用户名: 密码: 验证码:
微型飞行器非线性飞行动力学与智能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在不断增长的应用前景刺激之下,微型飞行器正逐步成为一个国际性的研究热点。MAV在低雷诺数条件下具有的非线性飞行动力学特性、外界非定常大气扰动、系统内的微型化和测量精度等因素,使得MAV自主飞行控制成为一个有别于常规无人机控制的复杂问题。
     MAV的自主飞行问题,实际上就是对一个非线性、非定常以及参数不确定性复杂系统的控制问题。针对MAV自主飞行系统的要求,本文着重于构建一个包括对象特性分析与控制方法研究在内的一体化研究体系。从固定翼MAV的特殊总体布局设计、低雷诺数气动分析、非线性飞行动力学特性分析以及非定常大气扰动影响研究出发,构建相应的智能导航与控制系统,以实现MAV自主飞行。本文的研究工作主要包括以下内容:
     (1)构建基于总体构型设计与气动特性研究的具有自主飞行能力MAV系统设计框架。
     针对MAV飞行的特点,确定了以MAV特殊总体构型设计、低雷诺数气动特性与非线性动力学特性研究为基础,结合非定常大气扰动对MAV飞行的影响分析,以MAV组合导航技术、智能飞行控制策略为关键技术的一体化研究构架,构建相应的MAV智能自主飞行系统,并将MAV飞行仿真技术与飞行试验贯穿于MAV研究始终。
     (2)低雷诺数条件下的MAV非线性飞行动力学特性分析
     提出了一个MAV特殊总体布局设计方案,开展固定翼MAV低雷诺数风洞试验,结合MAV飞行试验数据辨识,研究固定翼MAV低雷诺数空气动力学模型;提出了一种针对飞翼式固定翼MAV的动阻尼导数计算方法;建立了考虑螺旋桨滑流作用的MAV飞行动力学方程。提出了一种基于MAV全自由度动力学模型的飞行动力学特性全状态分析方法,研究了MAV在这个飞行包线内的飞行动力学特性非线性变化规律。
     (3)非定常大气扰动下的MAV飞行力学特性研究
     通过研究各类大气扰动现象的产生机理与表现特征,结合MAV飞行的特点,确定了对MAV飞行具有突出影响的几类典型大气扰动模型;研究了典型特征参数在风场模型中的作用,建立适合MAV飞行仿真的非定常大气扰动风场模型;研究非定常扰动对MAV飞行特性的影响,建立了考虑非定常大气扰动影响的MAV飞行动力学模型。
     (4)基于多传感器技术的MAV组合导航技术研究
     提出了一种基于组合传感器技术的MAV分层次导航系统方案。引入四元数结构下的捷联惯导与GPS组合信息卡尔曼姿态滤波方案。在姿态测量的基础上,提出了一种基于多传感器智能组合技术的MAV导航位置信息优化提取方案。
     (5)MAV自主飞行智能控制策略研究及稳定性分析
     建立了以MAV各个方向姿态稳定为基础,MAV全局轨迹导航为目标的分层次自主飞行系统设计方案。在MAV非线性飞行动力学特性研究以及实际飞行数据分析的基础上,研究了MAV自主飞行各子系统控制中可变控制参数集合的模糊超曲面,保证了特定状态范围内MAV姿态、高度以及航迹等各个子控制系统的稳定工作;引入专家控制思想,将MAV遥控飞行人员的领域知识以及经验技巧引入到整个系统的全局仲裁机构,对系统进行整体的协调与优化,实现了MAV全局稳定自主飞行控制;针对该类智能自主飞行控制系统的特点,提出基于Lyapunov理论的MAV自主飞行系统稳定性分析。
     (6)MAV自主飞行仿真平台与飞行试验技术研究
     确定MAV自主飞行数学仿真平台构成,研究各分系统的数学建模技术,分析MAV系统内误差的类型与建模技术,建立真实有效的MAV自主飞行控制三维动态数学仿真平台;分析了飞行试验在MAV自主飞行设计中的重要性,研究了MAV飞行试验中的关键技术;开展大量飞行试验,对MAV自主飞行控制设计提供必要的辅助与有效性验证。
Recently, under the stimulation of the increasing application prospect, MAV has become into an international hot topic. The non-linear flight dynamic characteristics under the condition of low Reynolds number, unsteady disturbed atmosphere, the measurement precision and reliability inside the micro system, etc make the autonomous flight control of MAV become a complicated issue which is different from the control of normal unmanned air vehicles.
     Actually the issue of the MAV’s autonomous flight is a control problem on a non-linear, unsteady and uncertain parameters’complicated system. Aiming to the requirements of MAV autonomous flight system, this thesis focuses on building an integrative research system including the object feature analysis and control methods research. From the special general distribution design of the fixed-wing MAV, low Reynolds number analysis, non-linear dynamic characteristics analysis and research of the influence of the unsteady disturbed atmosphere, an intelligent navigation and control system is established, in order to realize the autonomous flight of the MAV. This thesis mainly includes the following contents:
     (1) Development of a system design framework of MAV with the autonomous flight capability based on general configuration design and aerodynamic characteristics research.
     Aiming to the flight features of MAV, based on the special general configuration design of MAV, and the research of aerodynamic characteristics and non-linear dynamic characteristics under low Reynolds number, combined the influence analysis of unsteady atmosphere disturbance to MAV flight, a integrated research framework is established, which applies the combined navigation technologies and intelligent flight control strategies of MAV as the key technologies, in order to build an intelligent autonomous flight system. Furthermore, the flight simulation and flight experiments are through the whole research.
     (2) Analysis on non-linear flight dynamic characteristics of MAV under low Reynolds number
     This thesis proposes a special general distribution design scheme, developing the wind tunnel experiments of fixed-wing MAV under low Reynolds number, combining the MAV flight experimental data identification, studying the aerodynamics model of fixed-wing MAV under low Reynolds number. This thesis proposes a dynamic damping derivative computation method for fixed-wing MAV, building the flight dynamics equations of MAV under the influence of propeller slipstream. An all-state flight dynamic characteristics analysis method based on the MAV dynamic model with all degrees of freedom has been proposed, to study the dynamic characteristics non-linear variation principle in the flight envelope of the MAV.
     (3) Research on MAV flight mechanics characteristics under the unsteady disturbed atmosphere
     Through studying generation mechanism and expression features of all kinds of atmospheric disturbance phenomena, integrating the flight features of the MAV, several typical atmosphere disturbance models which have the outstanding influence to MAV flight have been confirmed. This thesis studies the influence of typical characteristics parameters in the wind field model, building the unsteady atmosphere disturbance wind field model which is suitable for MAV flight simulation, studying the influence of the unsteady disturbance to MAV flight characteristics, and building a MAV flight dynamics model in which the unsteady atmosphere disturbance is considered.
     (4) Research on the combined navigation technologies of MAV based on the multi-sensor technology
     This thesis proposes a hierarchical navigation system scheme for MAV based on combined sensor technology. A Kalman attitude filter scheme to the combined information of INS and GPS under the quaternion structure is presented. Based on the attitude estimation, an optimized extraction scheme of MAV navigation location information has been proposed based on the multi-sensor intelligent combination technology.
     (5) Research on the intelligent control strategies of MAV autonomous flight and stability analysis
     For the aim of MAV whole track navigation, this thesis builds a hierarchical autonomous flight system design scheme based on the attitude stability in all directions of the MAV. Based on the research of MAV non-linear flight dynamic characteristics and the analysis of the factual flight data, this thesis studies the fuzzy hypersurface of the variable control parameter sets in each sub-system control of MAV autonomous flight, ensuring the operation stability of each sub-system in control in a particular state range, such as attitude, height and navigation track of MAV. This thesis applies the expert control ideas, introducing the regional knowledge, experience and techniques of the remote control flight staffs into the global arbitration organization of the whole system, which makes the system harmonized and optimized as a whole so as to realize the autonomous flight control of MAV in global stability. Aiming to the characteristics of this kind of intelligent autonomous flight control, a stability analysis of MAV autonomous flight system based on Lyapunov theory has been proposed.
     (6) Research on the simulation platform of MAV autonomous flight and flight experiments
     Determining the configuration of mathematical simulation platform of MAV autonomous flight, studying mathematics modeling techniques of each sub-system, analyzing the error types and modeling techniques inside the MAV system, building a real and effective 3D dynamic mathematical simulation platform of MAV autonomous flight control, analyzing the importance of the flight experiments in the design of MAV autonomous flight and studying the key technologies in MAV flight experiments, developing plentiful flight experiments to provide the necessary assistance or validation check for the design of MAV autonomous flight control.
引文
[1] Hundley R O, Gritton E C. Future Technology-Driven Revolutions in Military Operations[R]. RAND Corporation, Document No.DB-110-ARPA, 1994.
    [2] J.M. McMichael, M.S. Francis. Micro Air Vehicles - Toward a New Dimension in Flight[C].USAF, DARPA TTO document. August 7, 1997.
    [3] Micro Air Vehicles[C]. Themed Studies TS6. March, 1999.
    [4] Wilson J R. Mini technologies for major impact[J]. America Aerospace, 1998,36(5):36-42.
    [5] Hewish M. Abird in the handMiniature and micro air vehicles challenge conventional thinking[J]. Janes International Defense Review, 1999(11):22-28
    [6] M.A. Dornheim. Tiny drones may be soldier's new tool[C]. Aviation Week & Space Technology. 1998, 148, pp.42-43.
    [7] Darpa selects micro air vehicle contractor[C]. News Release. December 12, 1997.
    [8]昂海松.微型飞行器-高度集成的新概念航空器的设计[C].中国航空学会“飞机发展与总体设计专业委员会第四次学术交流会论文”,北京:2003:14-18
    [9]昂海松.微型飞行器不同于无人机的概念和特点[J].无人机,Vol.26 No.6 2006
    [10]王立文.空中小精灵--微型飞行器挑战传统设计思维和战争模式[J].国际航空. 2000,(12), pp.46-48.
    [11]郑祥明,昂海松,黄达.飞翼式微型飞行器飞行动力学特性研究[J].航空学报,Vol.27 No.3 May 2006
    [12] W.R. Davis. Micro UAV[C]. In: 23rd Annual AUVSI Symposium. July 15-19, 1996.
    [13] S. Ashley. Palm-size spy plane[J]. Mechanical Engineering. 1999, 120 (2), pp.74-78.
    [14] M. Dwortzan. It's a fly! It's a bug! It's a microplane[C]. October, 1997.
    [15] J.M. Grasmeyer, M.T. Keennon. Development of the Black Widow Micro Air Vehicle.2001[J]. AIAA Paper No. 2001-0127.
    [16] Cowley M. AeroVironment’s“WASP”Micro Air Vehicle Sets World Record [EB/OL]. http://www.aerovironment.com/area-aircraft/unmanned.html,2002.
    [17] Cowley M. AeroVironment’s“Hornet”Micro Air Vehicle Completes First Fuel Cell Power Flight [EB/OL]. http://www.aerovironment.com/area-aircraft/unmanned.html,2003.
    [18] Waszak M R, Jenkins L N. Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle[R]. AIAA 2001-4005,2001.
    [19] Ifju P G, Jenkins D A, Ettinger S, et al. Flexible-Wing-Based Micro Aerial Vehicle[R]. AIAA 2002-0705,AIAA Aerospace Sciences Meeting, Reno, NV, January 2002.
    [20] Waszak M R, Davidson J B, Ifju P G. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle[R]. AIAA 2002-4875, AIAA Atmospheric Flight Mechanics Conference, Monterey, CA, 5-8 August 2002.
    [21] Kellogg J, Bovais C, Dahlburg J, et al. The NRL Micro Tactical Expendable(MITE) air Vehicle[J]. Aeronautical Journal, 2002, 106(1062): 431-441.
    [22] BAE Systems. Microstar Micro air Vehicle Design to Reality[Z]. Lockheed Martin Aeronautics Company, 2001.
    [23] MicroSTAR soars in quantico demonstration. Sanders News. November 6, 2000.
    [24]前田辙.美军在阿富汗实地实验新武器[N].参考消息, 2001-12-11 (5).
    [25] Benjamin B M,David L F.A micro air vehicle navigation system[C].Proceeding of Position,Location and Navigation System,2006
    [26] Matthew T K, Joel M G. Development of the Black Widow and Microbat MAVs and a Vision of the Future of MAV Design[J],AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Y.14-17 July 2003, Dayton, Ohio
    [27]郑祥明,昂海松.微型飞行器模糊行为控制自主飞行仿真研究[C],2004自动化仿真技术及其应用学术会议
    [28]郑祥明,昂海松.基于多传感器技术的微型飞行器智能组合导航技术研究[J].宇航学报,Vol.28 No.5 2006
    [29] Xiao, Tianhang, Ang, Haisong, A Preconditioned Dual Time-stepping Procedure coupled with Matrix-free LU-SGS Scheme for Unsteady Low Speed Viscous Flows with Moving Objects[J]. International Journal of Computational Fluid Dynamics, Vol.21, pp165-173, 2007
    [30]肖天航,昂海松,定常/非定常全速流场数值计算的预处理法[C].中国第一届近代空气动力学与气动热力学会议,CARS-2006-00043, 2006
    [31]曹云峰,王柳文,陶勇,沈春林.微型飞行器控制与导航系统研究[J].航空电子技术, No.1 2002.
    [32]王秀琳,曹云峰.基于DSP的微型飞行器高度计的研制[J].东南大学学报(自然科学版), No.2 2005.
    [33]陈皓生,陈大融,徐军,李疆.微型飞行器测控系统的研究现状和发展[J].测控技术, No.12 2002
    [34]孙茂,吴江浩.微型飞行器的仿生流体力学------昆虫前飞时的气动力和能耗[J].航空学报, 2002, 23(5):385-393.
    [35] Scott M.Ettinger, Michael C.Nechyba and Peter D.lfju. Vision-Guided Flight Stability and Control for Micro Air Vehicles[J]. Advanced Robotics, 2003, 17(7):617-640
    [36] Kajiwara I, Haftka R T. Simultaneous Optimum Design of Shape and Control System for Micro Air Vehicles[R], AIAA 99-1391,1999.
    [37] Fitz-Coy N, Belcher V. A Framework for control, Sensor and Actuator Design in Adaptive Wing MAV[A].Proceedings of 1st International Conference on Emerging Technologies for Micro Air Vehicles[C]. 1997
    [38] D.Y.Yoon, Behavior-Based Autonomous Flight Control for A Micro Aerial Vehicle[C], Proceedings of the 32nd ISR, 19-21 April 2001.
    [39]罗东明,昂海松,周军,郑祥明.螺旋桨式微型飞行器飞行特性分析[J].航空计算技术,Vol.33 No.3 2003
    [40]宋超,潘钧俊,叶郁文,庄表中.用三线摆方法测试物体转动惯量的误差问题[J].力学与实践, Vol.25 No.1 2003
    [41]任培,袁中凡.转动惯量测量系统的研制[J].中国测试技术,Vol.33 No.1 2007
    [42] Pandya S A, Venkateswaran S, Pulliam T H. Implementation of Preconditioned Dual-Time Procedures in OVERFLOW[R]. AIAA 2004-0072.
    [43]薛具奎.求解非定常不可压N-S方程的预处理方法[J].计算物理, Vol.19 No.5 2002
    [44]刘仙名,付松.预处理算法在非定常流动计算中的应用[J].清华大学学报(自然科学版), Vol.44 No.2 2004
    [45]徐明海,陶文铨.一种求解不可压N-S方程的非结构化网格方法[J].西安交通大学学报, Vol.39 No.1 2005
    [46]何植岱,高浩.高等飞行动力学[M].西北工业大学出版社1990.9
    [47]胡兆丰.飞行动力学[M].国防工业出版社1985.12
    [48]韩光文.辨识与参数估计[M].国防工业出版社, 1980
    [49]蔡金狮.动力学系统辨识与建模[M].国防工业出版社, 1991
    [50] Iversen G R著.吴喜之等译.统计学[M].北京:高等教育出版社,2000,119~129.
    [51] Paola J D, Schowenger R A. A detailed comparison of back propagation neural network and maximum-likelihood classifiers for urban land use classification[J]. IEEE Trans on Geoscience and Remote sensing, 1995,33(4):981~996.
    [52]蔡金狮.飞行器系统辨识学[M].国防工业出版社, 2003
    [53]肖业伦,航空航天器运动的建模[M],北京航空航天大学出版社, 2003.6
    [54] Planeaux J B, Beck J A, Baumann D D.Bifurcation analysis of a model flight aircraft with control augment[R].AIAA-90-2836,1990.
    [55] Avanzini G, Matteis G. Bifurcation analysis of a highly angme-nted aircraft model[J].Journal of Guidance,Control and Dynamics,1997,20(4):60-68.
    [56]黎康,方振平.分叉分析在飞机非线性动力学中的应用[J].飞行力学, Vol.21 No.4 2003
    [57]黎康,方振平.某型飞机非线性动力学特性的分叉分析[J].飞行力学, No.2 2002
    [58]黎康,方振平.分叉分析方法在大迎角控制律设计中的应用[J].航空学报, No.4 2003
    [59]陈永亮,沈宏良,刘昶.机翼摇晃预测与抑制[J];航空学报, No.3 2005
    [60]刘昶,赵波.应用分支和突变理论对飞机空间机动稳定性的研究[J].航空学报, No8 1988
    [61] J Jackowshi, K Boothe, R Albertani, R Lind and P Ifju. Modeling the Flight Dynamics of a Micro Air Vehicle[C]. Proc. European MAV Conf, Braunschweig, Germany, July 2004.
    [62]胡兆丰等编.飞行动力学:飞机的稳定性和操纵性[M].国防工业出版社1985.12
    [63]徐明友.飞行动力学.科学出版社[M], 2003.8
    [64]孙庆民,金长江.微下冲气流数值模拟[J].飞行力学, Vol.13 No.4 1995.
    [65]李航.浅析低空风切变及其探测技术[J].西安航空技术高等专科学校学报, Vol.23 No.5 2005
    [66]陈怦,赵涛,王建培.无人机穿越变化风场起飞特性仿真研究[J].飞行力学, Vol.20 No.2 2002
    [67]刘刚,王行仁,贾荣珍.综合自然环境中变化风场的工程仿真方法[J].系统仿真学报, Vol.18 No.2 2006
    [68]肖业伦,金长江.大气扰动中的飞行原理[M].国防工业出版社,1993
    [69] Winkler S, Schulz H W, Buschmann M. Testing GPS/INS integration for autonomous mini and micro aerial vehicles[C].18th International Technical Meeting of the Satellite Division of The Institute of Navigation, ION GNSS 2005, Sep 13-16 2005, Long Beach, CA, United States
    [70] Wendel Jan, Meister Oliver, Schlaile Christian. An integrated GPS/MEMS-IMU navigation system for an autonomous helicopter[J]. Aerospace Science and Technology, Vol.10 No.6 2006, p 527-533
    [71] Gebre-Egziabher D,Hayward.R C and Powell,J. D, A low-cost GPS/inertial attitude heading reference system (AHRS) for general aviation applications[C], Proceedings of the IEEE Position Location and Navigation Symposium, Palm Springs, CA, April 1998, pp. 518–525.
    [72] Derek B.Kingston and Rangal W.Beard. Real-Time Attitude and Position Estimation for Small Uavs Using Low-Cost Sensors[R]. AIAA 2004-6488
    [73] Kehoe J J, Causey R S, Abdulrahim Mujahid. Waypoint Navigation for a Micro Air Vehicle using Vision-Based Attitude Estimation[C]. 2005 AIAA Guidance, Navigation, and Control Conference and Exhibit,San Francisco.
    [74] Kurdila A, Nechyba M, Prazenica R. Vision-based control of micro-air-vehicles: progress and problems in estimation[C].2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, pt. 2, 1635-42 Vol.2
    [75] Barbour R. Inertial components——past, present and future[C]. Proc AIAA GN&C Conf, 2001
    [76] Lawrence A. Modern Inertial Technology—Navigation, Guidance and Control[M]. 1998
    [77]刘危,解旭辉,李圣怡.微机械惯性传感器的技术现状及展望[J].光学精密工程, No.5 2003
    [78]徐景硕,惯性传感器技术及发展[J].传感器技术, No.5 2001
    [79]王洪志,王彦国.新一代陀螺的发展及应用分析[J].光学仪器, No.1 2001
    [80] Anderson R, HANSON D, KOUREPENIS A. Evolution of low-cost MEMS inertial system technologies[C]. Proc ION GPS 2001
    [81]陈怀瑾.卫星定位/惯性导航技术的发展趋势及其在军民系统中的应用[J].飞航导弹, No.8 1998
    [82] Elliott D K, Christopher JH主编. GPS原理与应用:principles and applications[M].电子工业出版社2007.7
    [83] Greg Welch and Gray Bishop. An Introduction to the Kalman Filter[J]. UNC-Chapel Hill,TR 95-041,April 5,2004
    [84]何秀凤,袁信,汪淑华. Kalman滤波技术在磁航向和捷联惯性组合系统初始对准中的应用[J].南京航空航天大学学报, Vol.27 No.3 1995
    [85] Joao L M, Xiaoping Y, Eric R B. An extended kalman filter for quaternion—based attitude estimation[R].USA:Defense Science&Technology Organization,2000
    [86] Rios J A, White E. Fusion filter algorithm enhancements for a MEMS GPS/IMU[A]. ION Meeting Proceedings[C], San Diego,California, January 2002
    [87] Azor R B, Itzhack I Y, Deutschmann J K, et al. Angular-rate estimation using delayed quatemion measurements[J]. Journal of Guidance, Control and Dynamics, 2001, 24(3): 436-443.
    [88] (苏)В.Н.勃拉涅茨,И.П.什梅格列夫斯基.四元数在刚体定位问题中的应用[M].国防工业出版社1977
    [89]邹晖,陈万春,殷兴良.几何代数及其在飞行力学中的应用[J].飞行力学, Vol.22 No.4 2004
    [90]张帆,曹喜滨,邹经湘.一种新的全角度四元数与欧拉角的转换算法[J].南京理工大学学报, Vol.26 No.4 2002
    [91]陈万春,肖业伦.矢阵与四元数的关系及其在飞行力学中的应用[J].宇航学报,1997,18(1):23-30.
    [92]江驹,吴树范,龚华军.再入式大气层航天飞机的建模与仿真[J].南京航空航天大学学报, Vol.32 No.6 2000
    [93] Lappas V J, Coxhill I, Baker A S. Systems design and control algorithms for Planetary Ascent Vehicles (PAV)[C]. 54th International Astronautical Congress of IAF, 2003, p 1995-2005
    [94] Oh Paul Y, Green William E, Barrows Geoffrey. Neural nets and optic flow for autonomous micro-air-vehicle navigation[J]. American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, v 73, n 2 PART B
    [95] Winkler S, Buschmann M, Kordes T. Application of micro-technology to integrated navigation of autonomous micro air vehicles[C]. Conference on Micro-Nano-Technologies for Aerospace Applications, 2004, p 130-141
    [96] Abdulrahim Mujahid, Garcia Helen, Ivey G F. Flight testing a micro air vehicle using morphing for aeroservoelastic control[C]. 5th AIAA Gossamer Spa, 2004, p 1776-1792
    [97] Song Kyo D, Choi, Sang H, Golembiewski Walter T. Wireless power feed and control system[C]. 3rd International Energy Conversion Engineering Conference, 2005, p 1629-1637
    [98] Schierman John D, Gillette Darreil E. Guidance, navigation, and control[J]. Aerospace America, v 41, n 12, December, 2003, p 16-17
    [99] Yakimenko O A, Kaminer I I, Dobrokhodov V N. On the development of guidance, navigation and control algorithms for unmanned air vehicles[C]. Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology, 2005, 176-82
    [100]Conroy Joseph K, Samuel Paul D, Pines Darryll J. Development of an MAV control and navigation system[J]. InfoTech at Aerospace: Advancing Contemporary Aerospace Technologies and Their Integration, 2005, p 1414-1427
    [101]H Garcia, M abdulrahim and R lind. Roll Control for a Micro Air Vehicle using Active Wing Morphing[J], AIAA,2003-5347.
    [102]Limin Z, Ramaprian B R. A Piezo-Electrically Actuated Wing for A Micro Air Vehicle[R]. AIAA 2000-2302,2000
    [103]Bingwei S, Briere Y, Development of a MAV—Modelling, Control and Guidance[J], Ecole National d’Ingenieurs de Constructions Aeronautiques, 2003
    [104]Raney D L, Slominski E C. Mechanization and Control Concepts for Biologically Inspired Micro Air Vehicles[R], AIAA 2003-5345.
    [105]P.Maes, The Dynamics of Action Selection[C], Proceedings of the 11st International Joint Conference on Artificial Intelligence, Detroit, MI, pp, 991-97.
    [106]Barrows, G.L ,Mixed-mode VLSI optic flow sensors for in-flight control of a micro air vehicle[C],Critical Technologies for the Future of Computing, 31 July-4 Aug. 2000 , San Diego, CA, USA
    [107]R.A.Brooks, A Robust Layered Control System For A Mobile Robot[J], IEEE Journal of Robotics and Automation, Vol.RA-2, No.1, March 1986.
    [108]Arkin, C. Ronald, Behavior-Based Robotics[M], MIT Press, 1998 .
    [109]Terry Huntsberger, John Rose, Behavior-Based Control for Autonomous Mobile Robots[C]. Robotics 2000, pp. 299-305.
    [110]Sergio Monteiro, Estela Bicho,A dynamical systems approach to behavior-based formation control[J], IEEE AES System Magazine, May 2002.
    [111]Lappas, V.J. Systems design and control algorithms for Planetary Ascent Vehicles[C],theInternational Academy of Astronautics and the International Institute of Space Law, Sep 29-Oct 3 2003. Bremen, Germany.
    [112]Pedrycz. W. Fuzzy control and fuzzy systems[M]. New Yorker,1989
    [113]李洪兴,汪培庄。模糊数学[M]。国防工业出版社,1994.
    [114]孙增圻,张再兴,邓志东。智能控制理论与技术[M]。清华大学出版社。1997
    [115]王耀南,智能控制系统[M]。湖南大学出版社,1996.
    [116]Lin C M, Maa J H. Flight control system designed by self-organizing fuzzy logic controller[J]. Journal of Guidance,Control and Dynamics,1997,20(3):557~564.
    [117]杨克明,高金源,王丕宏.飞机大机动飞行的一种模糊控制系统设计方法[J].北京航空航天大学学报, No.5 2000.
    [118]章卫国.带优化修正函数模糊控制规则自调整方法研究J].西北工业大学学报,1996,14(增刊):160~162.
    [119]Astrom K J. Expert Control.Automatica[M]. 1986 , 22(3).
    [120]刘建伟,徐兴元,庞京玉,邢静宇,专家控制系统研究进展[J]。微型机与应用, 2005 Vol.24 No.11.
    [121]侯立刚.专家控制及其在微型反应器中的应用[J].自动化与仪表,1996,11(3):27-28.
    [122]钱大群,蒋炯.智能控制中知识表达方式的研究[J].控制与决策,1989,4(4):46-50.
    [123]黄黎明,唐朝晖.智能控制过程中模糊专家控制规则的获取[J].计算机工程与应用,Vol.43 2007.
    [124]郑钧.线性系统分析[M].科学出版社,1978.
    [125]吕长乐,贾立功. Routh—Hurwitz稳定性判据在车辆动力学分析中的应用[J] Vol.40 No.5 2002.
    [126]冯琴荣,万金凤.解Routh-Hurwitz问题的一个快速无除算法[J].山西师范大学学报(自然科学版),No.3 2005.
    [127]张庆范,刘玫.基于Routh-Hurwitz判据的多电动机稳定运行的研究[J].电工技术杂志, NO.8 2001.
    [128]黄晓明.引入奈奎斯特(Nyquist)准则对反馈放大电路稳定性的分析[J].湖北教育学院学报, No.2 2006.
    [129]黄琳。稳定性与鲁棒性的理论基础[M]。科学出版社,2003
    [130]何丽红,郑晓静,武建军.磁浮列车的动力稳定性分析与Liapunov指数[J].力学学报, No.1 2000.
    [131]陈伯山,刘永清.非线性微分代数系统的稳定性[J].控制理论与应用, No.1 2000.
    [132]卢惠民.飞行仿真数学建模与实践[M].航空工业出版社, 2007.
    [133]陈奎兆,王江云.飞行仿真器自动飞行系统研究[J].系统仿真学报,No.2 2006.
    [134]张红宇.飞行仿真转台精度分析方法探索[J].计算机仿真, No.12 1995.
    [135]张德发.飞行控制系统的地面与飞行试验[M].国防工业出版社, 2003.
    [136]王义珍,冀军胜.惯性/GPS组合导航系统飞行试验技术[J].中国惯性技术学报, No.3 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700