用户名: 密码: 验证码:
复杂体型方钢管混凝土框架结构抗震性能和减震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国内首幢采用消能减震技术方钢管混凝土框架结构的高层建筑为研究核心,从矩形钢管混凝土柱的仿真分析、整体结构的振动台试验及弹塑性时程分析、粘滞阻尼器消能减震等三方面进行了一系列相互关联的研究工作,主要内容包括:
     1.在分析总结已有模型的基础上,提出一种可以考虑矩形钢管混凝土钢管壁双轴应力状态和局部屈曲的钢材等效单轴应力-应变滞回模型及相应的内填混凝土单轴应力-应变滞回模型。
     2.将二阶有限单元柔度法和纤维模型梁柱单元相结合,推导了柔度法纤维模型梁柱单元的计算公式,并提出了几点改进措施,解决了该模型中截面切线刚度矩阵奇异时无法求逆得到截面切线柔度矩阵的问题,提高了算法的稳定性:结合本文建议的矩形钢管混凝土组成材料的单轴应力.应变滞回模型编制了框架结构三维非线性分析程序,并通过16根矩形钢管混凝土柱的计算结果和试验结果的对比,验证了程序的可靠性。运用此程序对本文结构中的方钢管混凝土柱进行了一系列的力学性能分析,为后续整体结构的计算分析提供依据。’
     3.对本文结构进行了1/15缩尺模型的振动台试验,对该结构的动力特性、地震反应和阻尼器的减震效果进行了分析研究,并提出了改进建议:在此基础上,采用多弹簧模型对振动台试验的模型结构进行模态分析和非线性时程分析,所得计算结果和试验结果吻合较好,验证了计算模型的正确性;然后,以同样方法对改进后的原型结构进行了计算分析,研究了该结构在各级地震作用下的反应特征以及大震下的屈服机制,进而对其抗震性能做出了评估。
     4.编制了单自由度消能结构的非线性时程分析程序,并对其进行了一系列的参数分析,在此基础上,提出了一种实用的减震结构优化设计方法,并对本文结构进行了减震设计,得出了两种不同减震目标的减震方案,结合阻尼器均匀布置方案对本文结构进行了计算分析,通过分析计算结果,对各种减震方案的减震效果进行了对比,并研究分析了小震和大震下减震结构的地震反应特点。
In this paper, a series of research work on a high-rise building of CFST (concrete filled square steel tubular) frame structure with dampers are carried out, which mainly includes nonlinear analysis of CFRT(concrete filled rectangular steel tubular) columns, shaking table test and nonlinear time history analysis of the structure, seismic energy dissipation using viscous dampers. The specific contents are as follows.
    1. The uniaxial steel stress-strain model in which biaxial stress and local buckling effects of steel tube are considered and uniaxial concrete stress-strain model of CFRT column are built, based on the analysis of existing material constitutive models of CFRT columns.
    2. A new type of beam-column element is built by the combination of the second order finite element flexibility method with fiber-model beam-column element. Simultaneously, several measures are provided to solve the problem that strange section stiffness matrix can not seek the inverse and improve the stability of the method. Additionally, the 3D nonlinear analysis program of CFRT frame structure is developed based on the element model and materials models suggested in this paper, which is verified by the comparison of the calculation results with the test results of 16 test models of CRFT columns. Finally, the simulation of CFST columns in high-rise building is carried out by the program to investigate its seismic behaviors.
    3. A 1/15 scale model of the high-rise building of CFST frame structure with dampers is tested on shaking table to investigate the dynamic characteristics and seismic response, especially the effect of dampers on seismic behavior of the structure. Based on the test results, the structural analysis model composed of multi-spring model of beams and columns is established, then the elasto-plastic time-history analysis for the shaking table test model of the structure is carried out, and good agreement between analysis and test results is obtained. Finally, the analysis for prototype structure is performed by the same procedure to study its seismic responses and yield mechanism. The analysis and test results show that the structure
     has no obvious weak story and can meet the code requirements for energy dissipation structures.
     4. A series of pararnetrical analysis of single degree freedom structure with viscous damper are carried out by a program developed in this paper. Based on the results of parametrical analysis, an optimum design method of seismic energy- dissipation structure is developed and two seismic energy-dissipation schemes with different inter-story drift reduction ratio of the CFST frame structure are designed by the method. By the analysis of the structure under the two optimum schemes and the other scheme with damper uniform installation, the seismic response of the structure with different energy-dissipation scheme at frequent and seldom seismic intensities is investigated.
引文
[1] 刘大海,钟锡根,杨翠如.高层建筑结构方案优选.北京:中国建筑工业出版社,1996.
    [2] 钟善桐.钢管混凝土结构.北京:清华大学出版社,2003.
    [3] 刘大海,杨翠如.型钢、钢管混凝土高楼计算和构造.北京:中国建筑工业出版社,2003.
    [4] 胡聿贤.地震工程学.北京:地震出版社,1988.
    [5] 李杰,李国强.地震工程学导论.北京:地震出版社,1992.
    [6] 陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展.世界地震工程,2002,18(1):91-97.
    [7] 阎维明,周福霖,谭平.土木工程结构振动控制的研究进展.世界地震工程,1997,13(2):8-20.
    [8] Yao, J T P. Concept of Structural Control. Journal of Structural Division, ASCE, 1972, 98: 1567-1574.
    [9] 赵鸿铁,徐赵东,张兴虎.耗能减震控制的研究、应用与发展.西安建筑科技大学学报,2001,33(1):1-5.
    [10] 张铜生.高层建筑结构空间弹塑性时程分析.工程力学增刊,1999,35-40.
    [11] 刘大海,杨翠如,钟锡根.高层建筑结构抗震设计.北京:中国建筑工业出版社,1993.
    [12] 丁永君.DRAIN-2D计算程序在高层建筑结构弹塑性变形分析中的应用.建筑结构,1994,(12):18-22.
    [13] 沈蒲生.线性子结构与非线性子结构耦合法在高层砼结构分析与试验中的应用.第二届结构工程学术会议论文集,1993.
    [14] 王长新.高层钢筋砼剪力墙结构动力非线性分析.湖南大学结构工程专业硕士研究生毕业论文,1994.
    [15] 孙业扬,余安东,金瑞春等.高层建筑杆系-层模型弹塑性动态分析.同济大学学报,1980,(1):87-98.
    [16] 张誉,王卫.双向地震作用下不规则框架的扭转分析.土木工程学报,1994,27(5):37-51.
    [17] Nigam N C. Yielding in framed structures under dynamic loads. Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers, 1970, 96(5): 687-709.
    [18] Wen R K and Frhoomand F. Dynamic analysis of inelastic space frames. Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers, 1970, 96(55): 667-686.
    [19] Pecknold D A. Inelastic structural response to 2D ground motion. Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers, 1974,100(5):949-963.
    [20] 童衍蕃.高层建筑三维弹塑性动力分析.建筑结构学报,1991,12(5):1-11.
    [21] 张寰华.空间框架结构对多维地面运动的弹塑性动力反应.地震工程与工程振动。1983,(1):25-42.
    [22] 杜宏彪,沈聚敏.空间钢筋混凝土框架结构模型的振动台试验研究.建筑结构学报,1995,16(1):60-69.
    [23] 江基伟,周氐.钢筋砼框筒结构振动台试验研究及有限元分析.地震工程与工程振动,1992,12(1):57-67.
    [24] 汪梦蒲.钢筋混凝土平面及空间高层建筑结构线性与非线性地震反应分析.湖南大学博士学位论文,1996.
    [25] 孙飞飞.高层钢筋混凝土空间框架结构地震反应的仿真分析.同济大学博士学位论文,1999.
    [26] 张铜生,陆兢.高层建筑结构空间杆系-层模型在多维地震波作用下的时程分析.工程力学增刊,1998,604-608.
    [27] Giberson M F. Two nonlinear beams with definitions of ductility. Journal of the Structural Division, ASCE, 1969, 95(2): 137-157.
    [28] Otani S. Inelastic analysis of R/C frame structures. Journal of the Structural Division, ASCE, 1974, 100(7): 1433-1449.
    [29] Clough R W, Benuska K L and Wilson E L. Inelastic earthquake response of tall buildings. Proceedings of the 3rd World Conference on Earthquake Engineering, New Zealand, 1965, 11: 68-89.
    [30] Ambrisi A D and Filippou F C. Modeling of cyclic shear behavior in RC members. Journal of Structural Engineering, ASCE, 1999, 125(10): 1143-1150.
    [31] Filippou F C, Ambrisi A D and Issa A. Effects of reinforcement slip on hysteretic behavior of reinforced concrete frame members. ACI Structural Journal, 1999, 96(3): 327-335.
    [32] Soleimani D, Popov E P and Bertero V V. Hysteretic behavior of reinforcedconcrete beam-column subassemblages. ACI Structural Journal, 1979, 76(11): 1179-1195.
    [33] Roufaiei M S L and Meyer C. Analytical modeling of hysteretic behavior of R/C frames. Journal of Structural Engineering, ASCE, 1987, 113(3): 429-444.
    [34] Mork K J. Response analysis of reinforced concrete structures seismic excitation. Earthquake Engineering and Structural Dynamics, 1994, 23(1): 33-48.
    [35] 汪梦甫.高层建筑结构非线性地震反应分析.中国力学学会第二届青年学术讨论会论文集,安徽合肥,中国力学学会,1990.
    [36] 汪梦甫.钢筋混凝土框剪结构非线性地震反应分析.工程力学,1999,16(4):136-143.
    [37] Lai S S, Will G T and Otani S. Model for inelastic biaxial bending of concrete members. Journal of Structural Engineering, 1984, 110(11): 2563-2584,
    [38] Saiidi M, Ghusn G E and Jiang Y. A five-spring element for biaxially bent R/C columns. Journal of Structural Engineering, ASCE, 1989, 115(2): 398-416.
    [39] Jiang Y and Saiidi M. Four-spring element for cyclic response of R/C columns. Journal of Structural Engineering, ASCE, 1990, 116(4): 1018-1029.
    [40] Wen R K and Frhoomand F. Dynamic analysis of inelastic space frames. Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers, 1970, 96(55): 667-686.
    [41] 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [42] Miramontes D, Merabet O and Reynouard J M. Beam global model for the seismic analysis of RC Frames. Earthquake Engineering and Structural Dynamics, 1996, 25: 671-688.
    [43] 薛伟辰,周氐,吕志涛.混凝土杆系结构滞回全过程分析.工程力学,1996,13(3):8-16.
    [44] Neuenhofer A and Filippou F C. Evaluation of nonlinear frame finite-element models. Journal of Structural Engineering, ASCE, 1997, 123(7): 958-966.
    [45] Izzuddin B A, Karayannis C G and Einashai A S. Advanced nonlinear formulation for reinforced concrete beam-columns. Journal of Structural Engineering, ASCE, 1994, 120(10): 2913-2934.
    [46] Karayannis C G, Izzuddin B A and Elnashai A S. Application of adaptive analysis to reinforced concrete frames. Journal of Structural Engineering, ASCE, 1994, 120(10): 2935-2957.
    [47] Zeris C A and Mahin S A. Analysis of reinforced concrete beam-columns under uniaxial excitation. Journal of Structural Engineering, ASCE, 1988, 114(4): 804-820.
    [48] Zeris C A and Mahin S A. Behavior of reinforced concrete structures subjected to biaxial excitation. Journal of Structural Engineering, ASCE, 1991, 117(9): 2657-2673.
    [49] Taucer F F, Spacone E and Filippou F C. A fiber beam-column element for seismic response analysis of reinforced concrete structures. EERC Report 91/17, Earthquake Engineering Research Center, University of California, Berkeley, 1991.
    [50] Spacone E, Ciampi V and Filippou F C. Mixed formulation of nonlinear beam finite element. Computer & Structure, 1996, 58(1): 71-83.
    [51] Spacone E, Filippou F C and Taucer F F. Fiber beam-column model for non-linear analysis of R/C frames: part Ⅰ. Formulation. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 711-725.
    [52] Spacone E, Filippou F C, and Taucer F F. Fiber beam-column model for non-linear analysis of R/C frames: part Ⅱ. Applications. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 727-742.
    [53] Takeda T, Sozen M A and Nielsen N N. Reinforced concrete response to simulated earthquakes. Journal of the Structural Division, ASCE, 1970, 96(12): 2557-2573.
    [54] Park Y J and Ang. A H S. Mechanistic seismic damage model for reinforced concrete. Journal of the Structural Division, ASCE, 1985, 111(4): 722-739.
    [55] Park Y J and Ang. A H S. Seismic damage analysis of reinforced concrete buildings. Journal of the Structural Division, ASCE, 1985, 111 (4): 740-757.
    [56] Aktan A E and Pecknold D A W. Response of a reinforced concrete section to two dimensional curvature histories. ACI Journal Proceedings, 1974, 71(5): 246-250.
    [57] Takizawa H and Aoyama H. Biaxial effects in modeling earthquake response of R/C structures. Earthquake Engineering and Structural Dynamics, 1976, 4:523-552.
    [58] Powell G H and Chen P F S. 3D beam-column element with generalized plastic hinges. Journal of Engineering Mechanics, ASCE, 1986, 112(7): 627-642.
    [59] 杜宏彪,成国强.三维钢筋混凝土框架结构非弹性动力分析.工程力学,1999,16(3):135-139.
    [60] 李康宁,Kubo T,Vontura C.E.建筑物三维分析模型及其用于结构地震反应分析的可靠性.建筑结构,2000,30(6):14-19.
    [61] 李康宁,洪亮.结构三维弹塑性分析方法及计算机程序CANNY.四川建筑科学研究,2001,27(4):1-6.
    [62] 凌炯.面向对象开放程序OponSoes在钢筋混凝土结构非线性分析中的应用与初步开发.重庆大学硕士学位论文,2004.
    [63] 钟善桐.钢管混凝土结构(第三版).北京:清华大学出版社,2003.
    [64] 韩林海.钢管混凝土结构—理论与实践.北京:辞学出版社。2004.
    [65] Matsui C. Strength and behavior of frame with concrete filled square steel tubular columns under earthquake loading. Proceedings of the International Specialty Conference on Concrete Filled Steel Tubular Structures, 1985, 104~111.
    [66] Kawaguchi J, Merino S and Sugimoto T. Elasto-plastic behavior of concrete-filled steel tubular frames. Proceeding of an Engineering Foundation Conference on Steel-Concrete Composite Construction Ⅲ, 1993: 272~251.
    [67] 马万福.钢管混凝土单层框架动力性能的试验研究.哈尔滨建筑大学硕士学位论文,1998.
    [68] 张文福.单层钢管混凝土框架恢复力特性研究.哈尔滨工业大学博士学位论文,2000.
    [69] 钟善桐,张文福,屠永清等.钢管混凝土结构抗震性能的研究.建筑钢结构进展,2002,4(2):3-15.
    [70] 黄襄云,周福霖,徐忠根.钢管混凝土结构抗震性能的比较研究,世界地震工程,2001,17(20):86-89.
    [71] 李斌,薛刚,张园.钢管混凝土框架结构抗震性能试验研究.包头钢铁学院学报,2002,21(2):174-178.
    [72] 刘伟庆,葛卫,陆伟东.消能支撑一方钢管混凝土框架结构抗震性能的试验研究.地震工程与工程振动,2004,24(4):106-109.
    [73] 童菊仙,徐礼华,凡红.方钢管混凝土框架模型振动台试验研究.工程抗震与加固改造,2005,27(3):65-69.
    [74] 王来,王铁成,齐建伟等.方钢管混凝土框架滞回性能试验与理论研究.天津大学学报,2005,38(1):41-46.
    [75] 余勇,吕西林.方钢管混凝土柱的三维非线性分析.地震工程与工程振动,1999;19(1):57-64
    [76] Hajjar J F, Molodan A and Schiller P H. A distributed plasticity model for cyclic analysis of concrete-filled steel tube beam-columns and composite frames. Journal of Steel Construction and Research. 1997, 20(5): 398-411.
    [77] Schiller P H, Hajjar J F and Molodan A. Nonlinear analysis of composite concrete-filled steel tube frams. International Conference Report On Composite Construction-Conventional and Innovative, 1997: 283-288.
    [78] Hajjar J F and Gourley B C. A cyclic nonlinear model for concrete-filled tubes. Ⅰ: formulation. Journal of Structural Engineering, ASCE, 1997, 123(6): 736-744.
    [79] Haiiar J F. A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip. Engineering Structures, 1998, 20(8): 663-676.
    [80] 李向真,程国亮,于德介等.钢管混凝土结构的弹塑性时程分析.2002,18(1):73-76.
    [81] 唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993.
    [82] 王优龙,魏琏,李康祺等.隔震技术的研究与应用.北京:地震出版社,1991.
    [83] 周福霖.工程结构减震控制.北京:中国建筑工业出版社,1997.
    [84] Soong T T,Dargush G F(著),董平(译).结构工程中的被动消能系统.北京:辞学出版社,2005.
    [85] Hounser G, et al. Structural control: past, present, and future. Journal of Engineering Mechanics, ASCE, 1997, 123(9): 897-971.
    [86] 阎维明,周福霖,谭平.土木工程结构振动控制的研究进展.世界地震工程,1997,13(2):8-20.
    [87] 张敏政.工程抗震的新领域—结构振动控制.地震工程研究论文集,北京:地震工业出版社,1992.
    [88] 欧进萍,结构振动控制—主动、半主动和智能控制.北京:科学出版社,2003.
    [89] 孙树民.土木工程结果振动控制技术的发展.噪声与振动控制,2001,(1):22-28.
    [90] 赵鸿铁,徐赵东,张兴虎.耗能减震控制的研究、应用与发展.西安建筑科技大学学报,2001,33(1):1-23.
    [91] Makris N and Constantinou M C. Analytical model of viscoelastic fluid dampers. Journal of Structural Engineering, ASCE, 1993, 119(11): 3310-3325.
    [92] Arima F and Miyazaki. M. A Study on buildings with large damping using viscous damping walls. Proceedings of Ninth World Conferene on Earthquake Engineering, JAPAN, 1988, 5: 821-826.
    [93] Miyazaki M and Mitsusaka Y. Design of A Building with 20% or greater damping. Proceedings of Tenth World Conference on Earthquake Engineering, SPAIN, 1992, 7: 4142-4148.
    [94] Zhang R H, Soong T T and Mahmoodi P. Seismic response of steel frame structures with added viscoelastic dampers. Earthquake Engineering Structural Dynamics, 1989, 18(2): 386-396.
    [95] Sheng K L and Soong T T. Modeling of viscoelastic dampers for structural application. Journal of the Engineering Mechanics, ASCE, 1995, 121 (6): 694-701.
    [96] Pall A S and Marsh C. Response of friction damped braced frames. Journal of the Structural Division, ASCE, 1982, 108(6): 1313-1323.
    [97] Aiken J D and Kelly J M. Earthquake simulator testing and analytical studies of two energy-absorbing system for multistory structure. Report No. UCB/EERC-90/03, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1990.
    [98] Whittaker A S, Bertero V V, Thompson, C L, et al. Seismic testing of steel plate energy dissipation devices. Earthquake Spectra, 1991, 7(4): 563-604.
    [99] Tsai K C, Chen H W, Hong C P Y, et al. Design of steel triangular plate dampers in seismic-resistant construction. Earthquake Spectra, 1993, 9(3): 505-528.
    [100] 周云,刘季.新型耗能(阻尼)减震器的开发与研究.地震工程与工程振动,1998,18(1):71-79.
    [101] Monte M D and Robison H A. Lead shear damper suitable for reducing the motion induced by wind and earthquake. Proceedings of the Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, 1998.
    [102] 张同忠.粘滞阻尼器和铅阻尼器的理论与试验研究.北京工业大学硕士学位论文,2004.
    [103] 赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性.北京:国防工业出版社,2002.
    [104] 吴波,孙科学,李惠.形状记忆合金力学性能的试验研究.地震工程与工程抗振,1999,19(2):104-111.
    [105] 彭翼.高层钢结构应用形状记忆合金的振动控制研究.天津大学硕士论文,2004.
    [106] Shahin A R, Meckl P H and Jones J D. Modeling of shape memory alloy tendons for active control of structures. Journal of Intelligent Material System and Structures, 1997, 8(1): 51-70.
    [107] Saadat S, Noori M, Davoodi H ,et al. Using NiTi SMA tendons for vibration control of coastal structures. Smart Materials and Structures, 2001, 10(4): 695-704.
    [108] 韩玉林,李爱群,林萍华.基于形状记忆合金耗能器的框架振动控制试验研究.东南大学学报,2000,30(4):16-20.
    [109] 王杜良,马怀忠,沈亚鹏.形状记忆合金在结构抗震控制中的应用.西安建筑科技大学学报,1998,30(2):115-118.
    [110] 王社良,苏三庆,沈亚鹏.形状记忆合金拉索被动控制结构地震响应分析,土木工程学报,2000,33(1):56-62,
    [111] Balan T A, Filippou F C and Popov E P. Hysteretic model of ordinary and high-strength reinforcing steel. Journal of Structural Engineering, ASCE, 1998, 124(3): 288-297.
    [112] 李学平,吕西林,郭少春.反复荷载下矩形钢管混凝土柱的抗震性能Ⅰ:试验研究.地震工程与工程振动,2005,25(5):95-103.
    [113] 李学平,吕西林,郭少春.反复荷载下矩形钢管混凝土柱的抗震性能Ⅱ:分析研究.地震工程与工程振动,2005,25(5):104-111.
    [114] 李学平.矩形钢管混凝土柱的基本力学性能研究.同济大学博士学位论文,2004.
    [115] Nakahara H, Sakino K and Inai E. Analytical model for compressive behavior of concrete filled square steel tubular columns. Proc. Jpn. Concre. Inst., 1998, 20(3): 817-822.
    [116] Sakino K, Ninakawa T, Nakahara H, et al, Experimental studies and design recommendation on concrete filled steel tubuar columns-U.S.-Japan Cooperative Earthquake Research Program. Structural Engineers World Congress, N.K. Srivastava, 1998, Paper No. T169-3.
    [117] Ninakawa T, Nakahara H and Sakino K. Estimation of ultimate bending moment capacity of concrete filled square steel tubular columns-A method of taking into account the confinement effection in tensile region. Summaries of Technical Papers of the Annual Meeting of AIJ, Architectural Inst. of Japan, Tokyo, 1997, Paper No. 22456: 911-912.
    [118] Sakino K, Nakahara H, Morino S, et al. Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering, ASCE, 2004, 130(2): 180-188.
    [119] Fujimoto T, Mukai A, et al. Behavior of eccentrically loaded concrete-filled steel tubular columns. Journal of Structural Engineering, ASCE, 2004, 130(2): 203-209.
    [120] Inai, E., Mukai, A., Kai, M., et al. Behavior of concrete-filled steel tube beam columns. Journal of Structural Engineering, ASCE, 2004, 130(2): 189-202
    [121] Tort C and Hajjar J F. Capacity assessment of rectangular concrete-filled steel tube (RCFT) members and connections for performance-based design of composite frames. Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium, New York, 2005.
    [122] Varma A H, Ricles J M and Sause R. Seismic behavior, analysis and design of high strength square concrete filled steel tube(CFT) columns. ATLESS report no. 2001-2. Bethlehem (PA): ATLSS Engineering Research Center, Department of Civil and Environmental Engineering, Lehigh University; 2001.
    [123] Tomii M and Sakino K. Elasto-plastic behavior of concrete filled square steel tubular beam-columns. Trans. Architectural Inst. Japan, 280: 111-120.
    [124] 余勇.方钢管混凝土结构的性能研究.同济大学博士学位论文,1999.
    [125] 吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997.
    [126] 朱伯龙,董振祥.钢筋混凝土非线性分析.上海:同济大学出版社,1985.
    [127] 滕智明,邹离湘.反复荷载下钢筋混凝土构件的非线性有限元分析.土木工程学报,1996,29(2):19-27.
    [128] 赵文艳,张素梅.反复荷载下约束混凝土本构关系模型与应用.大庆石油学院学报,2003,27(2):117-119.
    [129] 陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析.重庆大学博士学位论文,2003.
    [130] Li K N. 3-Dimensional nonlinear static/dynamic structural analysis computer program CANNY—Technical Manual. 2003.
    [131] 徐磊,施卫星,张均.超高层结构整体模型振动台试验研究.建筑结构学报,2001,(5):15-19.
    [132] 周颗,卢文胜,吕西林.模拟地震振动台模型实用设计方法.结构工程师,2003,(3):30-33.
    [133] 龙驭球,包世华.结构力学教程(下册).北京:高等教育出版社,1997.
    [134] 矩形钢管混凝土结构技术规程(CECS 159:2004,).北京:中国计划出版社,2004.
    [135] 建筑抗震设计规范(GB 50011-2001).北京:中国建筑工业出版社,2001.
    [136] 上海市工程建设规范:建筑抗震设计规程(DGJ08-9-2003,J10284-2003).2003,上海.
    [137] 爱德华·L·威尔逊.结构静力与动力分析—强调地震工程学的物理方法.北京:中国建筑工业出版社,2006.
    [138] 蒋通,贺磊.非线性粘滞阻尼器消能结构减振效果分析.世界地震工程,2005,21(2):57-63.
    [139] 欧进萍,吴斌,龙旭.结构被动耗能减震效果的参数影响.地震工程与工程振动,1998,18(1):60-70.
    [140] Zhang R H and Soong T T. Seismic design of viscoelastic dampers for structural application. Journal of Structural Engineering, ASCE, 1992, 118(5): 113-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700