用户名: 密码: 验证码:
铜基/n-AlN功能复合材料的成分、组织及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能铜基功能复合材料在机械、电子、航空航天等高科技领域有广阔的应用前景。颗粒增强铜基功能复合材料可以具备优良的导电、导热及力学性能,所以研究n-AlN颗粒增强铜基功能复合材料具有重要意义。
     本文采用高能球磨方法制备铜基n-AlN复合粉体;用粉末冶金方法制备铜基n-AlN功能复合材料。采用SEM,HRTEM,XRD,EDS等手段表征复合材料的组织形貌并测定其力学及物理性能,结果表明:CuCrZr/AlN具有良好的导电、导热及力学性能。本文主要进行了以下几个方面的工作:
     首先优化球磨工艺,分析了高能球磨过程中Cu-AlN、Cu-Zr-AlN、Cu-Cr-Zr-AlN复合粉体的组织结构、形貌的变化规律;在优化的高能球磨工艺条件下,对于铜氮化铝系复合粉体,获得晶粒细小、尺寸分布均匀的没有合金化的复合粉体;对于铜锆氮化铝系、铜锆铬氮化铝系复合粉体,获得晶粒细小、尺寸分布均匀的合金化的复合粉体。球磨后的复合粉体比表面积增大,晶格畸变增大,处于高内能状态。分析了纳米颗粒在球磨过程中的作用并得出延性与硬脆相复合粉体球磨过程的模型示意图。
     采用粉末冶金工艺制备铜基纳米氮化铝复合材料。系统研究了压力、烧结温度对致密度的影响,优化了复合粉体的致密化工艺。分析了纳米颗粒、孔隙在致密化中的作用。分析了高能球磨对致密化的影响。
     用SEM,HRTEM,XRD等手段表征组织形貌,发现粉末与烧结坯组织间有“遗传性”。分析锆、铬元素在复合材料中的作用。铜基纳米复合材料CZCA2(CuCrZr/AlN),在优化的致密化工艺下,材料的抗拉强度为550MPa,抗弯强度401Mpa,软化温度大于700℃。分析了孔隙的属性对力学性能的影响。分析了固溶时效对力学性能的影响及纳米颗粒在热处理过程中的作用。表征了固溶时效过程的组织形貌变化,分析力学性能变化的原因。
     测定了铜基纳米复合材料的导热系数、导电率。分析了其导热、导电的机理,探讨了纳米颗粒、孔隙对烧结坯体的导热、导电性能的影响。分析了复合材料的导热性能与导电性能之间的关系,计算其洛仑兹值。分析了同溶时效对导热性能、导电性能等的影响,分析了各元素及纳米颗粒在热处理中的行为。
     选用CZCA2成分,采用工艺:500MPa压制,900℃烧结,后处理为600MPa复压,900℃复烧,制备纳米颗粒强化铜基功能复合材料点焊电极,进行装机实验。结果表明:与商用铸态的Cu-Zr-Cr电极比较,自制电极的寿命提高了20%。用OM、SEM、TEM表征失效的点焊电极的组织形貌,分析了自制电极的失效机制,比较了自制电极与铸态Cu-Cr-Zr电极的组织性能变化。
High strength high conductivity copper alloy-based composites are extensively applied in the electromechanical, electronic, atomic energy, etc high-tech fields. It attracts more and more attention from all the countries in the world. Material researchers from all over the world make great efforts on the preparation technology and basic theory of the copper alloy-based composites. Particles reinforced copper alloy-based composites can keep the high electrical and high thermal conductivity of pure copper, and at the same time due to the addition of discontinuous reinforcements the composites can possess an ideal comprehensive properties. In the paper further research was made on nano-particles reinforced copper-based composites. It is expected to develop a new kind of functional materials with high strength, high electrical and high thermal conductivity.
     Commercial spot welding electrode materials are Cu-Zr, Cu-Cr, Cu-Cr-Zr alloys made by casting. Their electrical conductivity is about 70%IACS, relatively high, but their softening temperature is only 500℃. Their strength is relatively low at high temperature. So in the dissertation Nano- AlN reinforced CuCrZr composites have been fabricated successfully with almost full density, relative density 96.9%, by conventional powder metallurgy, that is, a process of pressing, sintering, re-pressing, re-sintering. It has a good combination of properties of high strength, high thermal and high electrical conductivity. The alloying powders wwere made by way of mechanical milling. The following research aspects have been done.
     The evolution law of microstructure, particle morphology and mechanical properties has been investigated of the three kinds of powders Cu-AlN, Cu-Zr-AlN, Cu-Cr-Zr-AlN during mechanical milling process. The appreciate preparation conditions for fine, uniform and alloying powders are obtained for milling process, which is beneficial for lowering sintering temperature, shortening sintering time. The function of n-AlN particles is analyzed during milling process.
     Different composites with different density were prepared using different pressures and different sintering temperatures. In order to improve their density, the technology of re-pressure and re-sintering was used. Composites with almost full density were prepared using the appropriate condition. The function of n-AlN particles is analyzed during densification. The density of the composite Cu-Cr-Zr-AlN is 96.9% by the process of 500MPa pressing, 900℃sintering, then 600MPa re-pressing、900℃re-sintering.
     Microstructure and morphology of the n-AlN particles reinforced copper composites, with almost full density, were characterized using OM, SEM, TEM, HRTEM, XRD, EDS, HB, HV etc. That the composite structure inherits that of the raw materials was discovered. The composites have uniformly, fine and relatively compacted microstructure. The tensile strength ,the bending strength, the softening temperature of the composites are 600MPa, 401MPa, > 700℃respectively made using the process, 500MPa pressing, 900℃sintering , then 600MPa re-pressing, 900℃re-sintering. The characteristics of the pores' influence on mechanical properties were analyzed. The influence of solid solution and aging on mechanical properties and the function of Nano-particles were analyzed. The change of microstructure and morphology during heat treatment was characterized and the reason for the change was found.
     The thermal conductivity and the electrical conductivity of the composites were measured. The thermal conductivity and the electrical conductivity of the composites were 190Wm~(-1)K~(-1), 64% IACS respectively made using the process, 500MPa pressing, 900℃sintering, then 600MPa re-pressing, 900℃re-sintering. The mechanism of thermal conductivity and electrical conductivity was analyzed. The n-particles' influence was emphasized on the thermal and electrical conductivity. The relation between the thermal and electrical conductivity of the composite was compared with Lorents constant. The ratio of the thermal and electrical conductivity of the composite didn't equal to Lorents constant. The composites were treated by solid solution and aging. The behaviour of n-particle, Zr and Cr was analyzed. The optional technology for heat treatment was obtained.
     The optional properties of the composites, the tensile strength ,the bending strength, the softening temperature of the composites are 600MPa, 401MPa, > 700℃respectively made using the process, 500MPa pressing, 900℃sintering , then 600MPa re-pressing, 900℃re-sintering. Using the above preparation conditions the composite was made into a kind of spot welding electrode. The performance of the electrode was rationalized on the spot. The axial shortage of the electrode and the number of welding dots were recorded. Comparing with the commercial spot welding electrode's life, that of the self-made composite electrode was raised by 20%. The microstructure of the dis-functional composite electrode was characterized by OM, SEM, TEM. The dis-functional mechanism of the composite electrode was analyzed and the reason for long life was summoned.
引文
[1]克莱因TW、威瑟斯P.T著,余永宁、房志刚译.金属基复合材料导论[M].北京:冶金工业出版社,1996
    [2]马如璋,蒋民华,徐祖雄主编.功能材料学概论[M].北京:冶金工业出版社,2006
    [3]克雷德KG主编,温仲元等译.金属基复合材料[M].北京:国防工业出版社1982
    [4]雷静果,刘平,井晓天,赵冬梅.高速铁路接触线用时效强化铜合金的发展[J].金属热处理,2005,30(3):1
    [5]温宏权等.高速列车用新型铜合金接触线[J].材料导报,1998,1(2):25
    [6]曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993,110
    [7]闵光辉,宋立,于化顺等.高强度导电铜基复合材料[J].功能材料,1997,28(4):342-345
    [8]程建奕,汪明朴.高强高导高耐热弥散强化铜合金的研究现状[J].材料导报,:2004,18(2):38-41
    [9]张晓辉,李永年.高强度高导电耐热弥散强化合金的研究进展[J].贵金属,2001,3(1):47
    [10]Batra.J.S,Dey.G.K.Microstructure and properties of a Cu-Cr-Zr alloy[J].Journal of Nuclear Materials,2000,299:91-100
    [11]尹志民,高培庆,汪明朴等 中国发明专利,(99101884.9),1999
    [12]杨朝聪 高强高导电铜合金的研究及进展[J].昆明冶金,2000,29(6):26-29
    [13]董仕节.点焊电极用TiB2增强铜基复合材料的研究[D].西安:西安交通大学,1999
    [14]梁淑华,范志康,时惠英等改善连铸机结晶器材质的新途径[J].材料导报,1997,1(7):15-18
    [15]王绍雄.铜和铜合金在电子工业中的新趋向[J].铜加工,1992,1(3):6
    [16]王深强,陈志强,彭德林等高强高导铜合金的研究概述[J].材料工程,1995,8(7):3-6
    [17]高技术新材料要览编委会编.高科技新材料要览[M].1993:65-139.
    [18].Face D W,Kucera J T.Transport and structural properties of Bi-Sr-Ca-Cu-oxide thin films prepared by reactive magnetron sputtering[J].IEEE Transactions on Magnetics.1989,25(2):2341-2344.
    [19]Takahashi T,Hashimoto.Preparation of TiC-dispersion-strengthened copper by the application of mechanical alloying[J].Journal of the Japan Society of Powder and Powder Metallurgy.1989,36(7):837-841.
    [20]Hashimoto T,Yasuhiko.Preparation of the Al2O3-dispersion-strengthened copper by the application of mechanical alloying[J].Journal of the Japan Society of Powder and Powder Metallurgy.1989,36(4):404-410.
    [21]M Toshimasa Y Eiji M Osamu.Changes of microstructure and mechanical strength in mechanically alloyed Cu-Ti-B powder compacts with the sintering process[J].Journal of the Japan Society of Powder and Powder Metallurgy.1993,40(1):100-104.
    [22]董仕节,史耀武,雷永平.(TiB2+Al2O3)增强铜基复合材料的研究[J].材料工程.2002,(7):6-11
    [23]国家自然科学基金委员会.金属材料科学[M].科学出版社.2006.
    [24]王浪云,涂江平,杨友志.多壁纳米碳管/Cu基复合材料的摩擦磨损特性[J].中国有色金属学报.2002,11(3):367-371.
    [25]董树荣,涂江平,张孝彬.纳米碳管增强铜基复合材料的力学性能和物理性能[J].材料研究学报.2000,14(增刊):132-136.
    [26]董树荣,张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究[J].摩擦学学报.1999,19(1):1-6.
    [27]董仕节,史耀武.铜基复合材料的研究进展[J].国外金属热处理.1999,(6):9-11.
    [28]Harbison J,James P.Anomalous increase in strength of in situ formed Cu-Nb multifilament composites[J].Journal of Applied Physics.1978,49(12):6031-6038.
    [29]Ellis T W,Anderson I E.Deformation-processed wire prepared from gas-atomized Cu-Nb alloy powders[J].Metallurgical Transactions A.1993,24A(1):21-26.
    [30]Hardwick D A,Rhodes C G.Effect of annealing on the microstructure and mechanical properties of Cu-X microcomposites[J].Metallurgical TransactionsA.1993,24A(1):27-34.
    [31]凤仪,许少凡,颜世钦.纤维强化全属基复合材料及其应用[J].机械工程材料.1995,19(1):9-11.
    [32]宁爱林,罗玉梅,等.铜合金的强化方法[J].邵阳学院学报(自然科学),2003,2(2):76
    [33]王深强,陈志强,彭德林,等.高强度铜合金研究概况[J],材料工程,1995,(7):3
    [34]杨贵荣,郝远,宋文明,等.高性能铜材的研究近况[J],铸造技术,2003,24(1):13
    [35]汤慧萍,黄伯云,刘咏,王海兵.粉末冶金颗粒增强钛基复合材料研究进展[J],粉末冶金技术,2004,22(5):293
    [36]Joshua Pelleg,M.Ruhr,M.Ganor.Control of the reaction at the fibre-matrix interface in a Cu/SiC metal matrix composite by modifying the matrix with 2.5wt.%Fe[J],Materials Science and Engineering A,1996,212(1):139
    [37]闵光辉,宋立,等.高强度导电铜基复合材料[J],功能材料,1997,28(4):342
    [38]Yilmaz,Safak.Thermal mismatch stress development in Cu-ZrW208 composite investigated by synchrotron X-ray diffraction[J],Composites Science and Technology,2002,62(14):1835
    [39]Zhan Yongzhong,Zhang Guoding.The effect of interfacial modifying on the mechanical and wear properties of SiC_p/Cu composites[J],Materials Letters,2003,57(29):4583
    [40]Zhang Rui,Gao Lian,Guo Jingkun.Effect of Cu_2O on the fabrication of SiCp/Cu nanocomposites using coated particles and conventional sintering[J]Composites:Part A, 2004,35:1301
    [41]Juraj Durisin,Katarina Durisinova,Maria Orolinova,Karel Saksl.Effect of the MgO particles on the nanocrystalline copper grain stability[J],Materials Letters,2004,58(29):3796
    [42]杨长贺,高钦.有色金属净化[M].大连:大连理工大学出版社,1989,94
    [43]王祝堂,田荣璋.铜合金及其加工手册[M].长沙:中南大学出版社,2002.28
    [44]L.Thilly,F.Lecouturier,J.von Stebut.Size-induced enhanced mechanical properties of nanocomposite copper/niobium wire:nanoindentation study[J],Acta Materialia,2002,50(20):5049
    [45]P.Gomiero,Y.Breched,F.Louchet,et al.Microstructure and mechanical properties of 2091Al-Li alloy-Ⅱ Mechanical properties:yield stress and work hardening.Acta Metall.Mater.,1992,4:857
    [46]吴承建,陈国良,强文江,金属材料学,北京:冶金工业出版社,2000
    [47]P.Feltham,J.D.Meakin,On the mechanism of work hardening in face-centered cubic metal,with special reference to polycrystalline copper,Phil.Mag.,1957,2:105-112
    [48]葛继平.形变铜基原位复合材料的研究进展[J],功能材料,1999,30(2):129
    [49]宋余九.金属材料的设计选用预测[M].北京:机械工业出版社,1998,210
    [50]N.Hanser.The effect of grain size and strain on the tensile flow stress of Al at room temperature[J].Acta.Metall.,1977,25:863-869
    [51]R.J.Arsenault,N.Chi.Strengthening of composites due to microstructural changes in the matrix[J],Acta Metall.Mater.,1991,1:47-57
    [52]R.J.Arsenault,N.Chi.Dislocation due to difference between the coefficients of thermal expansion[J].Mater.Sci.Eng.,1986,81:175-187
    [53]W.S.Miller,F.J.Humphreys,Strengthening mechanisms in particulate metal matrix composites[J].Scrip.Metall.Mater.,1991,25:33-36
    [54]邬震泰,裴浩东.Cu-Fe复合材料中铁纤维对性能的影响[J],浙江大学学报,2001,35(1):33
    [55]Zhang.D.L,Mihara.K,Takakura.E,Suzuki.H.G.Effect of the amount of cold working and ageing on the ductility of a Cu-15%Cr-0.2%Ti in-situ composite[J],Materials Science and Engineering:A,1999,266(1-2):99
    [56]谢国宏.搅拌铸造法制造颗粒增强铝基复合材料的研究与发展[J].材料导报,1994,5(1):69-73.
    [57]K.Ichikawa and M.Achikita.Electrical conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting[J].Materials Transactions,JIM,1993,34(8):718-724.
    [58]Xu Qiang,Zhang Xinghong,Han Jiecai,He Xiaodong,V.L.Kvanin.Combustion synthesis and densification of titanium diboride-copper matrix composite[J]Materials Letters,2003,57(28):4439
    [59]王耐艳,涂江平,杨友制,等.原位反应纳米TiB_2/Cu复合材料制备和微结构[J],中国有色金属学报,2002,12(1):342
    [60]D.W.Lee,B.K.Kim.Nanostructured Cu-Al_2O_3 composite produced by thermochemical process for electrode application[J],Materials Letters,2004,58(3-4):378
    [61]邹正光,李金莲,陈寒元.高能球磨在复合材料制备中的应用[J],桂林工学院学报,2002,22(2):174
    [62]席生歧,屈晓燕,郑修麟,等.Al/CuO高能球磨固态反应[J],中国有色金属学报,1998,8(1):43
    [63]康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术[M].北京:科学出版社,2004,368
    [64]Zhu Jianhua,Liu Lei,Hu Guohua,Shen Bin,Hu Wenbin,Ding Wenjiang.Study on composite electroforming of Cu/SiCp composites[J],Materials Letters,2004,58(10):1634
    [65]袁润章.自蔓延高温合成技术研究进展[M].武汉:武汉工业大学出版社,1994.
    [66]S.Aslantar.The effect of nucleus size on mechanical properties in electrical resistance spot welding of sheets used in automotive industry[J].Materials and Design,2006,27(18):125-131
    [67]王武孝,袁森等.Al_2O_3/Cu复合材料的研究进展[J].特种铸造及有色金属,1998,2(5):50-52
    [68]金凤浩.国外铜基复合材料的开发进展[J].世界有色金属.1993,8(11):28-30.
    [69]朱建华,复合电铸制备颗粒增强铜基复合材料工艺及性能研究[D].上海交通大学,2007
    [70]郭鹤桐,张三元.复合镀层[M].天津,天津大学出版社,1990
    [71]蒋斌.纳米颗粒复合电刷镀镍基镀层的强化机理及其性能研究[D].重庆:重庆大学,2003
    [72]张秀群,孙扬善,等.Ni,Si,Mn和Ti对高强度铜合金力学性能和导电性能的影响[J],东南大学学报(自然科学版),2003,(33)4:458
    [73]F.Lux.Models proposed to explain the electrical conductivity of mixtures made of conductive and insulative materials[J].J.Mat.Sci.,1993,28:285-301
    [74]D.S.Mclachlam,M.Blaszkiewicz,R.E.Newbham.Electrical resistivity of composites[J].J.Amer.Ceram.Soc.,1990,73:2187-2203
    [75]Chang Shou-Yi,Chen Chi-Fang,Lin Su-Jien,Theo Z.Kattamis.Electrical resistivity of metal matrix composites[J],Acta Material,2003,51(20):6191
    [76]邹祖讳,复合材料的结构与性能[M].北京:科学出版社,1999,130-152
    [77]E.H.Kener,The elastic and thermo-elastic properties of composite materials[J].Proc.Phys. Soc.1956,68B:803-813
    [78]D.P.H.Hasselman,L.F.Johnson.Effective thermal conductivity of composites with interfacial thermal barrier resistance[J].J.Comp.Mater.,1978,21:508-515
    [79]J.Groza,Heat-resistant dispersion-strengthened copper alloys[J].J.Mater.Eng.Perform,1992,1:113-121
    [80]J.Cadek,K.Kucharova,K.Milicka Creep in copper dispersion strengthened with fine alumina particles and reinforced with alumina short fibres--an ODS copper matrix composite[J].Journal of Alloys and Compounds 378(2004) 123-126
    [81]Benjamin J S.Dispersion strengthened superalloys by mechanical alloying[J].Met Trans.1970,8(1):2943.
    [82]Inco.MAP Division of Wiggin Alloys Ltd.Inco's new ODS superalloys for the eighties.MPR,1983,(6):32
    [83]Sundaresen R,Froes F H.Mechanical alloying[J].J.of Metals,1987,(8):22.
    [84]Eckert J,Schultz L,Urban K.Progress of quasicrystal formation during mechanical alloying in Al-Cu-Mn and the influence of millingintensity[J].Metallkude.1990,81:86229.
    [85]王尔德,胡连喜.机械合金化纳米晶材料研究进展[J].粉末冶金技术.2002,20(3):135-138.
    [86]Le B P,Delaey L.Modelling of the mechanical alloying process in a planetary ball mill:comparison between theory and in-situ observations[J].Materials Science&Engineering A:Structural Materials.1993,A161(1):75-82.
    [87]Mauriee D R,Courtney T H.Physics of mechanical alloying[J].A first report.Metallurgical Transactions A.1990,21 A(2):289-303.
    [88]Magini M,Iasonna A.Energy transfer in mechanical alloying(overview)[J].Materials Transactions,JIM.1995,36(2):123-133.
    [89]陈津文,吴年强,李志章.描述机械合金化过程的理论模型[J].材料科学与工艺,1998,16(1):19-23.
    [90]吴年强,李志章.机械合金化的机制[J].材料导报,1997,11(6):20-23.
    [91]L.Thilly,F.Lecouturier,J.von Stebut.Size-induced enhanced mechanical properties of nanocomposite copper/niobium wire:nanoindentation study[J],Acta Materialia,2002,50(20):5049-5065
    [92]龚姚腾,阙师鹏.行星球磨机动力学及计算机仿真[J].南方冶金学报,1997,2:101-105.
    [93]张克仁,丁宁才.超细粉碎陶瓷材料的设备与理论分析[J].煤炭科学技术,1996,9:46-48.
    [94]Maurice D,Courtney T H.Modeling of Mechanical alloying:Part Ⅰ:Deformation、coalescence and fragmentation Mechanisms[J].Metallurgical and Material Transactions, 1994,A25:147-158.
    [95]Suryanarayana C.Mechanical alloying and milling[J].Progress in Materials Science,2001,46:1-184.
    [96]范景莲,黄伯云,曲选辉,等.W-Ni-Fe高比重合金纳米晶预合金粉的制备[J].粉末冶金技术,1999,17(2):89-93.
    [97]范景莲,黄伯云,曲选辉,赵慕岳.高能球磨合成W-Ni-Fe纳米复合粉末特性[J].稀有金属材料与工程,2001,30(3):208-211
    [98]赖和怡.粉末冶金技术[M].北京:北京市粉末冶金研究所,1982
    [99]P.Balaz,E.Gock.Preparation of nanocrystalline materials by high-energy milling[J],Materials Science and Engineering,A,1999,266(3-4),442-446
    [100]K.J.Zeng,M.Hamalainen.A theoretical study of the phase equilibria in the Cu-Cr-Zr system[J],Journal of Alloys and Compounds,1995,220:53-61
    [101]Xin-Qun Cheng,Peng-Fei Shi.Electroless Cu-plated Ni_3Sn_4 alloy used as anode material for lithium ion battery[J],Journal of Alloys and Compounds,2004,389:478-489
    [102]Schaffer G.B,McCormic P.G.Combustion and resultant powder temperatures during mechanical alloying[J],Journal of Materials Letter,1990,59:1014-1016
    [103]梁国宪,王尔德,王晓林.高能球磨制备非晶态合金研究的进展[J].材料科学与工程,1994,12(1):47-52
    [104]任山,张进修,高乃飞.多元纳米相固态合金化机理研究[J].中山大学学报(自然科学版),1997,36(5):40-43
    [105]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学出版社,2006
    [106]周兰章,郭建亭,全明秀.NiAl/TiC纳米材料机械合金化合成机理[J].金属学报,1997,33(11):1222-12257.
    [107]Kawanishi S,Jsonish K,Okazaki K.Formation of nanophase niobium aiuminide by mechanical alloying[J].Mater Trans JIM,1993,34(1):43-48.
    [108]Fores F F,SuryarayanaC,Russell k,et al.Synthesis of intermetalics by mechanical alloying[J].Mater Trans Eng,1995,A 191-192:612-623.
    [109]Xu Qiang,Zhang Xinghong,Han Jiecai,He Xiaodong,V.L.Kvanin.Combustion synthesis and densification of titanium diboride-copper matrix composite[J]Materials Letters,2003,57(28):4439-4444
    [110]Koch C C.Material synthesis by mechanical alloying[J].Annual review of material science,1989,19:121-143
    [111]国家自然科学基金委员会编.冶金与材料制备工程科学[M].北京,科学出版社,2006。
    [112]罗守靖,李金平,牛玮等.第三组员对爆炸压实CuCr合金性能的影响[J].兵器材料科学与工程,2001,24(5):43-45
    [113]Clarence L Hoening,Charles S Yust.Explosive compaction of AlN,amorphousSi_3N_4,Boron and Al_2O_3 ceramics[J].Ceramics Bulletin,1981,60(11):1175-1124
    [114]Rutz H G,Hanejko F G.Warm compaction offers high density at low cost[J].Metal Powder Report,1994,49(9):40-47
    [115]林涛,果世驹,李明怡等.温压过程致密化机制探讨[J].北京科技大学学报,2002,22(2):131-133
    [116]黄培云.粉末冶金原理[M].北京,冶金工业出版社,1997
    [117]R.P.Seeling,J.Wulff.The Pressing Operation in the Fabrication of Articles by Powder Metallurgy[J].Scripta Materialia,2004,50:963-967
    [118]果世驹.粉末烧结理论[M].北京,冶金工业出版社,1998
    [119]程继贵.粉末冶金工艺学[M].北京,科学普及出版社,1995
    [120]贾成厂,刘小扬,谢子章,等.用机械活化粉末制备钨合金[J].清华大学学报(自然科学版),1999,139(6):35-38.
    [121]吴怡芳,冯勇,李金山,等.高能球磨Mg/B复合粉体的反应烧结致密行为[J].稀有金属材料与工程,2006,35(10):1673-1676.
    [122]C.Suryanara.Mechanical Alloying and Milling[J].Prog.Mater.Sci.,2001,46(1-2):1-84
    [123]W.D.Jones.Principles of Powder Metallurgy[M].Edward Arnold,1960
    [124]Sarin V.K.,Gant N J.The effect of thermo-mechanical treatments on powder metallurgical Cu-Zr and Cu-Zr-Cr alloys[J].Powder Metal Inter,1979,1(4):153-162
    [125]S.Sun,S.Sakai,H.G.Suzuki.Effect of Alloying Elements on the Cold Deformation Behavior of Cr Phase and the Tensile Strength of Cu-15Cr Based in situ Composites[J].Mater.Trans.2001.42(6):1007-1014
    [126]J.Stobrawa,L.Ciura,Z.Rdzawski.Rapidly solidified strips of Cu-Cr alloys[J].Scripta Materialia 1996,34(11):1759-1763.
    [127]Batra I.S.,Dey G.K.Microstructure and properties of a Cu-Cr-Zr alloy[J].Journal of Nuclear Materials,2000,299:91-100
    [128]Uwe Holzwarth,Hermann Stamm.The Precipitation behaviour of ITER-grade Cu- Cr-Zr alloy after simulating the thermal cycle of hot isostatic Pressing[J].J.Nuel.Mater.,2000,279:31-45
    [129]Huang Fuxiang.Analysis of phases in a Cu-Cr-Zr alloy[J].Scripta Materialia 2003,48:97-10253
    [130]丁厚福.急冷Cu-Cr-0.05Zr合金强化机理探讨[J].金属热处理学报,1996,17(1):54-57
    [131]李伟,刘平.时效与形变对Cu-Cr-Z:合金性能的影响[J].特种铸造及有色合金,2004,12(6):25-28
    [132]袁振宇,董企铭,刘平.时效对Cu-Cr-Z:合金显微硬度及导电率的影响[J].洛阳工学院学报,2002,3:9-12
    [133]Batawi E.Thermo-mechanical processing of spray-formed Cu-Cr-Zr Alloy[J].Scriptia Metallurgy Materials,1993,29(6):765-771
    [134]M.Appello,P.Fenici.Solution Heat Treatment of a Cu-Cr-Zr Alloy[J].Materials Science and Engineering A,1988,102:69-75
    [135]C.Surryanara.Mechanical alloying and Milling[J].Prog.Mater.Sci.,2001,46(1-2):1-84
    [136]C.R.F.Azevedo,A.Sinatora.Failure Analysis of A Railway Copper Contact Strip[J].Engineering Failure Analysis,2004,11:829-841
    [137]冉旭.铜基减摩耐磨复合材料的制备与性能研究[D].吉林大学,2005
    [138]金永平.机械球磨石墨/铜粉末复合材料变形工艺及组织性能[D].哈尔滨工业大学,2005
    [139]韩德伟.金属硬度检测技术手册[M].长沙,中南大学出版社,2003
    [140]姚启均.金属力学性能试验常用数据手册[M].北京,机械工业出版社,1994
    [141]韩凤麟.粉末冶金教程[M].北京,冶金工业出版社,2004
    [142]A.Ayyar,N.Chawla.Microstructure-based modeling of crack growth in particle reinforced composites[J].Composites Science and Technology,2006,66:1980-1994
    [143]T.S.Srivatsan,N.Narendra,J.D.Troxell.Tensile deformation and fracture behavior of an oxide dispersion strengthened copper alloy[J].Materials and Design 2000,21:191-198
    [144]C.J.Boehlert,C.J.Cowen,S.Tamirisakandala,D.J.McEldowney and D.B.Miracle.In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti-6Al-4V alloy[J].Scripta Materialia,2006,55:465-468
    [145]M.T.Tilbrook,I.E.Reimanis,K.Rozenburg,M.Hoffrnan.Effects of plastic yielding on crack propagation near ductile/brittle interfaces[J].Acta Materialia,2005,53:3935-3949
    [146]C.M.Lawrence Wu,G.W.Han.Thermal fatigue behaviour of SiCp/Al composite synthesized by metal infiltration[J].Composites:Part A 2006,37:1858-1862
    [147]S.R.Wang,H.R.Geng,Y.Z.Wang,J.C.Zhang.Microstructure and fracture characteristic of Mg-Al-Zn-Si3N4 composites[J].Theoretical and Applied Fracture Mechanics,2006,46:57-69
    [148]Michal Besterci,Jozef Ivan,Ladislav Kovac.Influence of Al2O3 particles volume fraction on fracture mechanism in the Cu-Al2O3 system[J].Materials Letters,2000,46:181-184
    [149]M.H.Lin,W.Buchgraber,G.Korb,P.W.Kao.Thermal cycling induced deformation and damage in carbon fiber reinforced copper composite[J].Scripta Materialia,2002,46:169-173
    [150]Dadras,M.M.Morris,D.G.:Examination of some high-conductivity copper alloys for high-temperature applications[J].Scripta Materalia,1997,38(2):199-205
    [151]Z.Y.Ma,S.C.Tjong.High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite[J].Materials Science and Engineering A,2000,284:70-76.
    [152]Y.Leprince-Wang,K.Han,Y.Huang,et al.Microstructure in Cu-Nb microcomposites[J].Materials Science and Engineering A,2003,351:214-223.
    [153]胡庚祥,钱苗根.金属学[M]上海科学技术出版社,1980
    [154]宗祥福,翁渝民.材料物理基础[M].上海,复旦大学出版社,2001
    [155]丁厚福.急冷铜合金中的空位与蜷线位错[J].材料科学与工艺,1996,4(3):17-19
    [156]丁厚福.急冷铜合金中几种晶体缺陷的观察与讨论[J].材料科学与工艺,1996,4(4):84-87
    [157]王耐艳.Cu-纳米TiB_2原位复合材料的制备及摩擦磨损性能[D].浙江大学,2002
    [158]齐卫笑.高强度高导电性铜基合金的显微组织及性能研究[D].浙江大学,2001
    [159]姚启均.金属硬度试验数据手册[M].北京,机械工业出版社,1992
    [160]罗丽.制备方法对Cu-2.0Cr-0.3Zr高浓度合金组织和性能的影响[D].中南大学,2006
    [161]黄孝瑛.透射电子显微学[M].北京,冶金工业出版社,1992
    [162]田莳.材料物理性能[M].北京:北京航空航天大学出版社,2001
    [163]王润.金属材料物理性能[M].北京:冶金出版社,1993
    [164]张海峰,葛新石,叶宏.预测复合材料导热系数的热阻网络法[J].功能材料,2005,36(5):757-759
    [165]杜洛金,奚同庚,王梅花.固体热物理性质导论-理论和测量[M].北京:中国计量出版社,1987.
    [166]陈泽民.近代物理与高新技术物理基础[M].北京,清华大学出版社,2001
    [167]F.Lux.Models proposed to explain the electrical,conductivity of mixtures made of conductive and insulative materials[J].Journal Materials Science,1993,28:285-301
    [168]D.S.Mclachlam,M.Blaszkiewicz.Electrical resistivity of composites[J].Journal American Ceramic Society,1990,73:2187-2203
    [169]Z.Hashin.Analysis of composite materials-a survey[J].Journal Applied Mechanics,1983,50:481-510
    [170]杜丕一,潘颐.材料科学基础[M].北京,中国建材工业出版社,2002
    [171]董显平,吴建生.铝含量对铜镍电阻薄膜结构及电性能的影响[J].航空材料学报,2001,21(2):34-38
    [172]Shou-Yi Chang,Chi-Fang Chen,Su-Jien Lin,Theo Z.Kattamis.Electrical resistivity of metal matrix composites[J].Acta Materialia,2003,51:6191-6302
    [173]L.Risegari,M.Barucci,et al.Measurement of the thermal conductivity of copper samples between 30 and 150mK[J].Cryogenics,2004,44:875-878
    [174]Maxwell JC.A treatise on electricity and magnetism[M],vol.1.3rd ed.Oxford University Press;1964.
    [175]Hasselman DPH,Johnson LF.Effective thermal conductivity of composites with interfacial thermal barrier resistance[J].J Compos Mater 1987,21:508-515.
    [176]Katsuhito Yoshida,Hideaki Morigami Thermal properties of diamond/copper composite material[J].Microelectronics Reliability,2004,44:303-308
    [177]J.Stobrawa,L.Ciura,Z.Rdzawski.Rapidly solidified strips of Cu-Cr alloys[J].Scripta Materialia 1996,34(11):1759-1763.
    [178]丁厚福.急冷Cu-Cr-0.05Zr合金强化机理探讨[J].金属热处理学报,1996,17(1):54-57
    [179]中国机械工程学会焊接学会.电阻焊理论与实践[M].北京:机械工业出版社,1994.
    [180]金凤浩.国外电阻焊电极材料的发展概况[J].铜加工,1982,5(1):132-142
    [181]Chatterjee KL,Waddell W.Electrode wear during spot welding of coated steel[J].Welding and Metal Fabrication,1996,12(3):110-114
    [182]Holliday R,Parker J D,Williams N T.Electrode deformation when spot Welding Coated Steels[J].Welding In the World,1995,35(3):160.
    [183]S.M.Darwish,A.Al-Samhan.Thermal stresses developed in weld-bonded joints[J].Journal of Materials Processing Technology,2004,153-154:971-977
    [184]郜建新,宋克兴,田保红等.内氧化法制备Al_2O_3/Cu点焊电极的装机试验[J].特种铸造及有色合金,2006,26(8):509-511
    [185]Takeshi Konno,Mikihiko Kobayashi,Mitsuru Egashira,Norio Shinya.Manipulation and welding of metal spheres above I0 mm using needle-like probe[J].Science and Technology of Advanced Materials,2005,6:52%534
    [186]Lu F,Dong P.Model for estimating electrode face diameter during resistance spot welding[J].Science and technology of welding and joining,1999,4(5):285-294
    [187]B.H.Chang,M.V.Li,Y.Zhou.Comparative study of small scale and large scale resistance spot welding[J].Science and technology of welding and joining,2001,6(5):273-280
    [188]Wen Tan.Small-Scale Resistance Spot Welding of Thin Nickel Sheets[D].A Doctor Thesis of University of Waterloo,2004
    [189]W.Tan,Y.Zhou,H.W.Kerr.Effects of Au Plating on Small-Scale Resistance Spot Welding of Thin Sheet Nickel[J].Metallurgical and Materials Transactions,2002,5(33):2667-2676
    [190]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].北京:化学工业出版社,2003.
    [191]李志远,钱乙余,张九海.先进连接方法[M].北京:机械工业出版社,2000.
    [192]Chatterjee K L,Waddel W.Electrode wear during spot welding of coated steel[J].Welding and metal fabrication,1996,7(3):110-117
    [193]Matsumoto J,Mochizuki H.Spot welding of aluminum alloy electrode life for various electrodes[J].Welding international,1994,8(6):438-445
    [194]董仕节,史耀武,雷永平,等.TiB_2/Cu复合材料作电极点焊镀锌钢板的失效分析[J].2002, 2:10-14
    [195]董仕节,ZHOU Norman.微型点焊时电极表面熔敷TiC涂层对电极失效的影响[J].中国有色金属学报,2005,15(10):1512-1519
    [196]王孟君,杨胜,刘心宇,等.Al_2O_3弥散强化铜电极点焊镀铝钢板的行为研究[J].金属热处理2004,29(6):4-7
    [197]熊谷正树.氧化铝弥散强化电极材料对铝合金板点焊特征的影响[J].伸铜技术研究会志,1992,31(1):151-160.
    [198]王孟君.弥散强化铜电阻焊电极材料的研制[J].矿冶工程,2000,20(2):54-56
    [199]刘鹏飞,单平,王晓峰,等.深冷处理参数对点焊CuCrZr合金电极的耐磨性能影响[J].材料工程,2007,3:42-45
    [200]吴志生,单平,廉金瑞,等.深冷处理提高镀锌钢板点焊电极寿命的机理[J].热加工工艺,2003.24(2):7-11
    [201]N.Hanser.The effect of grain size and strain on the tensile flow stress of Al at room temperature[J].Acta.Metall.,1977,25(1):863-869
    [202]Wu Zhisheng,Shan Ping,Lian Jinrui etc.Effect of deep cryogenic treatment on electrode life and microstructure for spot welding hot dip galvanized steel[J].Materials and Design,2003,24(8):687-692
    [203]平修二(日).金属材料的高温强度[M].北京,科学出版社,1983
    [204]D.W.Lee,B.K.Kim.Nanostructured Cu-Al_2O_3 composite produced by thermochemical process for electrode application[J],Materials Letters,2004,58(3-4):378-383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700