史玉升,王高潮,黄树槐. SLS间接法制造金属零件生坯强度研究.华中科技大学学报(自然科学版),2006,34(3):54-57.
    [95]沈以赴,陈文华,赵剑峰,余承业,谭永生,刘方军.快速成形技术中材料成形性的研究进展.材料科学与工程,2001,(4):90-96.
    [96]沈以赴,顾冬冬,王蕾,等.多组分铜基金属粉末选择性激光烧结成形的工艺研究.铸造,2005,54(7):659-664.
    [97]张剑峰,沈以赴,赵剑峰,黄因慧,谭永生,刘方军.激光烧结成形金属材料及零件的进展.金属热处理,2001,(12):1-4.
    [98]张剑峰,沈以赴,赵剑峰,黄因慧,余承业. Ni基金属粉末激光快速制造的研究.航空学报,2002 (5):221-225.
    [99]张剑峰,赵剑峰,沈以赴,黄因慧,余承业.金属粉末直接激光烧结成形扫描过程的研究.电加工与模具,2002,(5):22-25.
    [100]张剑峰,沈以赴,赵剑峰,黄因慧,余承业,张永康,周明.激光选区烧结Ni基金属粉末的熔凝特征.中国激光,2003(8):763-768.
    [101]张剑峰,管荣根,沈以赴,赵剑峰,黄因慧.金属粉末激光选区烧结过程的特征探讨.东南大学学报(自然科学版),2004,(1):54-57.
    [102]赵剑峰,黄因慧,花国然,张建华,王蕾,张永康,周建忠,周明.激光烧结快速制备自由形状纳米块体材料的试验研究.材料科学与工程学报,2003,(3):339-341.
    [103]赵剑峰,李景新,沈以赴,黄因慧,张永康,周建忠,周明.纳米Al2O3粉体材料激光烧结成型基础试验研究.中国激光,2003,(12):1129-1132.
    [104]赵剑峰,张建华,张剑峰,等.镍合金激光直接烧结成形制件显微结构及微观缺陷.中国机械工程,2005,16(2):264-267.
    [105]张建华,赵剑峰,田宗军,花国然,黄因慧,胡育文.镍基合金粉末的选择性激光烧结试验研究.中国机械工程,2004,(5):431-434.
    [106]李景新,黄因慧,赵剑峰,沈以赴.纳米材料激光选择性烧结成形的研究.电加工与模具,2002,(1):43-46.
    [107]胥橙庭,沈以赴,顾冬冬,余承业.选择性激光烧结成形温度场的研究进展.铸造,2004,(7):511-515.
    [108]张坚,徐志锋,郑海忠,黄因慧.选择性激光烧结法制备聚合物/A l2O3纳米复合材料.材料工程,2004,(5):36-39.
    [109]赵保军,施法中,冯涛,孙建民.选择性激光烧结聚苯乙烯粉末成形温度场的数值模拟研究.激光杂志,2002,(2):66-69.
    [110]赵保军,施法中,冯涛,孙建民,徐海然.选区激光烧结成型中致密度的数值模拟与实验.激光技术,2003,(1):40-43.
    [111]汪苏,徐海然,薛忠明. SLS快速成形技术中激光加工参数对制件性能的影响.中国机械工程,2003,(17):1460-1462.
    [112]赵东方,赵忠泽,庞国星.激光快速成型用覆膜砂工艺性能探讨.热加工工艺,2004,(8):33-34.
    [113]朱林泉,程军.变长线扫描选择性激光烧结快速成型工艺的质量和效率优势分析.兵工学报,2002,(1):64-66.
    [114]朱林泉.线扫描SLSRP系统的原理及工艺优势.应用激光,2002,(3):305-308.
    [115]白培康,赵山林,程军.覆膜金属粉末激光烧结过程温度场的数值模拟.华北工学院测试技术学报,2000(4):273-277.
    [116]白培康,黄树槐,程军.树脂基复合成型材料激光烧结过程温度场数值模拟.应用基础与工程科学学报,2002,(1):68-72.
    [117]梁红玉,任安峰,朱宇明.覆膜陶瓷粉末烧结过程热应力场研究.兵器材料科学与工程,2001,(3):35-37.
    [118]邱建国.粉末材料激光烧结成型过程温度场的测量.仪器仪表学报,2003,(4):54-55.
    [119]杜建红,白培康,程军.选择性激光烧结过程温度场数值模拟.华北工学院学报,2000,(1):30-32.
    [120]任乃飞,马涛,高传玉,蔡兰.基于SLS快速成形工艺的分区域扫描路径研究.中国机械工程,2003,(16):1371-1373.
    [121]张立文,裘继斌,德·豪松,王富岗,夏元良.连续YAG激光相变硬化三维瞬态温度场数值模拟.大连理工大学学报,2003,(2):191-195.
    [122]薛春芳,田欣利,董世运,谭永生.激光直接烧结成形金属零件的试验研究.应用激光,2003,(3):130-134.
    [123]薛春芳,董世运,田欣利,谭永生.工艺参数对激光直接烧结成形涂覆层的影响.机械工程材料,2003,(11):26-29.
    [124]花国然,黄因慧,赵剑峰,张建华,张永康.纳米陶瓷粉末激光选择性烧结初探.中国机械工程,2003,(20):1766-1769.
    [125]花国然,罗新华,赵剑峰,田宗军,黄因慧,张永康.纳米陶瓷块体的激光烧结成形实验研究.中国机械工程,2004,(15):1372-1375.
    [126] G.T. Nolan, P.E. Kavanagh. Random packing of nonspherical particles. Powder Technology, 1995, 84: 199-205.
    [127] G.T. Nolan, P.E. Kavanagh. Computer simulation of random packings of spheres with log-normal distributions. Powder Technology, 1993, 76: 309-316.
    [128] G.T. Nolan, P.E. Kavanagh. Computer simulation of random packing of hard spheres. Powder Technology, 1992, 72: 149-155.
    [129] A.S. Clarke, J.D. Wiley. Numerical simulation of the dense random of a binary mixture of hard spheres: Amorphous metals. Physical Review B, 1987, 35(14): 7350-7356.
    [130] R. Caulkin, M. Fairweather, X. Jia, N. Gopinathan, et al. An investigation of packed columns using a digital packing algorithm. Computers and chemical Engineering, 2006, 30: 1178-1188.
    [131] K. Han*, Y.T. Feng, D.R.J. Owen. Sphere packing with a geometric based compression algorithm. Powder Technology, 2005, 155: 33-41.
    [132] S.P. Li, Ka-Lok Ng. Monte Carlo study of the sphere packing problem. Physica A, 2003, 321: 359-363.
    [133] G. Fu, W. Dekelbab. 3-D random packing of polydisperse particles and concrete aggregate grading. Powder Technology, 2003, 133: 147-155.
    [134] R.Y. Yang, R.P. Zou, A.B. Yu. Computer simulation of the packing of fine particles. Physical Review E, 2000, 62(3): 3900-3908.
    [135] D. He, N.N. Ekere, L. Cai. Computer simulation of random packing of unequal particles. Physical Review E, 1999, 60(6): 7098-7104.
    [136] A. Yang, C.T. Miller, L.D. Turcoliver. Simulation of correlated and uncorrelated packing of random size spheres. Physical Review E, 1996, 53(2): 1516-1524.
    [137] T.I. Zohdi. On the optical thickness of disordered particulate media. Mechanics of materials, 2006, 38: 969-981.
    [138]王海兵,刘咏,周科朝,等.粉末颗粒堆积的科学问题.粉末冶金材料科学与工程,2001,6(3):216-222.
    [139]王建国,赵晓彤,胡斌,等.非均匀颗粒自然堆积过程的计算机仿真.华北电力大学学报,2000,27(1):33-36.
    [140]刘军,刘汉龙.用Monte Carlo方法模拟岩土的自然堆积过程.岩土力学,2005,26:113-116.
    [141]裴鹿成.蒙特卡罗方法及其在粒子输运问题中的应用.张孝译.北京:科学出版社,1980.
    [142] Duane Hanselman, Bruce Litlefield.精通Matlab7.朱仁峰.北京:清华大学出版社,2006.
    [143] Dave Shreiner, Mason Woo, Jackie Neider, et al. OpenGL编程指南.第四版.邓郑详.北京:人民邮电出版社,2005.
    [144]郑启光,辜建辉.激光与物质互相作用.武汉:华中理工大学出版社,1996.
    [145]孙家广,杨长贵.计算机图形学.北京:清华大学出版社,1994.
    [146] N.K. Tolochko, T. Laoui, Y.V. Khlopkov, et al. Absorptance of powder materials suitable for laser sintering. Rapid Prototyping Journal, 2000,6(3).
    [147]王勖成.有限单元法.北京:清华大学出版社,2003.
    [148]杨世铭,陶文铨.传热学.第三版.北京:高等教育出版社,1998.
    [149]孔详谦.有限单元法在传热学中的应用.第三版.北京:科学出版社,1998.
    [150]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,1995.
    [151]孔详谦.热应力有限单元法分析.上海:上海交通大学出版社,1999.
    [152]叶先磊,史亚杰. Ansys工程分析软件应用实例.北京:清华大学出版社,2003.
    [153]龚曙光,谢桂兰. Ansys操作命令与参数化编程.北京:机械工业出版社,2004.
    [154]博弈创作室. APDL参数化有限元分析技术及其应用实例.北京:中国水利水电出版社,2004.
    [155]张朝晖,范群波,贵大勇,等. Ansys8.0热分析教程与实例解析.北京:中国铁道出版社,2005.
    [156]宾鸿赞.分形扫描路径的规划·控制·应用.武汉:华中科技大学出版社,2006.
    [157] David S.Kelley. Pro/ENGINEER Wildfire机械设计教程.孙江宏.北京:清华大学出版社,2005.
    [158]李世国. Pro/ToolKit程序设计.北京:机械工业出版社,2003.
    [159]张继春. Pro/ENGINEER二次开发实用教程.北京:北京大学出版社,2003.
    [160] Bjarne Stroustrup. C++程序设计语言.特别版.裘宗燕.北京:机械工业出版社,2002.
    [161] David J. Kruglinski. Visual C++技术内幕.第四版.潘爱民,王国印.北京:清华大学出版社,1998.
    [162] Prashant Kulkarni, Debasish Dutta. An accurate slicing procedure for layered manufacturing. Computer-Aided Design, 1996(25): 683-697.
    [163] Weiyin Ma, Wing-Chung But, Peiren He. NURBS-based adaptive slicing for efficient rapid prototyping. Computer-Aided Design, 2004(36): 1309-1325.
    [164] Bahattin Koc. Adaptive layer approximation of free-form models using marching point surface error calculation for rapid prototyping. Rapid Prototyping Journal, 2004, 10(5): 270-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700