用户名: 密码: 验证码:
低挥发份煤及其混煤燃烧数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国燃烧低挥发份煤发电占有相当大的比重。但是,低挥发份煤燃烧普遍存在燃烧效率偏低、污染物排放超标、炉膛结渣等问题。因此,低挥发份煤高效低污染燃烧仍然是我国亟需解决或改进的重要问题。电站锅炉炉内的煤粉燃烧是一个复杂的物理化学过程,要实现低挥发份煤的高效低污染燃烧,必须在充分掌握煤的燃烧特性基础上,采用适当的燃烧方式及燃烧器布置方式、合理的炉膛结构尺寸、优化的运行工况和新的燃烧技术。本文将按照这一思路,采用理论分析、数值模拟和试验相结合的研究方法,从低挥发份煤的燃烧动力学特性、混煤燃烧模拟和稳燃新技术、低挥发份煤锅炉的燃尽、NOx排放和结渣特性等方面开展研究,以期获得具有工业应用价值的研究成果。
     首先,本文提出将煤的燃烧特性看成是随燃尽率α变化的函数,采用两条不同升温速率下的燃烧热重分析曲线,建立化学动力学参数活化能E和指前因子A随燃尽率α的变化关系。使用热天平和沉降炉研究了一种低挥发份煤的燃烧动力学参数随燃尽率的变化特性,重点是随燃尽率变化的燃烧动力学参数对煤粉燃尽后期反应性降低的描述能力。结果表明,随燃尽率变化的燃烧动力学参数能够合理地预测煤粉燃尽后期反应活性降低的现象,比较准确地计算煤粉在沉降炉内燃尽率大于0.9以后的燃尽过程,燃尽率计算最大相对误差为4.98%,且计算精度随燃尽率增加而增加。随燃尽率变化的燃烧动力学参数将为本文中煤粉燃烧过程的数值模拟提供基础的输入数据。
     其次,本文以一台300 MW四角切圆锅炉为对象,开展了低挥发份煤混煤燃烧数值模拟研究。文中先采用双混合分数/PDF (Probability Density Function)方法和单混合分数/PDF方法两种方法,模拟了无烟煤和劣质烟煤在该炉炉内分层混合燃烧的过程。模拟及试验结果表明,炉内温度及氧浓度分布呈现出非均匀和对角对称分布特征。采用双混合分数/PDF方法的模拟结果更加符合两种煤在炉内分层混烧的实际燃烧过程。然后,在燃烧器区域敷设卫燃带,并采用新的混煤燃烧方式以提高锅炉运行安全性和经济性,开展了数值模拟和燃烧试验研究。结果表明,该方案能够有效提高锅炉安全性和经济性。试验确定了合理运行参数,为锅炉燃烧混煤的安全性和经济性提供了可靠的依据。
     接着,本文以W型火焰锅炉为对象,开展了低挥发份煤锅炉燃尽、NOx排放和结渣特性的研究。设计了W型火焰锅炉燃尽风空气深度分级技术研究方案,创新性地提出利用一次风风机风量裕度大和风压高的优势,将富余的部分一次风通过燃尽风喷口送入炉内,提高燃尽风风量和风速,开展了改善燃尽和NOx排放特性的试验研究。结果表明,该方法能够降低飞灰可燃物含量和NOx排放量,但是由于燃尽风风量不到5%,降低幅度较小。采用结渣模型并耦合气固两相燃烧模型,首次对三种W型火焰锅炉炉膛结渣特性开展了数值模拟,结合现场运行状况,对结渣位置、程度以及原因进行了深入地分析,并提出了防止结渣的方法。结果表明,W型火焰锅炉结渣特性是固有的,主要由炉内空气动力场特性决定的。切停侧边燃烧器、降低锅炉负荷以及燃用低结渣倾向的煤都能够有效防止炉膛结渣;增加燃尽风不会对锅炉结渣特性产生不利的影响。
     最后,在上述研究的基础上,本文对低挥发份煤稳燃新技术进行了探索性思考和初步研究。对煤粉射流吸热升温着火及稳燃机理进行了探索性的思考和分析,提出了关于煤粉射流着火稳燃机理的新解释。在此基础上,提出了一种可调节、自适应一次风内直流外旋流煤粉主燃燃器的设计思路,介绍了主燃烧器的结构和工作原理。将其应用于旋流燃烧器,在一台125 KW燃烧试验炉上对燃烧器燃烧特性进行了初步地数值模拟。结果表明,二次风旋流强度为0.67时,增加外一次风旋流强度能够有效改善低挥发份煤的着火特性和燃尽特性。研究结果可为可调节、自适应煤粉主燃烧器的进一步研究提供有益的指导。
Thermal power generating capacity fueled with low-volatile coal (LVC) accounts for a sizeable proportion in China. Currently, practical applications suffer commonly from the problems of low combustion efficiency, the excess emission of pollutants, slagging et al.. Therefore, the study of the combustion of high efficiency and low pollution emission for LVC is still strongly needed and is of great significance in China. The combustion of the pulverized coal in utility boiler is a complex physical and chemical process. In order to achieve its safe, efficient and clean combustion, based on having fully grasped the coal combustion characteristics, the appropriate methods of combustion, reasonable size and structure of the furnace and burner layout, the optimization of operating conditions and new technology must be used. Following this line of thought, the researches of the efficient and clean combustion of LVC and their blends were conducted on several aspects of the combustion kinetics, the combustion simulation of coal blends, and novel stable combustion technology for LVC, and the characteristics of burnout, NOx emission and slagging for LVC boilers, with a view to obtaining the valuable research results for industrial applications.
     First, the kinetic parameters of chemical reaction, apparent pre-exponential factor A and activation energy E, are taken as variables changed with burnout degree, and they can be obtained from TG and DTG curves of thermo-gravimetric analysis (TGA) of a coal at two heating rates. A thermo-gravimetric analyzer and a drop tube furnace (DTF) were used to investigate the characteristics of combustion kinetic parameters changed with burnout degree of a LVC, with focus on the rationality of the kinetic parameters E(α) and A(α) describing the deactivation during the late burnout stage of coal char. The results show that the combustion kinetic parameters E(α) and A(α) can reasonably predict the low reactivity in the late burnout stage of the pulverized coal. The burnout process of the burnout degree bigger than 0.9 of this coal can be appropriate calculated. The calculated relative error of the burnout degree compared with experimental data is 4.98% in maximum, and decreases with the increase of the burnout degree. E(α) and A(α) will be used as the basic input data for the numerical simulation of the combustion process of pulverized coal.
     Secondly, the numerical simulation of the combustion processes of a LVC blend were carried out on a 300 MW tangentially coal-fired boiler. At first, the combustion process employing inferior bituminous coal and anthracite as fuel, injected at different floor levels, was simulated in two ways. One way was calculation by the two-mixture fraction/probability density function (PDF) approach, assuming the simultaneous presence of two kinds of coal of different property. Another way was using the single-mixture fraction/probability density function method, assuming a single coal blend of weighted average property. Simulation and actual test measured results show that the temperature and the oxygen concentration distributions in the furnace are non-uniform, but symmetric across corners and that the two-mixture fraction / PDF calculation approach is more in conformity with the actual combustion process of coal blends. Then, in order to improve the boiler performances in security and economics, refractory coverage was added on the water-cool wall region near the burns and a new mode of blended coal combustion was adopted. Numerical simulation shows that this program can effectively enhance the boiler combustion efficiency. On this basis, combustion experiments were performed to determine the reasonable operational parameters, such as the velocities of the primary and tertiary air, the distribution of the secondary air, excess air ratio, the operational mode of pulverizing system et al.. These provide the reliable directions for the optimum operation of the studied boiler.
     Then, the characteristics of burnout, NOx emission and slagging for LVC boilers were studied with W-flame boilers as examples. The plans for the reforming and experiments of the over fire air for W-flame boiler (OFAW)were then designed. The innovative use of the advantages of the adequate margin in air quantity and high pressure of the primary was proposed. So, some excess primary air treated as OFAW was sent into the furnace to ensure the air quantity and velocity of OFAW. The experimental results show that this method can reduce the carbon content in the fly ash and NOx emission, but the quantity is small because of the percentage of OFAW of less than 5%. The numerical simulations of slagging characteristics in three W-flame boilers were performed for the first time using the slagging models coupled with the gas-solid two phase flows combustion models. Combined with the operating conditions, the slagging position, extent and reasons were deep analyzed, the inhibition methods of slagging were presented. The results show that the slagging characteristics of W-flame boilers are inherent and determined by the aerodynamic characteristics inside the furnace. stopping side burners, reducing boiler load and using coals with low slagging tendency can effectively suppress the furnace slagging. OFAW has little affection on the the characteristics of slagging of W-flame boilers.
     Finally, based on the researches above, the exploratory discussion and primary investigations on the novel stable combustion technology of LVC were performaed. The mechanism of the heat absorbing, temperature increasing and ignition of the coal/air mixture flow and the mechanism for stabilizing combustion flame were deep analyzed. Some new interpretations were presented. On this basis, a kind of novel adjustable self-adaptive pulverized coal main burner and a combustion method of separating coarse and fine pulverized coal are being developed. The structure and working principle of the main burner were introduced in details. The combustion characteristics of the main burner which was applied to a swirl burner were simulated on a 125 KW down-fired furnace. The results show that an increase in the swirl strength of the outer primary air can effectively improve the ignition and burnout characteristics of LVC with the secondary air swirl intensity of 0.67. The results above may provide useful guidance for the research and development of the adjustable, self-adaptive main burner and combustion technology of separating coarse and fine pulverized coal.
引文
[1] BP Statistical Review of World Energy 2007. http://www.bp.com/statisticalreview.
    [2]徐云.谁能驱动中国--世界能源危机和中国方略.北京:人民出版社, 2006.
    [3]崔民选.中国能源发展报告2006.北京:社会科学文献出版社, 2006.
    [4]吴式瑜,王美丽.煤炭在中国能源的地位.煤炭加工与综合利用, 2006, 15: 2-8.
    [5]中国电力企业管理, 2006, 1: 4.
    [6]张晓鲁.中国的电力结构调整与技术发展趋势.电气技术, 2006, 11: 1-4.
    [7]周小谦. 21世纪中国电力工业前景展望.机电信息, 2003, 38(2): 8-11.
    [8]白少林,李宗绪,张建生等.提高大型低挥发份煤锅炉运行经济性研究.中国电力, 2006, 39 (9): 79-83.
    [9]王庆一中国的能源效率及国际比较.节能与环保, 2005, 6: 10-13.
    [10]付融冰,张慧明.中国能源的现状.能源环境保护, 2005, 19(1): 8-12.
    [11]倪维斗:我国的能源现状与战略对策.科技日报, 2007.1.25.
    [12]孙晓仁,孙怡玲. 21世纪世界能源发展的趋势.科技导报, 2004, 5: 50-51.
    [13]简讯:能源中长期发展规划纲要(2004-2020年).现代电力, 2004, 4: 5.
    [14]徐传凯,许云松.我国低挥发份煤的燃烧技术的发展.热力发电, 2001, 5: 2-8.
    [15] Hurt R H, Sun J K and Lunden M. A kinetic model of carbon burnout in pulverized coal combustion. Combustion and Flame, 1998, 113: 181-197.
    [16] Mskansi J. Power, 1994, 8: 37-41.
    [17] Bernhard P. Extinction of burning particles due to unstable combustion modes. Fuel, 2002, 81: 391-396.
    [18] Hurt R H. and Gibbins J R. Residual carbon from pulverized coal fired boilers: 1.size distribution and combustion reactivity. Fuel, 1995, 74(4): 471-780.
    [19] EI-Samed A K A, Hampartsoumian E, Farag T M. Variation of char reactivity during simultaneous devolatilization and combustion of coals in a drop-tube reactor. Fuel, 1990.
    [20] Hecker W C, Mcdonald K M, Reade W et al.. Effects of burnout on char oxidation kinetics. 24th Symposium (International) on Combustion. The Combustion Institute, 1992: 1225-1231.
    [21] Sorensen L H, Gjernes E, Jessen T et al.. Determination of reactivity parameters of model carbons, cokes and flame-chars. Fuel, 1996, 75(1): 31-38.
    [22] Hurt R H. Reactivity distributions and extinction phenomena in coal char combustion. Energy & Fuels, 1993, 7: 721-733.
    [23] Hurt R H, Davis K A. Near-extinction and final burnout in coal combustion. 25th Symposium (International) on Combustion. The Combustion Institute, 1994: 561-568.
    [24] Davis K A, Hurt R H. Evolution of char chemistry, crystallinity and ultrafine structure during pulverized-coal combustion. Combustion and Flame, 1995, 100: 31-40.
    [25] Beeley T, Crelling J, Gribbins J et al.. Ttransient high-temperature thermal deactivation of monomaceral-rich coal chars. 26th Symposium(International) on Combustion. The Combustion Institute, 1996: 3103-3110.
    [26] Russell N V, Gribbins J R, Williamson J. Structural ordering in high temperature coal chars and the effect on reactivity. Fuel, 1999, 78: 803-807.
    [27] Russell N V, Gibbins J R, Man C K et al. Coal char thermal deactivation under pulverized fuel combustion conditions. Energy & Fuels, 2000, 14: 883-888.
    [28] Zolin A, Jesen A D, Jesen P et al.. Experimental study of char thermal deactivation. Fuel, 2002, 81: 1065-1075.
    [29] Zolin A. Coupling thermal deactivation with oxidation for predicting the combustion of a solid fuel. Combustion and Flame, 2001, 125: 1341-1360.
    [30]王世昌,徐旭常.宏观煤岩分类及燃烧反应动力学参数.工程热物理学报, 1996, 17(2): 229-233.
    [31]高正阳,方立军,周健.混煤燃烧特性的热重试验研究.动力工程, 2002, 22(3)3:1764.
    [32]陈彩霞.褐煤燃烧特性研究.硕士论文,武汉:华中科技大学, 1986.
    [33]张海洲,李成之,郭伯伟.无烟煤燃烧动力学参数的研究.工程热物理年会, 1987.
    [34]陈鸿.煤粉孔隙结构及燃尽动力学研究.博士论文,武汉:华中科技大学, 1994.
    [35]朱群益,李瑞扬,秦裕琨等.煤粉燃烧动力学参数的试验研究.动力工程, 2000, 20(3): 703-706.
    [36] Xu X C, Chen Q, Fan H L. The influence of high-temperature crystallite growth and petrography of pulverized char on combustion characteristics. Fuel, 2003, (82):853-858.
    [37]邹学权,王新红,武建军等.用热重-差热-红外光谱技术研究煤粉的燃烧特性.煤炭转化, 2003, 26(1): 71-73.
    [38] Fu W B, Zhang B L, Zeng S M. A relationship between the kinetic parameters of char combustion and coal properties. Combustion and Flame, 1997, 108: 587-598.
    [39]傅维镳.煤燃烧理论及其宏观通用规律.北京:清华大学出版社, 2003.
    [40]傅培舫,方庆艳,肖三霞等.基于简单碰撞理论煤粉燃烧动力学模型的研究-PART I:理论建模和热重试验.工程热物理学报, 2005, 26(2): 331-334.
    [41]傅培舫,方庆艳,肖三霞等.基于简单碰撞理论煤粉燃烧动力学模型的研究-PART II:颗粒表面的氧气浓度分布模型.工程热物理学报, 2005, 26(4): 701-704.
    [42]傅培舫,方庆艳,肖三霞等.基于简单碰撞理论煤粉燃烧动力学模型的研究-PART III:氧气可达比表面积.工程热物理学报, 2006, 27(1): 1731-174.
    [43]傅培舫.粉煤焦燃烧反应动力学的研究.博士后研究报告,武汉:华中科技大学,2006.
    [44]肖三霞,方庆艳,傅培舫等.煤的热天平燃烧反应动力学特性的研究.工程热物理学报, 2004, 25(5): 891-893.
    [45] Russell N V, Beeley T J, Man C K et al..Development of TG measurements of intrinsic char combustion reactivity for industrial and research purposes. Fuel Processing Technology, 1998, 57: 113-130.
    [46]李永华.混煤的高效低污染燃烧研究.博士论文,北京:华北电力大学, 2002.
    [47] Su S, Pohl J H, Holcombe D et al.. Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers. Progress in Energy and Combustion Science, 2001, 27: 75-98.
    [48] Haas J, Tamura M, Weber R. Characterisation of coal blends for pulverized fuel combustion. Fuel, 2001, 80: 1317-1323.
    [49] Rubiera F, Arenillas A, Arias B et al.. Modification of combustion behaviour and NO emissions by coal blending. Fuel Processing Technology, 2002, 78: 111-117.
    [50] Ikeda M, Makino H, Morinaga H et al.. Emission characteristics of NOX and unburned carbon in fly ash during combustion of blends of bituminous-sub-bituminous. Fuel, 2003, 82: 1851-1857.
    [51] Helle S, Gordon A, Alfaro G. Coal blend combustion- link between unburnt carbon infly ashes and mceral composition. Fuel Processing Technology, 2003, 80: 209-223.
    [52] Vuthaluru H B, Brooke R J, Zhang D K et al.. Effects of moisture and coal blending on Hardgrove Grindability Index of Western Australian coal. Fuel Processing Technology, 2003, 81: 67-76.
    [53] Rubiera F, Arenillas A, Fuente E. Effect of the grinding behaviour of coal blends on coal utilisation for combustion. Powder Technology, 1999, 105: 351-356.
    [54] Peralta D. Coal blend performance during pulverised-fuel combustion: estimation of relative reactivities by a bomb-calorimeter test. Fuel, 2001, 80: 1623-1634.
    [55] Peralta D, Paterson N P, Dugwell D R et al.. Development of a reactivity test for coal-blend combustion: the laboratory-scale suspension-firing reactor. Energy & Fuels, 2002, 16: 404-411.
    [56] Su S, Pohl J H, Holcombe D. Fouling propensities of blended coals in pulverized coal-fired power station boilers. Fuel, 2003, 82: 1653-1667.
    [57] Nugroho Y S, McIntosh A C, Gibbs B M. Low-temperature oxidation of single and blended coals. Fuel, 2000, 79: 1951-1961.
    [58]邱建荣,马毓义,曾汉才等.混煤特性的综合性试验研究.动力工程, 1993, 13(5):32-36.
    [59]郭嘉,江睿,曾汉才.混煤燃烧过程中氮氧化物的生成规律及其计算机模拟.电站系统工程, 1994, 10(2): 44-47.
    [60]郭嘉,曾汉才.混煤热解特性及热解机理的热重法研究.锅炉技术, 1994, 8: 5-7.
    [61]邱建荣,马毓义,曾汉才等混煤氮的热解析出规律及燃料氮NOX的形成规律.工程热物理学报, 1995, 16(1): 115-118.
    [62]曾汉才,姚斌,邱建荣等.无烟煤和烟煤的混煤燃烧特性和结渣特性研究.燃烧科学与技术, 1996, 2(2): 181-189.
    [63]阮伟,周俊虎,汤龙华等.优化配煤理论的研究以及配煤专家系统的开发.动力工程, 1999, 19(6): 434-437.
    [64]姚强,岑可法,施正伦等.多煤种配煤特性的试验研究.动力工程, 97, 17(2): 16-20.
    [65]程军,周俊虎,刘建忠等褐煤混煤燃烧过程中硫污染物的动态排放规律煤炭学报, 2003, 28(4): 409-413.
    [66]翁安心,周昊,王正华等.烟煤及其混煤高温燃烧时SO2生成特性的试验研究.锅炉技术, 2003, 34(6): 1-5.
    [67]翁安心,周昊,张力等.不同煤种混煤燃烧时NOX生成和燃尽特性的试验.热能动力工程, 2004, 19(3): 242-246.
    [68]聂其红,孙绍增,李争起等.褐煤混煤燃烧特性的热重分析法研究.燃烧科学与技术, 2001, 7(1): 72-76.
    [69]张晓杰,聂其红,孙绍增等.混煤热天平燃烧模型研究.热能动力工程, 2000, 15(88): 356-360.
    [70]张晓杰,王阳,李振中等.褐煤及其混煤燃烧、结渣特性的实验研究.动力工程, 1999, 19(6): 428-433.
    [71]高正阳,方立军,周健等.混煤燃烧特性的热重试验研究.动力工程, 2002, 22(3): 1764-1768.
    [72]方立军高正阳阎维平等.无烟煤与贫煤混煤燃烧和NOX排放特性的实验研究.热能动力工程, 2002, 17(102): 595-599.
    [73]李永华陈鸿伟刘吉臻等.褐煤及烟煤混煤综合燃烧特性的试验研究.动力工程, 2003, 23(4): 2495-2499.
    [74]李永华李松庚冯兆兴等.褐煤及其混煤燃烧NOX生成的试验研究.中国电机工程学报, 2001, 21(8): 34-37.
    [75]侯栋岐,冯金梅,陈春元等.混煤煤粉着火和燃尽特性试验研究.电站系统工程, 1995, 11(2): 30-35.
    [76]哈尔滨成套设备研究所.全国火电厂基本情况调查汇总表.电站系统工程, 1987, 6.
    [77]姚伟,相大光.应用煤的燃烧特性改造中宁电厂130T/h锅炉的燃烧系统.热力发电, 1989, 3: 51-59.
    [78]史学锋,冯波,邱建荣等.混煤燃烧与动力配煤.煤炭加工与综合利用, 1998, 4:6-8.
    [79]赵坚行.燃烧的数值模拟.北京:科学出版社, 2002.
    [80] Eaton A M, Smoot L D, Hill S C et al.. Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Progress in Energy and Combustion Science, 1999, 25: 387-436.
    [81] Stopford P J. Recent applications of CFD modelling in the power generation and combustion industries. Applied Mathematical Modelling, 2002, 26: 351-374.
    [82] Smith P J, Fletcher T H, Smoot L D. Model for pulverized coal-fired reactors. 18thSymposium (International) on Combustion. The Combustion Institute, 1981: 1285-1293.
    [83] Benesch W, Kremer H. Mathematical modeling of fluid flow and mixing in tangentially fired furnaces. 20th Symposium (International) on Combustion. The Combustion Institute, 1984: 549-557.
    [84] Abbas A S, Lockwood F C. Prediction of power station combustors. 21th Symposium (International) on Combustion. The Combustion Institute, 1986: 285-292.
    [85] Boyd R K, Kent J H. Three-dimension furnace computer modeling. 21th Symposium (International) on Combustion. The Combustion Institute, 1986: 265-274.
    [86] Yin C G, Caillat S, Harion J L et al.. Investigation of the flow, heat-transfer and emission from a 609 MW utility tangentially fired pulverized-coal boiler. Fuel, 2002, 81: 997-1006.
    [87] Yin C G, Rosendahl L, Condra T J. Further study of the gas temperature deviation in large-scale tangentially coal-fired boilers. Fuel, 2003, 82: 1127-1137.
    [88]文军,张波,徐党旗.一台300 MW燃煤锅炉改造方案的数值模拟计算和优化.第四届全国火力发电技术年会, 2003.
    [89] Yuh-Long Hwang. Three-dimensional model studies of a pulverized coal corner-fired utility furnace and comparisons with local furnace data and boiler exhaust NOX. PH.D. Dissertaion, The University of Texas, Avstin, 1997.
    [90]孙宝民. W型火焰煤粉锅炉炉内流动,换热,燃烧过程的数值模拟和流场的实验研究.博士论文,北京:清华大学, 1994.
    [91]周向阳.燃烧过程及其污染物生成的数学模化和实际应用.博士论文,武汉:华中科技大学, 1996.
    [92]钱力庚. 330 MW电站对冲锅炉炉内过程数值模拟和实验研究及四角锅炉变负荷研究及炉内过程通用程序的设计与研究.博士论文,杭州:浙江大学, 2000.
    [93] Xu M H, Azevedo J L T, Carvalho M G. Modeling of a front wall fired utility boiler for different operating conditions. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 3581-3590.
    [94] Xu M H, Azevedo J L T, Carvalho. Modelling of the combustion process and NOX emission in a utility boiler. Fuel, 2000, 79: 1611-1619.
    [95] Zheng C G, Liu Z H, Duan X L. Numerical and experimental investigations on performance of a 300 MW pulverized coal furnace. Proceedings of the Combustion Institute, 2002, 29: 811-818.
    [96] Fan J R, Sun P, Zheng Y Q. Numerical and experimental investigation on the reduction of NOX emission in a 600 MW utility furnace by using OFA. Fuel, 1999, 78: 1387-1394.
    [97] Fan J R, Zha X D, Cen K F. Study on coal combustion characteristics in a W-shaped boiler furnace. Fuel, 2001, 80: 373-381.
    [98] Fan J R, Sun P, Zha X D et al.. Modeling of combustion process in 600 MW utility boiler using comprehensive models and its experimental validation. Energy & Fuels, 1999, 13: 1051-1057.
    [99] Backreedy R I, Jones J M, Ma L et al.. Prediction of unburned carbon and NOX in a tangentially fired power station using single coals and blends. Fuel, 2005, 84: 2196-2203.
    [100] Pallares J, Arauzo I and Diez L I. Numerical prediction of unburned carbon levels in large pulverized coal utility boilers. Fuel, 2005, 84: 2364-2371.
    [101] Pallares J, Arauzo I and Williams A. Integration of CFD codes and advanced combustion models for quantitative burnout determination. Fuel, 2007.
    [102] Belosevic S, Sijercic M, Oka S et al.. Three-dimension modeling of utility boiler pulverized coal tangentially fired furnace. Fuel, 2006, 49: 3371-3378.
    [103] Arenillas A, Backreedy R I, Jones J M et al.. Modelling of NOX formation in the combustion of coal blends. Fuel, 2002, 81: 627-636.
    [104]李永华,陈鸿伟,刘吉臻等. 800MW锅炉混煤燃烧数值模拟.中国电机工程学报, 2002, 22(6): 101-104.
    [105] Sheng C D, Moghtaderi B, Gupta R, et al. A computational fluid dynamics based study of the combustion characteristics of coal blends in pulverized coal-fired furnace. Fuel, 2004, 83: 1543-1552.
    [106] Smoot L D, Smith P J. Coal combustion and gasifation, 2nd ed.. New York: Plenum Press, 1985.
    [107]蒋月美,苏艺,冯莉莉.锅炉结渣机理分析.锅炉技术, 2001, 32(6): 9-11.
    [108]李彦林.煤粉锅炉结渣的研究现状及进展.电力安全技术, 2000, 2(2): 8-13.
    [109]张忠孝.用模糊数学方法对电厂锅炉结渣特性的研究.中国电机工程学报, 2000, 20(10): 64-66.
    [110] Huafeng W, Harb J N. Modeling of ash deposition in large scale combustion facilities burning pulverized coal. Progress in Energy and Combustion Science, 1997, 23(3): 267-282.
    [111]周涌,由长福,祁海鹰等.锅炉结渣过程数值模拟研究进展.燃烧科学与技术, 2004, 10(4): 375-382.
    [112] Lee F C C, Lockwood F C. Modeling ash deposition in pulverized coal-fired applications. Progress in Energy and Combust Science, 1999, 25(2): 117-132.
    [113] Richards G H, Slater P N, Harb J N. Simulation of ash deposit growth in a pulverized coal-fired pilot scale reactor. Energy and Fuels, 1993, 7(6): 774-781.
    [114] Fan J R, Zha X D, Sun P et al.. Simulation of ash deposit in a pulverized coal-fired boiler. Fuel, 2001, 80(5): 645-654.
    [115] Kroger C, Drossinos Y. Particle deposition in a turbulent boundary layer over a large particle size spectrum. Journal of Aerosol Science, 1997, 28: 631-632.
    [116] Erickson T A, Allan S E, Mccollor D P et al.. Modelling of fouling and slagging in coal-fired utility boilers. Fuel Processing Technology, 1995, 44(123): 155-171.
    [117] Yan L, Gupta R P, Wall T F. The implication of mineral coal escence behaviour on ash formation and ash deposition during pulverized coal combustion. Fuel, 2001, 80(9): 1333-1340.
    [118] Frenkel J. Kinetic theory of liquids. London: Oxford, 1946.
    [119] Kondratiev A, Evgueni J. Predicting coal ash slag flow characteristics (viscosity model for the Al2O3-CaO-‘FeO’-SiO2 system). Fuel, 2001, 80(14): 1989-2000.
    [120] Lan Y, Norman J S, Pourkashanian M et al.. Prediction of ash deposition on superheater tubes from pulverized coal combustion. Fuel, 1996, 75(3): 271-279.
    [121] Zhou H, Cen K F, Sun P. Prediction of ash deposition in ash hopper when tilting burners are used. Fuel Processing Technology, 2002, 79(2): 181-195.
    [122] Senior C L, Srinivasachar S. Viscosity of ash particles in combustion systems for prediction of particle sticking. Energy and Fuels,, 1995 9(2): 277-283.
    [123] Wilemski G, Srinivasachar S, Sarofim A F. Modeling of mineral matter redistribution and ash formation in pulverized coal combustion. In: Benson S A. Inorganic Transformation and Ash Deposition During Combustion. New York: Engineering Foundation Press, 1992: 545-564.
    [124] Wilemski G, Srinivasachar S. Prediction of ash formation in pulverized coal combustion with mineral distribution and char fragmentation models. In: Williamson J, Wigley F. The Impacof Ash Deposition on Coal Fired Plants. Washington DC: Taylor and Francis press, 1993: 151-164.
    [125] Richards G H. Investigation of mechanism for the formation of fly ash and ash deposit for two Powder River Basin coals. Provo: Brigham Young University. 1994.
    [126] Yan L, Gupta R P, Wall T F. A mathematical model of ash formation during pulverized coal combustion. Fuel, 2002, 81(3): 377-344.
    [127] Walsh P M, Sayre A N, Loehden D O et al. Deposition of bituminous coal ash on an isolated heat exchanger tube: Effects of coal properties on deposit growth. Progress in Energy and Combustion Science, 1990, 16(4): 327-346.
    [128] Smoot L D. Fundamentals of Coal Combustion for Clean and Efficient Use. Amsterdam: Elsevier, 1993.
    [129]岑可法,樊建人,池作和等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理和计算.北京:科学出版社, 1994.
    [130] Erickson T A, Allan S E, Mccollor D P et al.. Modelling of fouling and slagging in coal-fired utility boilers. Fuel Processing Technology, 1995, 44(123): 155-171.
    [131]周昊,孙平,岑可法等.燃烧器下摆时冷灰斗内结渣的试验和数值模拟.中国电机工程学报, 2002, 22(5): 139-143.
    [132] Fan J R, Liang X H, Xu Q S et al.. Numerical simulation of the flow and combustion processes in a three-dimensional, w-shaped boiler furnace. Energy, 1997, 22(8): 847-857.
    [133] Harb J N, Munson C L, Richards G H. Use of equilibrium calculations to predict the behavior of coal ash in combustion systems. Energy and Fuels, 1993, 7(2): 208-214.
    [134] Huafeng W. Modeling of ash formation and deposition in PC fired utility boilers. Provo: Brigham Young University, 1998.
    [135] Wall T F, Bhattacharya S P, Zhang D K et al. The properties and thermal effects of ash deposits in coal2fired furnaces. Progress in Energy and Combustion Science, 1993, 19(5): 487-505.
    [136]徐传凯.低挥发份煤的燃烧及W型火焰锅炉若干问题研究.中国电力, 2004, 37(7): 37-10.
    [137] Antonio Garcia-Mallol J., Kukoski A E, Winkin J P. Anthracite firing design for central stations: Ignition and emissions aspects. International Pittsburgh Coal Conference, Taiyuan, Shanxi, P.R. China, 1997.
    [138]毕玉森,陈国辉低挥发份煤种与W型火焰锅炉.热力发电, 2005, 7:7-11.
    [139]袁颖,相大光.我国W火焰双拱锅炉燃烧性能调查研究.中国电力, 1999, 11: 1-6.
    [140]单凤玲,王新华. W火焰W型火焰锅炉燃用无烟煤燃尽率低的原因分析.热力发电, 2003, 4: 21-24.
    [141] Eberle J S, Antonio Garcia-Mallol J, Simmerman R N. Advanced FW arch firing: NOX reduction in central power station. Pittsburgh Coal Conference, Pittsburgh, Pennsylvania, USA, 2002.
    [142] Winkin J P, Antonio Garcia-Mallol J, Anthracite firing in large utility arch fired boilers. American Power Conference, Chicago, USA, 1997.
    [143] Brower P, Winkin J, Ge Changqin. Anthracite firing - Largest steam generators.
    [144]毕玉森,陈国辉.煤粉细度的合理选择.中国电力, 2004, 1: 40-42.
    [145]湖南华银株洲火力发公司3号锅炉燃烧调整试验报告.长沙:湖南省电力试验研究院, 2004.
    [146]华能湖南岳阳发电有限责任公司3号锅炉燃烧优化调整试验报告.长沙:湖南省电力试验研究院, 2005.
    [147]车刚,何立明,徐通模等.燃烧器角度对W型火焰锅炉空气动力场的影响研究.动力工程, 2001, 21(2): 1132-1137.
    [148]闫晓,许卫疆,孙新国等.中储式热风送粉W型火焰锅炉炉内空气动力场实验研究.热能动力工程, 2001, 16(93): 263-268.
    [149]田新荆,万中平,林学丰. W型火焰锅炉冷态流场的研究.湖北电力, 2002, 26(1): 20-23.
    [150]樊险峰,徐宝山,周传平等. W型火焰炉冷态空气动力场试验研究及评价.锅炉制造, 2002, 184(2): 1-6.
    [151]周志军,朱自力,赵翔等.旋流强度对W型火焰炉空气动力场的影响.动力工程, 1999, 19 (3): 33-38.
    [152] Fan J R, Jin J, Liang X H et al.. Modeling of coal combustion and NOx formation in a W-shaped boiler furnace. Chemical Engineering Journal, 1998, 71: 233-242.
    [153] Fan J R, Liang X H, Chen L H et al.. Modeling of NOx emissions from a W-shaped boiler furnace under different operating conditions. Energy, 1998, 23(12): 1051-1055.
    [154]梁晓宏,樊建人,岑可法. W型火焰煤粉锅炉炉内三维流动和燃烧过程的数值模拟.中国电机工程学报, 1997, 17(4): 223-228.
    [155]孙保民,徐旭常. W型火焰煤粉锅炉炉内过程的综合数值模拟及流场的试验研究.中国电机工程学报, 1996, 16(4): 230-235.
    [156]张杰,余战英,谭厚章等. W型火焰锅炉的热态试验研究.动力工程, 2003, 23(5):2632-2635.
    [157]余战英,谭厚章,张杰等. W型火焰分级燃烧的热态试验研究.燃烧科学与技术, 2004, 10(4): 314-317.
    [158]方庆艳,姚斌,江瑞宝等. W型火焰锅炉炉内燃烧过程检测实验研究.热能动力工程, 2005, 20(4): 361-364.
    [159] Fang Q Y, Fu P F, Yao B et al.. Study on the combustion kinetics and combustion processes of four coals in a W-shaped boiler furnace. 3rd International Conference on Combustion, Incineration/Pyrolysis and Emission Control, Huangzhou, China, 2004.
    [160]周怀春,方庆艳,姚斌. W型火焰锅炉燃尽风装置及方法.国家发明专利,专利号: ZL 200410060622.X,授权公告日期: 2007-1-17.
    [161]张海,吕俊复,徐秀清等. W型火焰锅炉燃烧问题的分析和解决方法.动力工程, 2005, 25(5): 628-633.
    [162]苗长信,车刚,王建伟等. 600MW”W”型火焰锅炉燃烧优化调试.中国电力, 2003, 36(8): 16-19.
    [163]张静媛,刘明福,李润林等. W火焰炉NOx排放试验研究.电站系统工程, 2006, 22(6): 13-15.
    [164]柳宏刚,白少林.现役各类W火焰锅炉NOx排放对比分析研究.热力发电, 2007, 3: 1-5.
    [165]薛国琪. W型火焰锅炉燃烧带与结渣的关系.河北电力技术, 2004, 23(4): 52-54.
    [166]杨雄文. W型火焰锅炉结渣分析及对策.热能动力工程, 2002, 17(101): 527-530.
    [167]金鑫,段宝林,魏铜生等. FW型W火焰锅炉侧墙严重结渣原因探析.热力发电, 2007, 2: 37-38.
    [168]韩奎华,高寒,翟雷等. 600 MW“W”火焰锅炉结焦原因分析与防止措施.锅炉技术, 2005, 36(5):47-50.
    [169]焦传宝. W型火焰锅炉结焦原因及对策.江苏电机工程, 2006, 25(3): 61-63.
    [170]张磊,郭洪亮.主导火焰技术在600 MW机组W型火焰燃烧锅炉中的应用.热力发电, 2007, 3: 39-40.
    [171]段宝林,金鑫,魏铜生. FW型W火焰锅炉高负荷运行提高氧量困难的研究.热力发电, 2007, 3: 48-49.
    [172]宋绍伟,邱现堂,杨真学.“W”火焰锅炉炉膛负压波动大的原因分析与对策.中国电力, 2006, 39(8): 45-49.
    [173]郑伟德,马洪顺.电厂来煤煤质对1160 t/h“W”型火焰锅炉的影响及其对策.中国电力, 2005, 38(12): 42-46.
    [174]黄伟,李文军. W型火焰锅炉燃用低挥发份无烟煤的试验研究.动力工程, 2005, 25(6): 813-819.
    [175]马斌,徐齐胜,李乃钊.韶关电厂1025 t/h W型火焰锅炉调试.热力发电, 2004, 5:25-29.
    [176]阎维平,高正阳. 300 MW机组W型火焰锅炉燃烧调整试验研究.动力工程, 1999, 19(1):23-27.
    [177]韩才元,徐明厚,周怀春,邱建荣.煤粉燃烧.北京:科学出版社, 2001.
    [178]岑可法,姚强,骆仲泱,李绚天.高等燃烧学.杭州:浙江大学出版社, 2002.
    [179]郑楚光.洁净煤技术.武汉:华中理工大学出版社, 1996.
    [180] Xu M H, Yuan J W, Han C Y et al.. Investigation of particle dynamics and pulverized coal combustion in a cavity bluff-body burner. Fuel, 1995, 74(12):1913-1917.
    [181]钱壬章,郑远平,陈维汉等.粉煤燃烧的新概念--粉气分离.工程热物理学报, 1991, 12(3):320-323.
    [182] Shi X F, Qian R Z, Shi H S et al.. Investigation of the optimization of slit width for a slitted bluff-body burner: bulverized coal ignition and flame stabilization. Combustion Science and Technology, 1997, 124: 1-15.
    [183]徐旭常,王云山,金茂庐等.关于煤粉火焰稳定性和煤粉预燃室及火焰稳定船的作用.工程热物理学报, 1988, 4.
    [184]徐旭常,施学贵,陈昌和等.煤粉火焰稳定原理--“三高区”原理的实验验证和数值模拟分析.锅炉技术, 1994, 34(1): 2-7.
    [185]马晓茜,区敏,陈瑞玲.煤粉锅炉的稳燃及其主要技术思路.能源研究与信息, 1997, 13(1): 35-40.
    [186]金振齐.浓淡型煤粉燃烧器述评.能源研究与应用, 2001, 2: 9-13.
    [187]赵宗让,章明川.四角切向燃烧锅炉煤粉射流逆向稳燃技术的研究开发.燃烧科学与技术, 1997, 3(1): 88-96.
    [188]孙学信,陈建原.煤粉燃烧物理化学基础.武汉:华中理工大学出版社, 1991.
    [189] Field M A. Rate of combustion of sized-graded fractions of char from a low-rank coal between 1200 K and 2000 K. Combustion Science and Technology, 1969, 13: 237-251.
    [190]唐良广.锅炉热计算系统的开发.硕士论文,武汉:华中科技大学, 2000.
    [191]周怀春.炉内可视化检测原理与技术.北京:科学出版社, 2005.
    [192] Ubhayakar, S K, Stickler, D B, Rosenberg C W V et al.. Rapid devolatilization of pulverized coal in hot combustion gases. 16th Symposium (International) on Combustion, Pittsburg: The Institute of Combustion, 1976: 427-436.
    [193]燃用无烟煤锅炉煤种适应性研究技术总结报告.武汉:华中科技大学, 2007.
    [194]刘忠楼,邵国桢,薛林德等. 600 MW亚临界控制循环锅炉冷态模化试验研究.中国动力工程学会首届青年学术年会论文集, 1996: 282-291.
    [195]四角切向燃煤锅炉稳燃、结渣、烟温偏差问题研究.博士论文,武汉:华中科技大学, 2001.
    [196]刘国军,孙丹萍,周怀春.基于分子运动对流换热和热辐射下煤粉颗粒群粒子的加热分析.工程热物理学, 2005, 26(4): 717-719.
    [197] Modest M F. Radiative heat transfer, second edition. San Diego: Academic Press, 2003.
    [198]宁晃.燃烧室气动力学基础.北京:科学出版社,1980.
    [199]叶江明,潘效军,陈广利.电厂锅炉原理及设备.北京:中国电力出版社,2004.
    [200]周怀春,张治国,方庆艳.可调节外旋流内直流主燃烧器装置.国家发明专利,专利号: ZL 200510018431.1,授权公告日期: 2007-4-4.
    [201] Zhou H C, Lou C, Cheng Q et al.. Experimental investigation on visualization of three-dimensional temperature distribution in a large-scale pulverized-coal-fired boiler furnace. Proceedings of the Combustion Institute, 2005. 30(1):1699-1706.
    [202] Fluent 6.3 user’s guide. Fluent Inc., 2005.
    [203]苏胜.气体燃料再燃降低氮氧化物排放的实验研究与数值模拟.博士论文,武汉:华中科技大学, 2007.
    [204]容銮恩.袁镇福.刘志敏.田子平.电站锅炉原理,北京:中国电力出版社, 1997.
    [205]姚斌.大型低挥发份煤锅炉燃烧运行问题的研究.博士论文,武汉:华中科技大学, 2005.
    [206]姜秀民,杨海平,刘辉等.粉煤颗粒粒度对燃烧特性影响热分析.中国电机工程学报, 2002, 22(12): 142-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700