用户名: 密码: 验证码:
低速轴流压气机中流动分离的定常与非定常控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分离流动是一类复杂的流体流动现象,普遍存在于航空、航天、流体机械等各类实际工程问题中,其本质源于粘性流动和非粘性流动的相互作用。闭式流动分离和再附伴随着较大的能量损失,对流体机械的性能影响很大,分离结构的控制已经成为流体机械工程中的一个研究重点。本文围绕轴流机械中流动分离及其相关问题,从定常的角度讨论轴流机械中角区分离的产生机理与控制手段,同时从非定常的角度通过一些新的视角研究并寻求流动分离控制、降低损失的途径,以挖掘低速轴流压气机/大型轴流风机中的性能潜力。
     通过三维雷诺时均N-S(RANS)方程对轴流叶栅进行定常计算,计算结果与实验结果的比较,揭示了无叶顶间隙单流道叶栅中节点数和鞍点数相等的关系式;通过分析端壁边界层中低能流体类似于分层的运动,深入说明了周向压力梯度和流向逆压梯度作用下,端壁边界层朝吸力面的偏转及其逆流向翻转是角区三维分离形成的基本原因。研究比较了进口有无边界层条件下的极限流线、出口总压损失分布、吸力面尾缘位移厚度以及不同来流冲角时的分离尺度和相应的流谱结构,结果揭示了端壁边界层朝角区的堆积是三维分离的决定性因素。
     通过后置导叶单级轴流压气机在不同速度剖面来流条件下的流场计算,研究了进口速度分布对压气机性能的影响,揭示了速度分布、边界层厚度等沿流向的变化规律,通过与实验数据的对比,考察并确认了所用计算方法用于边界层相关问题计算的精度。文中在轴流叶栅弦向开缝改善吸力面分离的问题所作的研究,例如对回气点、吸气点以及开缝的位置、高度等参数进行的比较分析,为控制吸力面边界层堆积、降低分离损失提供了的较好控制手段。针对端壁低能流体向吸力面的堆积路径,进行了吸力面、端壁定流量抽吸的分析计算,结果表明,适当位置上很小的抽吸量就可能消除掉大部分明显的三维分离,其积极作用包括总压损失和端壁阻塞的显著降低、叶片载荷和出口静压的增加以及更加均匀的出口流动。
     对带有前后导叶和复杂形状进气箱的大型燃煤电站用轴流引风机进行的全三维数值计算与分析表明,进气箱中复杂的几何形状和轴套结构增大了流动的不稳定性和损失,并引起了下游流动的周向不均匀性。文中对比了不同的预旋方案对做功能力以及损失的影响。提出并尝试了串列叶片及其后叶片周向调节替代动叶可调开度调节的方案,结果表明,在远离设计流量工况下,虽然压升有所下降,但增强了运行稳定性和提高了效率,为进一步地研究提供了有价值的初步效果。
     采用大涡模拟方法对前缘分离拟序结构的问题进行了研究,提出并探索通过合理的来流周期性作用来控制分离区域的大小。文中通过分析倾斜平板前缘自由剪切层的演变过程,研究并比较了三种可视化形式在带壁面自由剪切层中的不同表现,发现Q准则更适合显示来流扰动作用下的拟序结构及其随时间的演变过程。论文从时均性能、拟序结构以及非定常频谱等方面描述了不同频率、不同振荡幅度以及不同进口速度剖面的周期性来流条件对前缘分离结构的控制效果。
     为挖掘轴流压气机中的非定常潜力,文中研究了上游叶排的非定常尾迹对下游叶排中分离结构的影响机制。二维计算发现,合理的激励参数加大了叶栅内部气流转折程度,栅后气流流向更趋合理。合理的非定常激励可以促进流动中杂涡之间的归并,从而有效地控制分离流由无序变为有序,且文中从流场进化、降噪的角度作了分析与设想。在三维计算中对比了尾迹生成器朝两个不同方向运动的作用效果。不同频率的研究表明,对应于f_(shed)和f_(shear)的外部频率强化了分离剪切层中的K-H展向涡结构,并且流向涡与流向的夹角更加明显,其它频率作用下该结构并不明显。最后,研究了进口随机小尺度脉动条件下的分离拟序结构以及时均性能的改善。
Flow separation is a complicate flow phenomenon, which exist in all kinds of practical problems of engineering, such as Astronautics, Aeronautics, low-speed fluid machines and so on. The essence of flow separation lies on the mutual interaction between the viscous and unviscous flow. The closed flow separation and reattachment will result in the significant energy loss, which will bring the remarkably negative effect on the performances of fluid mechines, so the control of separation is regarded as one of the key problems of fluid engineering research. The research in this paper is performed around the flow separation and corrective problems in axial compressor. The mechanism of production of corner separation in axial compressor and the controlling of it are discussed from the view of steady flow, at the same time, some new the research perspectives of unsteady flow are studied to control flow separation and reduce energy loss. All of them are carried out, to explore the performance potential of the low-speed or large-scale axial compressors.
     The steady numerical simulation in axial cascade is carried out by three-dimensional Reynold-averaged Naiver-Stokes equations (RANS). The comparison between the computational results and experimental ones appears the equal relation about numbers of nodal point and saddle point in the cascade passage without tip clearance. By analyzing the layered motion of low-energy fluid in the end-wall boundary layer, the formation cause of three-dimensional corner separation is lucubrated. That is the end-wall boundary layer streamlines are driven toward the suction surface by the circumferential pressure gradient and reversed because of the adverse streamwise pressure gradient. The flow structures under different incoming boundary layer condition are compared, which also appear that the deposit of end-wall boundary layer toward corner is regarded as the crucial factor of 3D separation.
     The effects on performance of axial compressor with outlet guide vane from different inlet velocity profiles are carried out, the variation rule of boundary layer through the blade passage is appeared. The results which mentioned above are compared with experimental results, to check the precision of computational method used in this chapter. To improve the deposit of low-energy fluid and reduce the loss of separation, the research of chordwise slot in axial cascade is developed, emphasis on examining the effects from several parameters including the positions of suction point and return point and height of slot. In addition, based on the track of end-wall low-energy layered fluid, the suction mass from the suction surface or end-wall is analyzed, the results appear that a few suction mass from reasonable suction point can remove major separation region.
     The three-dimensional numerical simulations of large-scale axial induced fan with complicate inlet box are carried out. The results show that complex geometry structures of inlet box and illogical axes cover increase the flow instability, loss and apparent circumferential asymmetry downstream. The effects on performances from different pre-whirl conditions of impeller inlet are compared. The tandem blades using in this kind of compressor and relative circumferential adjustment projects of next blade are brought forward and attempted firstly by the author. The computational results indicate that the stall margin and stability is extended, which provides valuable primary effects for further blade controlling research.
     The coherent structures of leading separation is studies by Large Eddy Simulation, and the reasonable incoming periodicity conditions for controlling flow separation is explored and colligated. By analyzing the evolution of free shear layer at the leading edge of inclined flat, three kinds of flow visualization forms for the free shear layer flow with wall are compared. The results appear that Q criterion is fit for revealing the coherent structures with incoming fluctuation. By comparing the time-averaged performance, unsteady spectrum and so on, the different types of incoming periodicity conditions for better controlling flow separation are analyzed to explore the optimum effect.
     To search the unsteady potential of axial compressor, the interaction mechanism between the upstream blade row wake and separation structures of downstream large turning angle axial blade row is studied by LES. The two-dimensional computational results reveal that some reasonable unsteady excitations could reduce the separated bubble to some extent. The vortices corresponding to the external effective frequency are enhanced. As a result, the vortices of other scales are entrained by the strengthened vortices, which will make for the combination of the disordered vortices. In the 3D simulations, different incoming conditions bring extreme differential effects. The comparison between two directional motions of wake generator is carried out. Two external frequencies corresponding to f_(shed) and f_(shear) respectively strengthen the K-H rolls structures of the separated shear layer, and the included angle between the streamwise vortices and the streamwise direction is more apparent, but there are no clear coherent structures in other exciting frequencies. Finally, in the case with inlet random small-scale fluctuation, the improvement of separated coherent structures and time-averaged performance is analyses.
引文
[1]夏雪湔,邓学蓥,工程分离流动力学[M],北京:北京航空航天大学出版社,1991.
    [2]陆亚钧,葛敬东,邱亚希等,在静止扩压环形叶栅中捕获轴流压气机非定常耦合流型的实验研究[J],燃气涡轮试验与研究,2004,17(1):6-11.
    [3]童秉纲,张炳暄,崔尔杰,非定常流与涡运动[M],北京:国防工业出版社,1993.
    [4]Dring R.P.,Joslyn H.D.,Hardin L.W.,An Investigation of Compressor Rotor Aerodynamics,ASME J.Turbomach.,1982,104(1):84-96.
    [5]Joslyn D.H.,and Dring R.P.,Axial Compressor Stator Aerodynamics,ASME J.Heat Transfer,1985,107:485-493.
    [6]Dong Y.,Gallimore S.J.,Hodson H.P.,Three-Dimensional Flows and Loss Reduction in Axial Compressors,ASME J.Turbomach.,1987,109(3):354-361.
    [7]Peacock R.E.,Flow Control in the Corners of Cascades,Aeronautical Research Council,ARC Paper No.27291,1965.
    [8]Loughery R.J.,Horn R.A.,Tramm P.C.,Single Stage Experimental Evaluation of Boundary Layer Blowing and Bleed Techniques for High Lift Stator Blades[R],NASA CR-54573,1971.
    [9]Kerrebrock J.L.,Reijnen D.P.,Ziminsky W.S.,et al.,Aspirated Compressors[R],ASME Paper 97-GT-525,1997.
    [10]Kerrebrock J.L.,Drela M.,Merchant A.A.,Schuler B.J.,A Family of Designs for Aspirated Compressors[R],ASME Paper 98-GT-196,1998.
    [11]Song Y.P.,Chen F.,Yang J.,et al.A Numerical Investigation of Boundary Layer Suction in Compound Lean Compressor Cascades[J],ASME Journal of Turbomachinery,2006,128(2):357-366.
    [12]Mcauliffe B.R.,Sjolander S.A.,Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade,ASME Journal of Turbomachinery,2004,126(4):560-569.
    [13]Raghumathan S.,Cooper R.K.,Passive Boundary Layer Control With Slots in Short Diffusers,ASME Journal of Fluids Engineering,2000,122(1):177-179.
    [14]Bohl D.G.,Volino R.J.,Experiments With Three-Dimensional Passive Flow Control Devices on Low-Pressure Turbine Airfoils[J],ASME Journal of Turbomachinery,2006,128(2):251-260.
    [15]Zheng X.Q.,Zhou X.B.,Zhou S.,Investigation on a Type of Flow Control to Weaken Unsteady Separated Flows by Unsteady Excitation in Axial Flow Compressors[J],ASME Journal of Turbomachinery,2005,127(3):489-496.
    [16]Seifert A.,Pack L.G.,Oscillatory Control of Separation at HighReynolds Numbers[J],AIAA J.,1999,37:1062-1071.
    [17]Seifert A.,Pack L.G.,Active Flow Separation Control on Wall-Mounted Hump at High Reynolds Numbers[J],AIAA J.,2002,40:1363-1372.
    [18]Yoshioka S.,Obi S.,Masuda S.,Organized Vortex Motion in Periodically Perturbed Separated Flow Over a Backward-Facing Step[J],Int.J.Heat Fluid Flow,2001,22:301-307.
    [19]Yoshioka S.,Obi S.,Masuda S.,Turbulence Statistics of Periodically Perturbed Separated Flow Over Backward-Facing Step[J],Int.J.Heat Fluid Flow,2001,22:393-401.
    [20]Bons J.P.,Sondergaard R.,Rivir R.B.,Turbine Separation Control Using Pulsed Vortex Generator Jets[J],ASME J.Turbomach.,2001,123(2):198-206.
    [21]Bons J.P.,Sondergaard R.,Rivir R.B.,The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets[C],ASME Paper No.2001-GT-0190.
    [22]Culley D.E.,Bright M.M.,Prahst P.S.,Active Flow Separation Control a Stator Vane Using Embedded Injection in a Multistage Compressor Experiment[J],ASME Journal of Turbomachinery,2004,126(1):24-34.
    [23]王嘉炜,王正明,振荡扰流对分离流动叶栅气动性能影响的数值研究[C],中国工程热物理学会热机气动热力学会议,2004,042024,西安.
    [24]Yamagishi M.,Tashiro S.,Effect of External Fluctuation Frequency Introduced in the Mean-Flow on the Characteristic Frequency of Separated Flow[J],JSME International Journal,Series B,2002,45(4):796-803.
    [25]Sigurdson L.W.,The Structure and Control of a Turbulent Reattaching Flow[J],Journal of Fluid Mechanics,1995,298:139-165.
    [26]Nishioka M.,Asai M.,Yoshida S.,Control of Flow Separation by Acoustic Excitation[J],AIAA J.,1990,28(11):1909-1915.
    [27]Mochizuki O.,Kiya M.,Suzuki N.,A Localized Suppression of a Separated Shear Layer by Vortex Ring[C],Proc.of ASME/JSME Fluids Engineering Division Summer Meeting,July 18-23,1999,FEDSM 1999-6947.
    [28]侯安平,周盛,二维亚声扩压叶栅尾流撞击效应的数值模拟[J],空气动力学学报,2003,21(3):295-300.
    [29]Collins F.G..Zelenevitz J.,Influence of Sound Upon Separated Flow Over Wings[J].AIAA Journal 1975,13(2):408-418.
    [30]Zaman K.B.M.Q.,Bar-Sever A.,Mangalam S.M.,Effect of Acoustic Excitation on the Flow over a Low-Re Airfoil[J],J.Fluid Mech.,1987,182:127-148.
    [31]Hsiao F.B.,Jih J.J.,Shyu R.N.,The Effect of Acoustics on Flow Passing a High-AOA Airfoil[J],J.Sound Vib.,1997,199(2):177-178.
    [32]Zaman K.B.M.Q.,McKinzie D.J.,Control of Laminar Separation Over Airfoils by Acoustic Excitation[J],AIAA J.,1991,29(7):1075-1083.
    [33]Zaman K.B.M.Q.,Effect of Acoustic Excitation on Stalled Flows Over an Airfoil[J],AIAA J.,1992,30(6):1492-1499.
    [34]Yarusevych S.,Kawall J.G.,Sullivan P.E.,Airfoil Performance at Low Reynolds Numbers in the Presence of Periodic Disturbances[J],ASME Journal of Fluids Engineering,2006,128(3):587-595.
    [35]侯安平,周盛,轴流式叶轮机时序效应的机理探讨[J],航空动力学报,2003,18(1):70-75.
    [36]Huber F.W.,Johnson P.D.,Sharma O.P.,et al.,Performance Improvement through Indexing of Turbine Airfoils Part Ⅰ - Experimental Investigation[C],ASME Paper No.95-GT-27.
    [37]Dorney D.J.,Sharma O.P.,Gundy-Burlet K.L.,Physics of airfoil clocking in a high-speed axial compressor[C].ASME Paper No.98-GT-82.
    [38]Walker G.J.,Hughes J.D.,Solomon W.J.,Periodic Transition on an Axial Compressor Stator-Incidence and Clocking Effects Part Ⅰ - experimental data[J],ASME Journal of Turbomachinery,1999,121(3):398-407.
    [39]Hsu S.T.,Wo A.M.,Reduction of Unsteady Blade Loading by Beneficial Use of Vortical and Potential Disturbances in an Axial Compressor with Rotor Clocking[J],ASME Journal of Turbomachinery,1998,120(4):705-713.
    [40]郑新前,周晓勃,侯安平等,合成射流速度特性的实验研究[J],推进技术,2005,26(6):504-507.
    [41]Volino R.J.,Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets[C],ASME Journal of Turbomachinery,2003,125(4):765-777.
    [42]彭红文,火力发电厂600MW机组引风机选型经济性分析,电站辅机,1998,3: 27-32.
    [43]罗勇等,300MW发电机组中锅炉引风机进气箱的优化设计,节能,2000,3:12-13.
    [44]吴跃东,李泰勋,轴流通风机做为引风机时各方面的分析比较,风机技术,1998,2:33-34.
    [45]杨朝刚,300MW/600MW锅炉引风机的优化型式,风机技术,1999,2:12-17.
    [46]吴克启,胡胜利,包含复杂形状进气箱的旋转叶轮内部流动的实验研究.工程热物理学报,1995,16(3):295-299.
    [47]胡胜利,吴克启,程尚模.流体机械复杂形状进气箱内部流场的PDA测量.工程热物理学报,1995,16(1):60-64.
    [48]魏兵海,谢军龙,吴克启,叶轮机械设计与影响性能及内流的若干重要问题.工程热物理学报,2001,22(2):185-187.
    [49]Wu K.Q.,Ou Y.D.,Li Q.,Experimental Research for the Influence of Inflow Conditions and Blade Tip Clearances on Inlet and Outlet Flow Fields of Diagonal Flow Fan Impeller,Proceeding of the Fifth Asian International Conference on Fluid Machinery,Ⅱ:681-685.
    [50]Wu K.Q.,Ou Y.D.,Xie H.Y.,Investigation into Influence of Inlet Prewhirl on Flow Field of Deagonal Impeller with Exit Guide Volute.Proceeding of 1996 International Compressor Engineering Conference at Purdue,1996,Ⅱ:681-685.
    [51]Soranna F.,Chow Y.-C.,Uzol O.,et al.,The Effect of Inlet Guide Vanes Wake Impingement on the Flow Structure and Turbulence Around a Rotor Blade[J],ASME Journal of Turbomachinery,2006,128(1):82-95.
    [52]Gete Z.,Evans R.L.,An Experimental Investigation of Unsteady Turbulent-Wake/Boundary-Layer Interaction[J],Journal of Fluids and Structures,2003,17:43-55.
    [53]Schobeiri M.T.,(?)zt(u|¨)rk B.,Ashpis D.E.,Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development,Separation,and Intermittency Behavior Along the Suction Surface of a Low Pressure Turbine Blade[J],ASME Journal of Turbomachinery,2007,129(1):92-107.
    [54]Zhang X.F.,Hodson H.,Combined Effects of Surface Trips and Unsteady Wakes on the Boundary Layer Development of an Ultra-High-Lift LP Turbine Blade[J],ASME Journal of Turbomachinery,2005,127(3):479-488.
    [55]Howell R.J.,Hodson H.P.,Schulte V.,et al.,Boundary Layer Development in the BR710 and BR715 LP Turbines:The Implementation of High Lift and Ultra High Lift Concepts[C],ASME Paper No.2001-GT-0441.
    [56]Brunner S.,Fottner L.,Schiffer H.-P.,Comparison of Two Highly Loaded Turbine Cascade under the Influence of Wake-Induced Transition[C],ASME Paper No.2000-GT-268.
    [57]Chun S.,Sung H.J.,Influence of Unsteady Wake on a Turbulent Separation Bubble[J].Experiments in Fluids,2002,32:269-279.
    [58]郑新前,侯安平,周盛,二维扩压叶栅非定常分离流控制途径探索[J],力学学报,2003,35(5):599-605.
    [59]熊劲松,侯安平,周盛,压气机级间尾迹非定常流动的分析与利用途径探索[J],工程热物理学报,2007,28(1):43-45.
    [60]郑新前,周盛,低速轴流压气机尾流撞击效应的数值模拟[J],推进技术,2004,25(5):421-425.
    [61]Sirakov B.T.,Tan C.-S.,Effect of Unsteady Stator Wake-Rotor Double-Leakage Tip Clearance Flow Interaction on Time-Average Compressor Performance[J],ASME Journal of Turbomachinery,2003,125(3):465-474.
    [62]邓向阳,张宏武,黄伟光,低速轴流压气机中前后静叶对动叶顶部区域流动的影响[J],航空学报,2005,26(5):535-539.
    [63]McAlpine A.,Nash E.C.,Lowson M.V.,On the generation of discrete frequency tones by the flow around an airfoil[J],Journal of Sound and Vibration,1999,222(5):753-779.
    [64]Tomimatsu S.,Fujisawa N.,Measurement of aerodynamic noise and unsteady flow field around a symmetrical airfoil[J],Journal of Visualization,2002,5:381-388.
    [65]Takagi Y.,Fujisawa N.,Nakano T.,et al.,Cylinder Wake Influence on the Tonal Noise and Aerodynamic Characteristics of a NACA0018 Airfoil[J],Journal of Sound and Vibration,2006,297:563-577.
    [66]Kim H.-J.,Lee S.,Fujisawa N.,Computation of Unsteady Flow and Aerodynamic Noise of NACA0018 Airfoil using Large-Eddy Simulation[J],International Journal of Heat and Fluid Flow,2006,27:229-242.
    [67]李志平,李秋实,袁巍等,轴流压气机气动扩稳一类新措施的实验探索[J],航空动力学报,2006,21(3):485-491.
    [68]金亮,李志平,陆亚钧,尾流撞击效应在低速轴流压气机中应用实验研究的初探 [J],航空动力学报,2005,20(6):1048-1053.
    [69]Sieverding C.H.,Richard H.,Desse J.-M.,Turbine Blade Trailing Edge Flow Characteristics at High Subsonic Outlet Mach Number[J],ASME Journal of Turbomachinery,2003,125(2):298-309.
    [70]王嘉炜,赵晓路,杨科,非定常尾迹对下游叶栅非定常流动气动性能影响的数值研究[C],中国工程热物理学会热机气动热力学会议,2006,062080,重庆.
    [71]Hilgenfeld L.,Pfitzner M.,Unsteady Boundary Layer Development Due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade[J],ASME Journal of Turbomachinery,2004,126(4):493-500.
    [72]陈少龙,侯安平,周盛,扩压式叶栅非定常分离流机理研究的频谱分析[J],航空动力学报,2003,18(3):336-342.
    [73]Cardamone P.,Stadtm(u|¨)ller P.,Fottner L.,et al.,Numerical Investigation of the Wake-Boundary Layer Interaction on a Highly Loaded LP Turbine Cascade Blade[C],ASME Paper No.2002-GT-30367.
    [74]周盛,侯安平,弓志强,关于轴流压气机的非定常两代流型[J],航空学报,2005,26(1):1-7.
    [75]侯安平,姜正礼,凌代军,亚音压气机平面叶栅内流动的声激励试验研究[J],北京航空航天大学学报,2005,31(1):56-59.
    [76]侯安平,熊劲松,周盛,轴流压气机尾流撞击效应机理的数值模拟[J],北京航空航天大学学报,2005,31(9):944-948.
    [77]Reese H.,Kato C.,Carolus T.H.,Large Eddy Simulation of Acoustical Sources in a Low Pressure Axial-Flow Fan Encountering Highly Turbulent Inflow[J],ASME Journal of Fluids Engineering,2007,129(2):263-272.
    [78]王英锋,胡骏,罗标能等,上游叶片尾迹对转子叶片非定常表面压力频谱特性影响的研究[J],航空动力学报,2006,21(4):693-699.
    [79]侯安平,李秋实,周盛,进气道内加装导流体对低压转子振动特性影响分析[J],航空动力学报,2006,21(4):686-692.
    [80]季路成,程荣辉,邵卫卫等,最大负荷设计之:角区分离预测与控制,工程热物理学报,2007,28(2):219-222.
    [81]Chang P.K.,Separation of Flow,Pergamon Press,New York,Interdisciplinary and Advanced Topics in Science and Engineering,Vol.3,1970.
    [82]Délery J.M.,Legendre R.,Werlé H.,Toward the Elucidation of Three-Dimensional Separation, Annu. Rev. Fluid Mech., 2001,33: 129-154.
    [83] Dallmann U., Topological Structures of Three-Dimensional Flow Separation, DFVLR, IB 221-82-A07, Gottingen, Germany, 1983.
    [84] Tobak M., Peake D. J., Topology of Three-Dimensional Separated Flows, Annu. Rev. Fluid Mech., 1982,14:61-85.
    [85] Perry A. E., Chong M. S., A Description of Eddying Motions and Flow Patterns Using Critical Point Concepts, Annu. Rev. Fluid Mech., 1987,19: 125-155.
    [86] Hunt J. C. R., Abell C. J., Peterka J. A., Woo H., Kinematical Studies of Flow Around Free or Surface-Mounted Obstacles: Applying Topology to Flow Visualization, J. Fluid Mech., 1978, 86: 179-200.
    
    [87] Flegg G. C., From Geometry to Topology, English Universities Press, London, 1974.
    [88] Eichelbrenner E. A., Oudart A., Method de Calcul de la Couche Limite Tridimensionelle, Application a un Corps Fusele Incline sur le Vent, ONERA Publication 76, Chatillon, 1955.
    [89] Maskell E. C., Flow Separation in Three Dimensions, RAE Farnborough Report No. Aero. 2565, Nov., 1955.
    [90] Lighthill M. J., Attachment and Separation in Three-Dimensional Flows, Laminar Boundary Layers, L. Rosenhead, ed., Oxford Univ. Press, Oxford, UK, 1963: 72-82.
    [91] Gbadebo S. A., Cumpsty N. A., Hynes T. P., Three-Dimensional Separations in Axial Compressors[J]. ASME J. Turbomach., 2005,127(2): 331-339.
    [92] Khalid S. A., Khalsa A. S., Waitz I. A., et al., Endwall Blockage in Axial Compressors, ASME J. Turbomach., 1999,121: 499-509.
    [93] Cumpsty N. A., Compressor Aerodynamics, Longman Scientific and Technical, Reprinted, 2004, Krieger, FL, ISBN 1-57524-247-8.
    [94] Shih T.-H., Liou W. W., Shabbir A., et al., A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation. Computers Fluids, 1995, 24(3): 227-238.
    [95] Kim S.-E., Choudhury D., A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient. In ASME FED Vol. 217, Separated and Complex Flows, ASME, 1995.
    [96] Gbadebo S. A., Three-Dimensional Separations in Compressors, Ph.D. thesis, University of Cambridge, UK, 2003.
    [97] Gbadebo S. A., Cumpsty N. A., Interaction of Tip Clearance Flow and Three-Dimensional Separations in Axial Compressors, ASME J. Turbomach., 2007, 129(4):679-685.
    [98]Brent J.A.,Rockenbach R.W.,Single Stage Experimental Evaluation of Compressor Blading with Slots and Wall Flow Fences,NASA-CR-72635,1971.
    [99]钟兢军,刘艳明,冯国泰,端壁翼刀控制压气机叶栅二次流的数值研究,航空动力学报,2004,19(6):816-821.
    [100]Ikui T.,Inoue M.,Kuroumaru M.,Development of Velocity Profile Through a Stage of Axial Flow Turbomachinery,Tokyo Joint Gas Turbine Congress,Tokyo,Japan,May 22-27,1977,pp.311-318.
    [101]黄东涛,边晓东,唐旭东等,长短叶片开缝技术在离心风机设计中的应用,清华大学学报(自然科学版),1999,39(4):6-9.
    [102]Schlichting H.,Boundary Layer Theory[M],New York:McGraw-Hill,1979.
    [103]陈浮,宋彦萍,赵桂杰等,附面层吸除对压气机叶栅稠度特性影响[J],工程热物理学报,2005,26(2):211-215.
    [104]徐大懋,轴流式压气机弦向割缝叶栅的研究,第三届工程热物理学术会议,桂林,1980.
    [105]张志刚,朱鸿,李燕生,压气机弦向割缝叶栅流场计算及试验研究[J],工程热物理学报,1989,10(2):168-171.
    [106]曹军,沈炳正,弦向缝隙叶栅对边界层分离得控制[J],空气动力学学报,1993,11(4):445-450.
    [107]王松涛,周驰,岳国强等,叶片前缘喷气对大转角涡轮弯叶栅流场结构的影响[J],航空发动机,2003,29(3):15-18.
    [108]Gbadebo S.A.,Cumpsty N.A.,Hynes T.P.,Control of Three-Dimensional Separations in Axial Compressors by Tailored Boundary Layer Suction,ASME J.Turbomach.,2008,130(1):1-8.
    [109]Wisler D.C.,Loss Reduction in Axial Flow Compressors Trough Low-Speed Model Testing,ASME Journal of Turbomachinery,1985,107:354-363.
    [110]Hoeger M.,Lahmer M.,Dupslaff M.,et al.,A Correlation for Tip Leakage Blockage in Compressor Blade Passages,ASME Journal of Turbomachinery,2000,122(3):426-432.
    [111]Rains D.A.,Tip Clearance Flow in Axial Flow Compressors and Pumps,California Institute of Technology,Hydrodynamics and Mechanical Engineering Laboratories Report No.5,USA,1954.
    [112]Vavra M.H.,Aero-Thermodynamics and Flow in Turbomachines,John Wiley &Sons,New York,London,1960.
    [113]Inoue M.,Kuroumaru M.,Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor,ASME Journal of Turbomachinery,1989,111:250-256.
    [114]Mailach R.,Lehmann I.,Vogeler K.,Periodical Unsteady Flow Within a Rotor Blade Row of an Axial Compressor - Part Ⅱ:Wake-Tip Clearance Vortex Interaction,ASME Paper No.2007-GT-27211.
    [115]马良玉等,大型动静叶调节轴流通风机性能在线监测的一种新方法,风机技术,2000,5:42-46.
    [116]徐向阳等,可调轴流式锅炉引风机动叶片磨损失效分析,华北电力大学学报,1997.3:68-73.
    [117]杨春,李秋实,袁巍等,风机结构形式对其性能影响的数值与实验研究,航空动力学报,2005,20(3):512-517.
    [118]石汇林,硕士学位论文,武汉:华中科技大学,2006.
    [119]王新生,动叶可调轴流风机调整异常原因分析及措施,江西电力,2004,30(5):27-31
    [120]Pal P.,Untersuchungen ueber der Interferenz-einfluss bei Stroemungen durch Tandem-Schaufelgitter.Ing-Arch 34,1965:173-193.
    [121]Sheet N.L.,Analytical Study of the Effects of Geometric Changes on the Flow Charactersitics of Tandem-blades Compressors Stators.NASA TN D-6264,1971.
    [122]Dorney D.J.,Sharma O.P.,A Study of Turbine Performance Increases Through Airfoil Clocking.AIAA Paper 96-2816.
    [123]Gundy-Burlet K.L.,Dorney D.J.,Investigation of Airfoil Clocking and Inter-Blade-Row Gaps in Axial Compressors,AIAA Paper 97-3008.
    [124]Linnemann H.,Untersuchungen eines einstufigen Axial-geblases mit Tandemgittern.Konstruktion 1964,Heft 4,128-135.
    [125]童秉纲,尹协远,朱克勤,涡运动理论[M],合肥:中国科技大学出版社,1994.
    [126]Kiya M.,Mochizuki O.,Ishikawa H.,Interaction Between Vortex Rings and a Separated Shear Layer:Towards Active Control of Separated Zones[J],Journal of Fluids and Structures,2001,15:399-413.
    [127]Alam M.,Sandham N.D.,Direct numerical simulation of 'short' laminar separation bubbles with turbulent reattachment,J.Fluid Mech.,2000,410:1-28.
    [128]Spalart P.R.,Strelets M.Kh.,Mechanisms of Transition and Heat Transfer in a Separation Bubble, J. Fluid Mech., 2000,403: 329-349.
    [129] Wissink J. G., Rodi W., DNS of Transition in a Laminar Separation Bubble, in: Castro I. P., Hancock P. E. (Eds.), Advances in Turbulence IX, Proceedings of the Ninth European Turbulence Conference, CIMNE, 2002.
    [130] Wissink J. G., Rodi W., DNS of a Laminar Separation Bubble in the Presence of Oscillating Flow, Flow Turbul. Combust., 2003 (71): 311-331.
    [131] Wissink J. G., Michelassi V., Rodi W., Heat Transfer in a Laminar Separation Bubble Affected by Oscillating External Flow, Int. J. Heat Fluid Flow, 2004, 25: 729-740.
    [132] Wu J. Z., Lu X. Y., Denny G. A., et al., Post-Stall Flow Control on an Airfoil by Local Unsteady Forcing[J], Journal of Fluid Mechanics, 1998, 371: 21-58.
    [133] Hsiao F. B., Liu C. F., Shyu R. N., Control of Wall-Separated Flow by Internal Acoustic Excitation, AIAA J., 1990,28(8): 1440-1446.
    [134] Hsiao F. B., Shyu R. N., Chang R. C., High Angle-of-Attack Airfoil Performance Improvement by Internal Acoustic Excitation, AIAA J., 1994, 32: 655-657.
    [135] Saha A. K., Acharya S., Flow and Heat Transfer in an Internally Ribbed Duct With Rotation: An Assessment of Large Eddy Simulations and Unsteady Reynolds-Averaged Navier-Stokes Simulations[J], ASME Journal of Turbomachinery, 2005, 127(2): 306-320.
    [136] Saric S., Jakirlic S., Tropea C, A Periodically Perturbed Backward-Facing Step Flow by Means of LES, DES and T-RANS: An Example of Flow Separation Control[J], ASME Journal of Fluids Engineering, 2005, 127(5): 879-887.
    [137] Smagorinsky J., General Circulation Experiments with the Primitive Equations - I : the Basic Experiment, Month. Wea. Rev., 1963, 91(3): 99-164.
    [138] Hinze J. O., Turbulence, McGraw-Hill Publishing Co., New York, 1975.
    [139] Fluent_Inc., Fluent 6.3 user's guide, 2006.
    [140] Kader B., Temperature and Concentration Profiles in Fully Turbulent Boundary Layers, Int. J. Heat Mass Transfer, 1981, 24(9): 1541-1544.
    [141] Abdalla I. E., Yang Z., Computational Visualisation of Separated-Reattached Transitional Flow on a Blunt Plate[J]. Journal of Flow Visualisation and Image Processing, 2004, 11: 1-28.
    [142] Hussain A. K. M. F., Melander M. V., Understanding Turbulence via Vortex Dynamics, in The Lumely Symposium: Studies in Turbulence, Springer, Berlin, 1991: 158-178.
    [143]Lesieur M.,Turbulence in Fluids,Kluwer,1997.
    [144]Comte P.,Silvestrini J.,Begou P.,Streamwise Vortices in Large Eddy Simulation of Mixing Layers,Eur.J.Mech.B,1998,17:615-637.
    [145]Robinson K.S.,The Kinematics of Turbulent Boundary Layer Structure,Technical Memorandum,NASA TM 103859,1991.
    [146]Hunt J.C.R.,Wray A.A.,Moin P.,Eddies,Stream,and Convergence Zones in Turbulent Flows,Report CTR-S88,Centre for Turbulence Research,1988.
    [147]Dubief Y.,Delcayre F.,On Coherent-Vortex Identification in Turbulence,Journal of Turbulence,2000,1(11):1-22.
    [148]Deng S.T.,Jiang L.,Liu C.Q.,DNS for Flow Separation Control around an Airfoil by Pulsed Jets[J],Computers and Fluids,2007,36:1040-1060.
    [149]Le H.,Moin P.,Kim J.,Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step,J.Fluid Mech.,1997,330:349-374.
    [150]张兆顺,湍流,北京:国防工业出版社,2002.
    [151]McAuliffe B.R.,Yaras M.I.,Transition Mechanisms in Separation Bubbles Under Low and Elevated Freestream Turbulence,ASME Paper No.2007-GT-27605.
    [152]Delcayre M.,Lesieur M.,Topological Feature in the Reattachment Region of a Backwark-Facing Step,AFSOR Int.Conf.on DNS and LES,Ruston,1997:1-17.
    [153]Wissink J.G.,Separating,Transitional Flow Affected by Various Inflow Oscillation Regimes,Applied Mathematical Modelling,2006,30:1134-1142.
    [154]Stieger R.,Hodson H.P.,The Transition Mechanism of Highly Loaded LP Turbine Blades,ASME Paper No.2003-GT-38304.
    [155]Evans R.L.,Turbulence and Unsteadiness Measurements Downstream of a Moving Blade Row.ASME Journal of Engineering for Power,1975,97:131-139.
    [156]Kraichnan R.,Diffusion by a Random Velocity Field,Physics of Fluids,1970,11:21-31.
    [157]Smimov A.,Sift S.,Celik I.,Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling,Journal of Fluids Engineering,2001,123:359-371.
    [158]汪庆桓,王宁,喻达之等,轴流通风机气动噪声的实验与预测[J],工程热物理学报,1999,20(1):41-44.
    [159]Rist U.,Maucher U.,Investigations of Time-Growing Instabilities in Laminar Separation Bubbles,European Journal of Mechanics,B/Fluids,2002,21:495-509.
    [160] Yang Z., Voke P. R., Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature, J. Fluid Mech., 2001, 439: 305-333.
    [161] Muti Lin J. C., Pauley L. L., Low-Reynolds-Number Separation on an Airfoil, AIAA J.,1996,34(8): 1570-1577.
    [162] Wissink J. G., Rodi W., Hodson H. P., the Influence of Disturbances Carried by Periodically Incoming Wakes on the Separating Flow around a Turbine Blade, Int. J. Heat and Fluids Flow, 2006, 27: 721-729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700