用户名: 密码: 验证码:
大跨度斜拉桥结构地震响应主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁作为重要的社会基础设施,是抗震防灾、危机管理系统的一个重要组成部分,提高桥梁的抗震性能是减轻地震损失、加强区域安全的基本措施之一,是我国公路交通建设中所面临的重大课题。建筑结构振动控制经过几十年的发展,已被理论和实践证明是抵御地震破坏的有效手段。随着大跨度桥梁的普遍兴建和高效能建桥材料的广泛应用,桥梁结构的振动问题日趋突出。而大跨度斜拉桥由于其本身所具有的一些特殊性,国内外对其进行振动控制的研究水平还远没有达到对高层房屋建筑结构一样的研究程度。所以在深入了解桥梁结构的地震反应特性的基础上,研究合理而可行的控制措施保护桥梁结构免遭地震破坏,将是一个具有极大工程应用价值且时间紧迫的研究课题。
     随着科学技术的发展,以及人们对振动环境、对产品与结构振动特性越来越高的要求,振动被动控制的局限性就暴露出来了,难以满足人们的要求。主动控制技术由于具有效果好、适应性强等潜在的优越性,很自然地成为一条重要的新途径。本文以大跨度斜拉桥结构模型为研究对象,研究在地震激励下采用主动控制方法进行斜拉桥结构的振动控制,对主动控制方法中的一些关键性问题进行研究,抑制斜拉桥结构的地震响应,增强其动力稳定性,从而达到提高大跨度斜拉桥结构的抗震能力。
     首先在原有性能评价指标的基础上,进一步完善斜拉桥结构主动控制Benchmark性能评价体系,更加全面的评价不同的斜拉桥主动控制策略对结构的减振效果;研究平衡降阶的理论及其实现,通过对二次型性能泛函指标进行平衡转换,找出平衡系统中对系统能量贡献较大的平衡系统状态变量,进行模型降阶,得到一个能够反映原结构模型动力响应的降阶模型,提出基于内平衡系统二次型性能泛函进行模型降阶,以适应于日益增长的大型土木工程结构实际振动控制的需要。
     在主动控制系统设计中,研究致动器/传感器的最优位置以及其最优数目,根据致动器对结构系统的状态影响矩阵确定满足控制要求的最优致动器数目;根据系统二次型性能指标和本文提出的传感器优化配置准则,进行致动器/传感器的优化配置,优化计算方法和流程,得到斜拉桥结构振动主动控制设计的致动器/传感器优化配置方案。
     迭代学习控制是一种比较理想的控制策略,其本身具有某种智能,能够在控制过程中能不断地完善自身,以使控制效果越来越好,逐渐成为令人关注的课题。针对斜拉桥结构的地震响应,结合控制领域内的最新研究成果,将迭代学习控制与其它控制方法相结合,对斜拉桥结构进行有效的控制。首先基于线性二次型最优控制与迭代学习控制相结合的思想,研究线性二次型迭代学习混合控制方法,提高迭代学习控制的收敛速度,提高了控制系统的控制效果;其次基于迭代学习控制与滑模控制策略各自的优点,将两者相结合提出一种新的控制策略,滑模迭代学习控制策略。并且采用二次型迭代学习混合控制方法和滑模迭代学习控制方法对Emerson Memorial大桥进行地震响应主动控制计算,得出Benchmark控制指标,计算结果表明二次型迭代学习混合控制方法和滑模迭代学习控制策略均能够对Emerson Memorial大桥地震响应进行有效地控制,并且控制效果得到了一定的改进。
As the important infrastructure, bridge is an important component of the seismic disaster prevention system and crisis management system. Improving the bridge seismic performance is one of the basic measures to reduce earthquake damage and strengthen regional security. Building structure vibration controlling has been proven to be an effective means to withstand earthquake damage by the theory and practice after decades of development. With long-span bridges constructed and extensive usage of high-performance material, bridge structure vibration problem had become more prominent. But because of the special nature of the long-span cable-stayed bridge, the level of bridge vibration control is far from the high-building vibration control. Therefore, base of understanding the bridge seismic response characteristics, studying the reasonable and practicable control measures to protect the bridge structure against earthquake damage will be a great project.
     With the development of science and the ever-increasing demands for vibration environment and structure vibration characteristics, passive vibration control was difficult to satisfy and exposed its limitation. Active control became a new important ways because of its effective and adaptable. This paper will study bridge structure active control and its key problems against earthquake base of long-span cable-stayed bridge. So improve the bridge anti-seismic capability and enhance its dynamical stability.
     Firstly, further improve benchmark performance system of cable-stayed bridge active control base of original indicators. More comprehensively evaluates different active control strategy for cable-stayed bridge. Then study the theory of balance reduction and its achieving. Reduce the model by internal balance transform for quadratic characteristic indexes function and find out the state variables which are great contribution to system energy. So obtain a reduced model which can reflect the dynamic response of original model in order to meet the active control of large-scale civil engineering.
     In the design of active control system, research the optimal number and position of actuators/sensors. Determine the optimal number of actuators according to the state effect matrix by controlling. According to the quadratic performance index and the proposed optimal sensors distribution guidelines, design optimal actuators/sensors configuration and optimize the calculation process. So obtain the optimal distribution of actuators/sensors for active vibration control of cable-stayed bridge.
     Iterative learning control is a more satisfactory control strategy, with its own intelligence , which be able to constantly improve itself in controlling process. So it is gradually becoming an issue of concern. Based of the latest research results in the control field, combine the iterative learning control and other control strategy to reduce the earthquake response of cable-stayed bridge. Firstly, combine the linear quadratic optimal control and iterative learning control to obtain a new mixed control strategy which named quadratic iterative learning control. It can improve the convergence rate of iterative learning control and improve the effect of control. Secondly, with respective advantages of iterative learning control and sliding mode control strategy, combine them and obtain a new control strategy which named slide mode iterative learning control. Use these two new mixed control strategies to control the Emerson Memorial Bridge against earthquake and calculate the benchmark performance indicators. The result show that new control strategies were able to effectively control the Emerson Memorial Bridge against earthquake and control effect were improved.
引文
[1].李国豪.桥梁结构稳定与振动[M],中国铁道出版社,1992。
    [2].严国敏.现代斜拉桥[M],西南交通大学出版社,1996。
    [3].Zuk W.Kinetic structures[J].Civil Engineering,1968.39(12):62-64.
    [4].Zuk W,Clark R H.Kinetic architecture[J],Van Nostrand reinhold,New York,1970.
    [5].Koboti T.Future direction on research and development of seismic response-controlled structure[C].Proceeding of the First World Conference on Structural Control,1994.
    [6].Sakamoto M,Koboti T,Yamda T,Takahashi M.Practice application of active and hybrid response control systems and their verification by earthquake and strong wind observation[C].Proceeding of the First World Conference on Structural Control,1994,90-99.
    [7].Meirovitch L.Control of structures subjected to seismic excitation[J].Journal of Engineering Mechanics,1983,109:603-618.
    [8].Baz A,Poh S,Fedor J.Independent modal space control with positive position feedback[J].Transaction of the ASME,1992,114:96-103.
    [9].顾仲权,王卫平,朱德懋等.飞机颤振主动抑制理论与实验研究[J].中国航空科技文献,HJB880588.1988.1-11.
    [10].陈大跃,胡宗武,范祖尧.振动控制的特征结构配置[J].振动工程学报,1991,4(2):75-81。
    [11].马扣根,顾仲权.最优极点配置法在梁式结构振动主动控制中的应用.振动与冲击,199l,(3):85-89。
    [12].Alan R.D.Curtis.An application of genetic algorithms to active vibration control[J].Journal of Intelligent Material Systems and Structures,1991,2(4):472-481.
    [13].顾仲权.振动主动控制中低阶控制器的优化设计.振动工程学报,1990,3(3):1-8。
    [14].谭善光,汪希宣.结构强迫振动最优响应和模态主动控制.振动工程学报,1989,2(4):76-81。
    [15].俞文伯,丁文镜.悬臂梁随机振动的最优控制[J].建筑结构学报,1986,17(5):49-58。
    [16].Balas M.J.,Johnson C.R.Toward adaptive control of large structures in space[J].Applications of Adaptive Control,Academic Press,1980:313-344.
    [17].Kwaku O,Kevin C.C.The application of multi channel design methods for vibration control of active structure[J].Smart Material structure,1994,3:329-343.
    [18].S.D.Snyder,N.Tanaka.Modification to overall system response when using narrowband adaptive feedforward control system[J].Journal of Dynamic Systems,Measurement and Control,1993,115:612-626.
    [19].Vipperman J.S.,Burdisso R.A.,Fuller C.R.Active control of broadband structural vibration using the LMS adaptive algorithm[J].Journal of Sound and Vibration,1993,166(2):283-299.
    [20].孙朝晖,王冲,戴扬等.结构振动主动控制理论及实验研究[J].振动工程学报,1994,7(2):154-160。
    [21].刘季,腾军.结构在地震作用下的主动自校正控制计算方法[J].地震工程与工程振动,1991,11(2):73-84。
    [22].刘季,腾军.地震作用下结构振型组合自校正控制[J].地震工程与工程振动,1992,12(2):48-58。
    [23].Charles Ih C.H.et al.Experimental study of robustness in adaptive control for large flexible structures[J].AIAA Journal of Guidance,Control and Dynamics,1993,16(1):9-13.
    [24].马扣根.结构的自适应振动控制[D].南京航空航天大学,1992。
    [25].马扣根,顾仲权.结构振动的一种离散自适应控制策略[C].中国振动工程学会噪声与振动控制学术年会论文集,北京,1991:160-267。
    [26].周军,陈新海.大型柔性空间结构的变结构模型参考自适应控制[J].航空学报,1992,13(4):158-163。
    [27].刘雍,顾家柳.转子动力系统的鲁棒H_∞控制器设计[J].振动工程学报,1994,7(3):251-255。
    [28].顾家柳.转子振动主动控制的目的及对策[J].振动与冲击,1993,12(2):1-7。
    [29].Hac A.,Tomizuka M.Application of learning control to active damping of forced vibration for periodically time variant systems[J].ASME Journal of Vibration and Acoustics,1990,112:489-496.
    [30].Zheng S.Y.Learning control for rotor systems[C].IN:Proceeding of the ICVEp94,Beijing:1994:823-826.
    [31].Gordon T.,Marsh C.et al.Stochastic optimal control of active vehicle suspensions using learning automata[C].Proceeding Institution Mechanical Engineers,Part Ⅰ- Journal of Systems and Control Engineering,1993,207:143-152.
    [32].Yuan Y.,Wen B.C.Studies of a fuzzy control method for a rotor system transverse vibration[C].In:Proceeding of the International Centre on Vibration Engineering ICVEp94,Beijing:1994,823-827.
    [33].刘华,黄田,曾子平.一类非线性振动的智能主动控制方法[J].非线性动力学报,1994,1(3):288-292。
    [34].黄田,刘华,曾子平.基于神经网络的振动主动控制方法的研究.机械科技的未来——国家自然科学基金机械科技青年科学家论坛.北京:机械工业出版社,1993。
    [35].Baz A.,Iman K.,McCoy J.Active vibration control of flexible beams using shape memory actuators[J].Journal of Sound and Vibration,1990,140:437-456.
    [36].Liang C.,Rogers C.A.Design of shape memory alloy springs with application in vibration control[J].Journal of Vibration and Acoustics,1993,115:97-112.
    [37].骆志明,顾家柳等.转子动力系统时滞H_∞控制[J].振动工程学报,1998,11(3):317-321。
    [38].李国荣,陈大任.PZT系多层片式压电陶瓷微驱动器位移性能研究[J].无机材料学报,1999,14(3):72-78。
    [39].David Ertur.Adaptive Vibration isolation for flexible structures[J].Journal of Vibration and Acoustics,199,121(4):440-445.
    [40].J.T.P.Yao.Concept of structure control[J].Journal of the Structure Division,ASCE,1972,98:1567-1574.
    [41].范立础.现代化城市桥梁抗震设计若干问题[J].同济大学学报,1997,25(2):147-154。
    [42].顾明,吴炜,项海帆.大跨桥梁颤振控制的试验研究[J].同济大学学报,1996,24(2):124-129。
    [43].程更人.考虑参数不确定性及多模态气动耦合的桥梁风致振动控制系统的研究[D].同济大学,2000,9。
    [44].史家钧,金平.减振装置在桥梁工程中的应用[J].同济大学学报,2000,28(2):210-214。
    [45].陈新,史家均,石志源.黄山太平湖大桥索塔振动控制研究[J].桥梁建设,1998,2:19-22。
    [46].Xu K.,Igusa T.Dynamic characteristics of multiple substructures with closely spaced frequencies[J].Earthquake Engineering and Structure Dynamic,1992,21,1059-1070.
    [47].Yamaguchi H.,Harnpornchai N.Fundamental characteristics of multiple tuned mass dampers[J].Earthquake Engineering and Structure Dynamic,1993,22,51-62.
    [48].Jangid R.S.Dynamic characteristics of structures with multiple tuned mass dampers[J].Structure Engineering Mechanical,1995,3:497-509.
    [49].Kareem A.,K.line S.Performance of multiple tuned mass dampers under random loading[J].Structure Engineering ASME,1995,121:348-509.
    [50].Jangid R.S.Optimum multiple tuned mass dampers for base-excited undamped system[J].Earthquake Engineering.and Structure Dynamic,1998,28:1041-1049.
    [51].Li Chunxiang.Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration[J].Earthquake Engineering.and Structure Dynamic,2000,29:1405-1421.
    [52].李黎,黄尚斌,张卉.结构振动控制中MTMD的基本特性研究[J].工程力学,2000,17(2):90-96。
    [53].蔡国平,孙峰.MTMD控制结构地震反应特性研究[J].工程力学,2000,17(3):55-59。
    [54].Ming Gu,S.R.Chen,C.C.Chang.Parametric study on multiple tuned mass dampers for buffeting control of Yangpu Bridge[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89:987-1000.
    [55].余钱华,胡世德,范立础.桥梁结构MTMD被动控制的理论研究和实桥分析[J].世界地震工程,2001,17(31:105-108。
    [56].黄志强,段宝岩,仇元鹰.大射电望远镜馈源舱的风激振动及其TMD减振设计研究[J].应用力学学报,2002,19(3):116-119。
    [57].李春祥,韩传峰.高层钢结构顺风向风振加速度的MTMD控制[J].振动与冲击,2002,21(1):69-72。
    [58].刘保东,朱烯.MTMD系统抗震控制研究[J].工程力学,2003,20(1):127-130。
    [59].李春祥,刘艳霞,王肇民.地震作用下结构的基于阻尼柔性连接MTMD控制[J].应用力学学报,2003,20(2):116-120。
    [60].B.F.Spencer Jr.,et al.Controlling building:A new frontier in feedback[J].Special Issue of the IEEE Control Systems Magazine on Emerging Technology,1997,17(6):19-35.
    [61].王代华,黄尚谦.斜拉桥横向振动的半主动筋腱控制[J].应用力学学报,2000,17(2):12-18。
    [62].M.D.Symans,S.W.Kelly.Fuzzy logic control of bridges structures using intelligent semi-active seismic isolation systems[J].Earthquake Engineering and Structural Dynamics,1999,28(1):37-60.
    [63].J.N.Yang,et al.Active control of two-cable-stayed bridge[J].Journal of the Engineering Mechanics,1979,EM5:795-810.
    [64].R.Betti,et al.Vibration and damage control for long-span bridges[J].Smart Material and Structures,1995,4(1A):91-100.
    [65].王克海,朱唏.斜拉桥结构基于模态分析的线性二次最优减震控制的研究[J].铁道学报,2000,22(1):67-71。
    [66].Caicedo J.M.,Dyke S.J.,Moon S.J.,et al.Phase Ⅱ benchmark control problem for seismic response of cable-stayed bridges.2002(http://wusceel.cive.wustl.edu/quake)
    [67].Dyke S.J.,Turan G.,Caicedo J.M.,et al.Benchmark control problem for seismic response of cable-stayed bridge.2000(hnp://wusceel.cive.wustl.edu/quake)
    [68].Agrawal A.,Yang J.N.,He W.L.Performance evaluation of some semi-active control systems for benchmark cable-stayed bridge[C].Proceeding of the Third World Conference on Structural Control.Como Italy.2002,April:7-11.
    [69].Dyke S.J.,Caicedo J.M.,Turan G.,Bergman L.A.,Hague S.Phase Ⅰ benchmark control problem for seismic response of cable-stayed bridges[C].Journal of Structural Engineering,2003,129(7):857-872.
    [70].Soong T.T.,Rein_horn A.M.,Yang J.N.A standardized model for structural control experiments and some experimental results[M].In Leipholz H H E(Ed.) Structural Control Martinus Nijhoff,Amsterdam,1987:669-693.
    [71].Caughey T.K.The benchmark problem[J].Earthquake Engineering and Structural Dynamics,1998,27(11):1125.
    [72].Yang J.N.,Wu J.C.,Samali B.,Agrawal A.K.A benchmark problem for response control of wind-excited tall buildings[C].Proceeding of 2~(nd) World Conference on Structural Control,Kyoto,Japan,1999,2:1408-1416.
    [73].欧进萍.结构振动控制——主动、半主动和智能控制[M].科学出版社,2003。
    [74].Schemmann A.G.,Smith H.A.,Bergman L.A.,Dyke S.J.Feasibility study:Control of a cable-stayed bridge model,Part Ⅰ:problem definition[C].Proceeding of Second International Conference on Structural Control,Kyoto,JAPAN,1998,2:975-979.
    [75].范立础.桥梁抗震[M].同济大学出版社,1997。
    [76].范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].人民交通出版社,2001。
    [77].胡幸贤.地震工程学[M].地震出版社,1988。
    [78].N.M.纽马克,E.罗森布卢斯著,叶耀先译.地震工程学原理[M].中国建筑工业出版社,1986。
    [79].王君杰,范立础.规范反应谱长周部分修正方法的探讨[J].土木工程学报,1998,31(6):5-10。
    [80].Guyan R.J.Reduction of stiffness and mass matrices[J].AIAA Journal(S0001-1452).1965,3(2):380-381.
    [81].Kuhar E.J.,Stable C.V.A dynamic transformation method for modal synthesis[J].AIAA Journal,1974,12(5):672-678.
    [82].Moore B.C.Principle component analysis in linear systems[J].IEEE Transactions on Automatic Control.1981,26(1):17-32.
    [83].Irons B.M.Structural eigenvalue problem:elimination of unwanted variables[J].AIAA Journal,1965,3(5):961-962.
    [84].Gregory C.Z.Reduction of large flexible spacecraft model using internal balancing theory[J].Journal of Guidance,Control and Dynamics,1984,7(6):725-732.
    [85].Jonckherre E.A.,Opdencker P.H.Singular value analysis balancing and model reduction of large space structures[J].ACC,NJ,1984.
    [86].Jonckherre E.A.Principal component analysis of flexible system open-loop case[J].IEEE Transaction on Automatic Control,1984,29(12):1059-1097.
    [87].Gawronski W.,Willams T.Model reduction for flexible space structures[J].Journal of Guidance,Control and Dynamics,1991,14(1):68-76.
    [88].Willams T.Closed-form grammians and model reduction for flexible space structures[J].IEEE Transaction on Automatic Control,1990,35(3):379-382.
    [89].Enns D.Model reduction for control system design[D].Standford University,1984.6.
    [90].李惠,彭君义.结构模型与控制器降阶的主动控制试验研究[J].振动工程学报,2006,19(1):17-23。
    [91].Hughes P.C.,Skelton R.E.Controllability and observability of linear matrix-second-order systems[J].Journal of Applied Mechanics,1980,47(2):415-420.
    [92].Arbel A.Controllability measures and actuator placement in oscillatory systems[J].International Journal of Control,1981,33(3):565-574.
    [93].Longman R.W.,et al.Actuator placement from degree of controllability criteria for regular slewing of flexible spacecraft[J].ACTA Astronautica,1981,8(7):703-718.
    [94].Viswanathan C.N.,Longrnan R.W.,et al.A degree of control ability definition:Fundamental concept and application to modal system[J].Journal of Guidance Control and Dynamics,1984,7(2):222-230.
    [95].Harden A.M.,et al.Measure of modal controllability and observability for first and second order linear systems[J].Journal of Guidance,Control and Dynamics,1989,12(3):421-428.
    [96].Lim K.B.Method for optimal actuator and sensor placement for large flexible structure[J].Journal of Guidance,Control and Dynamics,1992,15(1):49-57.
    [97].Gawronski W.,Lim K.B.Balanced actuator and sensor placement for flexible structures[J].AIAA-95-3259-cp,1995,1871-1880.
    [98].Schmitendorf W.E.An exact expression for computing the degree of controllability[J].Journal of Guidance,Control and Dynamics,1984,7(4):502-506.
    [99].Schulz G.,Heimbold G.Dislocated actuator/sensor positioning and feedback design for flexible structures[J].Journal of Guidance,Control and Dynamics,1983,6(5):361-366.
    [100].Kondoh S.,et al.The positioning of sensors and actuators in the vibration control of flexible systems[J].JSME International Journal,Series C,Vibration Control Engineering,1990,33(2):145-152.
    [101].Chen S.T.,et al.Effective active damping design for suppression of vibration flexible systems via dislocated sensor/actuator positioning[J].JSME International Journal,Series C,1994,37(2):252-259.
    [102].Lee A.C.,Chen S.T.Collocated sensor/actuator positioning and feedback design in the control of flexible structures system[J].Transactions of ASME Journal of Vibration and Acoustics,1994,116(4):146-154.
    [103].李俊宝,刘华,张令弥.自适应桁架结构振动控制中主动构件的最优配置[J].航空学报,1996,17(5):755-759。
    [104]. Hanagud S., et al. Optimal placement of piezoelectric sensors and actuators[C]. In: Proceedings of American Control Conference, Mar, 1988, 1884-1889.
    [105]. Xu K., et al. Optimal locations and gains of sensors and actuators for feedback control[C]. Proceedings of the 34~(th) AIAA SDM conference, AIAA Paper 93-1660, 3137-3145.
    [106]. Sunar M., Rao S. S. Distributed modeling and actuator locations for piezeoelectric control systems[J]. AIAA Journal, 1996, 34(10): 2200-2203.
    [107]. Sunar M., Rao S. S. Thermopiezoelectric control design and actuator placement[J]. AIAA Journal, 1997, 35(2): 534-539.
    [108]. Anderson E. H., Hangood N. W. A comparison of algorithms for placement of passive and active dampers[C]. In: Proceedings of SDM conference, 1994, AIAA-94-1656, 2701-2714.
    [109]. Kang Y. K., Park H. C., Hwang W., Han K. S. Optimum placement of piezoelectric sensor/actuator for vibration control of laminated beams[J]. AIAA Journal, 1996, 34(9): 1921-1926.
    [110]. Matunaga S., Onoda J. Actuator placement with failure consideration for static shape control of truss structures[J]. AIAA Journal, 1995,33(6): 1161-1163.
    [111]. Baruh H. Actuator failure detection in the control of distributed systems[J]. Journal of Guidance, Control and Dynamics, 1986, 9(2): 181-189.
    [112]. Baruh H., Choe K. Sensor failure detection method for flexible structures [J]. Journal of Guidance, Control and Dynamics, 1987, 10(5): 474-482.
    [113]. Choe K., Baruh H. Actuator placement in structural control[J]. Journal of Guidance, Control and Dynamics, 1991, 15(1): 40-46.
    [114]. Jalihal P. J., Utku S., Wada B. K. Actuator placement in prestressed adaptive trusses for vibration control[C]. In: Proceedings of SDM conference. AIAA-93-1694-cp, 1993, 3312-3318.
    [115]. Ryou J. K., Park K. Y., Kim S. J. Electrode pattern design of piezoelectric sensors and actuators using genetic algorithms [J]. AIAA Journal, 1998, 36(2): 227-233.
    [116]. Stabb M., Blelloch P. Application of flexibility shapes to sensor selection[C]. In: Proceedings of the 13~(th) IMAC Conference. 1995: 1255-1262.
    [117]. Sepulveda A. E., Jin I. M., Schmit Jr L. A. Optimal placement of active elements in control augmented structural synthesis[J]. AIAA Journal, 1993,31(10): 1906-1915.
    [118]. Tolson R. H., Huang J. K. Integrated control of thermally distorted large space antennas[J]. Journal of Guidance, Control and Dynamics, 1992, 15(3): 605-614.
    [119]. DeLorenzo M. L. Sensor and actuator selection for large space structures control[J]. Journal of Guidance, Control and Dynamics, 1990, 23(2): 249-257.
    [120].Hafkta R.T.,Adelman H.M.Selection of actuator for static shape control of large space structures by heuristic integer programming[J].Computers and Structures,1985,20(3):575-582.
    [121].Hakim S.,Fuches M.B.Optimal actuator placement with minimum worst case distortion criterion[J].In:Proceedings of AIAA SDM Conference.AIAA-95-1137,1995,3506-3514.
    [122].Metropolis N.,Rosenbluth A.,Rosenbluth M.,Teller E.Equation of state calculations by fast computing machines[J].Journal of Chemical Physics,1953,21(6):1092-1108.
    [123].Kirkpatrick S.,Gelatt C.,Vecchi M.Optimization by simulated annealing[J].Science,1983,220:671-680.
    [124].Chen Gunshing,Bruno R.J.,Salama M.Optimal placement of active/passive members in truss structures using simulated annealing[J].AIAA Journal,1991,29(8):1327-1334.
    [125].Menon R.G.,Browder A.M.,Kurdila A.J.,Junkins J.L.Concurrent optimization of piezoelectric actuator locations for disturbance attenuation[C].In:Proceedings of SDM Conference.AIAA-93-1689-cp,1993:3269-3278.
    [126].Salama M.,Rose T.,Garba J.Optimal placement of exciters and sensors for verification of large dynamical systems[C].In:Proceedings of SDM Conference.AIAA-87-0782.1987:1024-1031.
    [127].Rao S.S.,Pan Tzong-shii.Optimal placement of actuators in actively controlled structures using genetic algorithm[J].AIAA Journal,1991,29(5):942-943.
    [128].Yao L.Sethares A.,Kammer D.C.Sensor placement for on-orbit modal identification via a genetic algorithm[J].AIAA Journal,1993,31(10):1922-1928.
    [129].Abdullah M.Optimal placement of DCFC controllers on buildings subjected to earthquake loading[J].Earthquake Engineering and Structural Dynamics,1999,28(2):127-141.
    [130].Abdullah M.,Richardson A.Hanif J.Placement of sensors/actuators on civil structures using genetic algorithms[J].Earthquake Engineering and Structural Dynamics,2001,30(8):1167-1184.
    [131].孙万泉,李庆斌.随机荷载作用下结构主动控制的作动器优化配置[J].工程力学,2007,24(3):115-119。
    [132].Kammer D.C.Sensor placement for on-orbit modal identification and correlation of large space structures[J].Journal of Guidance,Control and Dynamics,1991,14(2):251-259.
    [133].Udwadia F.E.Methodology for optimum sensor locations for parameter identification in dynamic systems[J].Journal of Engineering Mechanics,ASCE,1994,120(2):368-390.
    [134].Penny J.E.,Friswell M.I.,Garvey S.D.Automatic choice of measurement location for dynamic testing[J].AIAA Journal,1994,32(2):407-414.
    [135].Papadopoulos M.,Garcia E.Sensor placement methodologies for dynamic testing[J].AIAA Journal,1998,36(2):256-263.
    [136].谢强,薛松涛,王远功.利用线性模型估计的传感器优化布置算法[J].固体力学学报,2006,27(1):46-50。
    [137].谢强,薛松涛.结构健康监测传感器优化布置的混合算法[J].同济大学学报(自然科学版),2006,34(6):726-731。
    [138].Hac A.,Tomizuka H.Application of leaming control to active damping of forced vibration for periodically variant systems[J].ASME Journal of Vibration and Acoustics,1990,112:489-496.
    [139].Zheng S.Y.Learning control for rator systems[C].In:Proceeding of the ICVE94,Beijing,1994:823-826.
    [140].Gordon T.J.,Marsh C.Stochastic optimal control of active vehicle suspensions using learning automata[J].Proceedings International Mechanical Engineering,1993 207:143-152.
    [141].李新忠,简林柯.基于性能指标的非线性系统迭代学习控制[J].机床与液压,1996,(6):9-10。
    [142].Uchiyama M.Formation of high speed motion pattem of mechanical arm by trial[J].Trans of the Society of Instrumentation and Control Engineer,1978,(19):706-712.
    [143].Arimoto S.,Kawamura S.,Miyazaki K.Bettering operation of robots by learning[J].Journal of Robotic Systems,1984,1(2):123-140.
    [144].Arimoto S.,Kawamura S.,Miyazaki F.,Tamakie S.Learning control theory for dynamic systems[C].Proceedings of the 24~(th) IEEE Conference on Decision and Control,Ft.Lauderdale,Florida,1985,1375-1380.
    [145].Heinzinger G.,Fenwick D.,Paden B.,Miyazaki F.Robust learning control[C].Proceedings of the 28~(th) IEEE Conference on Decision and Control,Tampa,1989,436-440.
    [146].Arimoto S.,Naniwa T.,Suzuki H.Robustness of P-type learning control with a forgetting factor for robot motions[C].In:Proceedings of the 29~(th) IEEE Conference on Decision and Control,Honoluu Hawaii,1990,2640-2645.
    [147].Togai M.,Yamano O.Analysis and design of an optimal learning control scheme for industrial robots:A discrete system approach[C].Proceedings of the 24~(th) IEEE Conference on Decision and Control,Fort Landerdale,FL,1985,1399-1404.
    [148].Furuta K.,Yamakita M.The design of a learning control system for multivariable systems[C].Proceedings of the 1987 IEEE International Symposium on Intelligent Control,Philadelphia,Pennsylvania,USA,1987:371-376.
    [149].Amann N.,Owens D.H.,Rogers E.Iterative learning control for discrete-time systems with exponential rate of convergence[C].IEEE Proceedings-Control Theory and Applications,1996,143(2):217-224.
    [150].Amann N.,Owens D.H.,Rogers E.Iterative learning control using optimal feedback and feedforward actions[J].International Journal of Control,1996,65(2),277-293.
    [151].Amann N.,Owens D.H.,Rogers E.Robustness of norm-optimal iterative learning control[C].Proceedings of IEE International Conference on Control,Exeter,UK,1996:1119-1124.
    [152].Kuc T.Y.,Lee J.S.,Nam K.An iterative learning control theory for a class of nonlinear dynamic systems[J].Automatica,1992,28(6):1215-1221.
    [153].Yu X.H.,Xu J.X.Advance in variable structure systems:analysis,integrations and applications[C].Proceedings 6~(th) IEEE International Workshop on Variable Structure Systems,Australia,World Scientific,Nov,2000.
    [154].Emelynanov V.S.Fedotva A.L.Design of a static tracking systems with variable structure[J].Automation and Remote Control,1962,10:1223-1235.
    [155].Emelynanov V.S.Traran V.A.Use of inertial elements in the design of a class of variable structure system[J].Automation and Remote Control,1962,2:183-190.
    [156].Emelynanov V.S.Variable structure control systems[J].Moscow:Nauka,1967.
    [157].Utkin V.I.VSS:present and future[J].Automation and Remote Control,1983,44.
    [158].Hwang G.Chen S.A stability approach to control design for nonlinear systems[J].Fuzzy Sets and Fuzzy Systems,1992,48(3):279-287.
    [159].Moriioka H.,Wada K.,Sabanovic A.,Jezernil K.Neural network based chattering free sliding mode control[C].Proceedings of the 34~(th) SICE Annual Conference,1995,1303-1308.
    [160].Ertugrul M.,Kaynak O.Neural sliding mode control of robotic manipulators[J].Mechatronics,2000,10(1,2):239-263.
    [161].Huang S.J.,Huang K.S.,Chiou K.C.Development and application of a novel radial basis function sliding mode controller[J].Mechatronics,2003,13:313-329.
    [162].Ng K.C.,Li Y.,Murray-Smith D.J.,Sharman K.C.Genetic algorithms applied to fuzzy sliding mode controller design[C].Genetic Algorithms in Engineering Systems:Innovations and Applications,1995,First International Conference,12-14 Step 1995,220-225.
    [163].Lin F.J.,Chou W.D.An induction motor servo drive using sliding-mode controller with genetic algorithm[J].Electric Power System Research,2003,64(2):93-108.
    [164].Zhang C.F.,Wang Y.N.,He J.,Long Y.H.GA-NN-integrated sliding-mode control system and its application in the printing press[J].Control Theory & Applications,2003,20(2):217-222.
    [165].Kambiz Falsafian and Mahdi Jalili-Kharaajoo.Genetic algorithm based fuzzy sliding mode with application to building structures[J].ICAISC 2004,LAAI3070,960-965.
    [166].Faa-Jeng Lin and Wen-Der Chou.An induction motor servo drive using sliding-mode controller with genetic algorithm[J].Electric Power System Research,2003,64,93-108.
    [167].张昌凡,王耀南,何静,龙永红.遗传算法和神经网络融合的滑模控制系统及其在印刷机中的应用[J].控制理论与应用,2004,20(2):212-222。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700