用户名: 密码: 验证码:
Ti_2AlNb基合金等离子表面合金化及摩擦学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti-Al系金属间化合物具有高的比强度、比模量、良好的抗氧化性及优良的高温强度等,近来已成为国内外航空、航天、军工等工业部门的热点材料。然而,Ti-Al金属间化合物存在着耐磨性不足的问题,限制了其应用。因此,提高Ti-Al系金属间化合物耐磨性能已成为关键的工程问题之一。
     本课题针对航空发动机高温运动副零部件的耐磨性问题,采用我国独创且具有自主知识产权的双层辉光等离子表面合金化技术,在Ti_2AlNbO相合金基体表面制备出高硬耐磨的合金层。
     本研究首先利用“固体与分子经验电子理论”通过计算分析元素加入到基体时的价电子结构,得出选择铬和钨作为欲渗元素,可能有利于提高Ti_2AlNb摩擦性能;而后采用双层辉光等离子表面合金化技术,对Ti_2AlNb合金进行渗Cr、渗W处理以及后续等离子渗碳处理的工艺优化试验。利用光学电镜(OM)、扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、透射电镜(TEM)和X射线光电子能谱仪(XPS)进行组织成分检测,对合金渗层分别进行了显微硬度检测和纳米压入分析及摩擦学性能研究。
     工艺试验结果表明:等离子表面渗铬层的有效厚度约25μm,表面Cr元素含量达到75%,渗层中铬元素含量呈梯度分布,合金渗层中以Cr2Nb,Al_8Cr_5/Al_9Cr_4为主;渗W层的有效厚度为25μm左右,表面W含量达55%,W含量沿深度方向呈梯度分布,渗层中以TixW1-x化合物为主;Cr-C共渗层主要含有Cr_(23)C_6和Cr2Nb,且有部分单质C和Cr;W-C共渗层的组分主要以W2C或W6C2.54为主。
     渗Cr、渗W层表面硬度均达1100 HV0.1以上,共渗层的表面硬度均高达1650 HV0.1,远高于基体的400 HV0.1左右。纳米压入测量结果表明,各种渗层的弹性模量远高于基体。渗钨层的弹性模量最高在700 GPa左右,其他三种渗层的弹性模量分布在200 GPa ~ 500 GPa之间,而基体约100 GPa。
     摩擦学试验表明:双辉等离子渗Cr、渗W以及后续渗碳处理均提高了Ti_2AlNbO相合金的耐磨性能。Ti_2AlNb合金经等离子渗Cr处理,室温摩擦系数由1.2降低为0.6,高温摩擦系数由1.0降低为0.5,经过后续渗碳处理,摩擦系数均降低到0.2以下;经过等离子渗Cr处理,室温磨损率降低了一个数量级,高温磨损率降低了60%,再经过后续渗碳处理,磨损率降低为基体的1/10 ~ 1/25。
     经渗W处理,室温摩擦系数由基体的1.2降低为0.5,高温摩擦系数由1.0降低为0.15,但渗W层的摩擦系数在长时间的摩擦中会逐渐上升,而经后续渗碳处理,高温摩擦系数始终维持在0.15左右。Ti_2AlNb合金渗W后室温磨损率降低为基体的1/10,高温磨损率仅为基体的1/5,经过后续渗碳处理,磨损率比基体降低了2个数量级。经过W、C共渗处理,获得了最低的高温摩擦系数和磨损率。
     以上实验结果证实了“固体与分子经验电子理论”预测选择铬和钨作为欲渗元素,有利于提高Ti_2AlNb合金的摩擦磨损性能。
     最后,研究了双层辉光等离子渗金属过程中轰击溅射条件下所产生的空位机制,并基于辐照增强扩散理论建立了渗金属过程中的扩散模型。
Ti-Al intermetallic compounds have high specific strength, high specific modulus, excellent oxidation resistance, high temperature strength and so on. Recently, they have been regarded as the high temperature materials in aeronautics, astronautics, war industry and otherwise. However, the low hardness and poor wear resistance of Ti-Al intermetallic compounds restrict their practical application. The improvement of the tribological performance has become one of crucial project problems.
     The paper aims at solving the wear-resistant problem of elevated temperature motion components. The high hardness and wear-resistant alloying layers are prepared on Ti_2lNb O-phase alloys using an advanced technology-the double glow plasma surface alloying technique.
     The research firstly applied the“Empirical Electron Theory of Solid and Molecule”to calculate the molecule structure when the elements added to substrate. The results of analysis showed that the choice of Cr and W can be beneficial to improve the tribological properties of Ti_2lNb. Subsequently, the optimizing experiment of the plasma chromising, tungstening and the duplex treatment (carburization following plasma alloying) were performed using the double glow plasma surface alloying technique. Optical metallography (OM), scanning electron microscope (SEM), energy diffraction spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) were performed to study the phase formation and microstructure. Micro-hardness, nano-indentation and tribological properties were tested and analyzed for different alloying layers, respectively.
     The optimizing results indicated that the effective thickness of the plasma chromized layer was about 25μm. The surface chromium concentration reached 75%, and the content of Cr decrease in gradient with the increase of the alloying depth. Cr_2Nb, Al_8Cr_5 or Al_9Cr_4 were the major phases of the chromized layer; the thickness of the plasma tungstenzed layer was about 25μm. The surface tungsten concentration reached 55%, and the content of W decreased in gradient with the increase of the alloying depth. Ti_xW_(1-x) compound was the major phases of the tungstenzed layer; Cr-C duplex-treated layer mainly consisted of Cr_(23)C_6, Cr2Nb, and a few of carbon and Cr; W-C duplex-treated layer is primarily composed of W_2C or W_6C_(2.54).
     The micro-hardness of plasma chromising and tungstening got to above 1100 HV, and the micro-hardness of duplex-treated layer reached 1650 HV. The four layers had higher hardness than 400 HV of the substrate. The results of nano-indenter showed that the elastic modulus of different layers was much higher than that of the substrate. The maximum elastic modulus of the tungstened layer reached about 700 GPa, that of other three layers distributed between 200 GPa to 500 GPa,while that of the substrate was only 100 GPa.
     Tribological test indicated that the double glow plasma chromising, tungstening and plasma duplex treatment all improved the wear resistance of Ti_2AlNbO-phase alloy. The friction coefficient of plasma chromising on Ti_2AlNb alloy decreased from 1.2 to 0.6 at the room temperature, while at the high temperature it decreased from 1.0 to 0.5. The friction coefficient at the room/high temperature reduced 0.2 below. At the room temperature, the wear rate of plasma chromising was about 10 times lower than that of the substrate, while at the high temperature, it reduced 60%. The wear rate of the duplex treatment lowered tenth to twenty-fifth of the substrate.
     At the room temperature, the friction coefficient of plasma tungstening decreased from 1.2 to 0.5, while at the high temperature it decreased from 0.5 to 0.15. However, the friction coefficient at the high temperature gradually ascending for long friction, while that of the duplex treatment can maintain about 0.15. At room temperature, the wear rate of plasma tungstening decreased tenth of that of substrate, while at the high temperature, it was only fifth of substrate. The wear rate of the duplex treatment was about 100 times lower than that of the substrate. At the high temperature, the lowest friction coefficient and wear rate was obtained using the carburization following plasma tungstening.
     The above experimental results confirmed that Cr and W as the alloying elements helped to improve of tribological properties of Ti_2AlNb alloy through the“Empirical Electron Theory of Solid and Molecule”forecasting.
     Finally, the vacancy mechanisms produced by the bombardment and sputtering under the double glow plasma alloying were studied. The diffusion model was built up for the alloying process based on the radiation enhanced diffusion theory.
引文
[1]王金友,葛志明,周彦邦,航空用钛合金,上海科学技术出版社, 1985.
    [2]张永刚,韩雅芳等,金属间化合物结构材料,北京,国防工业出版社, 2001.
    [3] Kazuhisa Miyoshi, Bradley A.Lerch, Susan L., Draper. Fretting wear of Ti-48Al-2Cr-2Nb [J], Tribology International, 2003, 36: 145-153.
    [4] H. Garbacz, M. Lewandowska, Microstructural changes during oxidation of titanium alloys [J], Materials Chemistry and Physics, 2003, 81: 542-547.
    [5] M.T. Jovanovi′c, B. Dimˇci′c, et al, Microstructure and mechanical properties of precision cast TiAl turbocharger wheel [J], Journal of Materials Processing Technology, 2005,34: 23-56.
    [6] V.Yu, D.B.Milmana, Miracleb, et al, Mechanical behavior of Al_3Ti intermetallic and L12 phases on its basis [J], Intermetallics, 2001(9): 839-845.
    [7] B. Dang, J. W.Fergus, W. F Gale., et al, Effect of Copper on the Oxidation Behavior of Ti-48Al-2Cr-2Nb[J], Oxidation of Metals, 2001, 56(1-2): 15-32.
    [8] Y. Wu,K.Hagihara, Y.Umakoshi, Influence of Y-addition on the oxidation behavior of Al-richγ-TiAl alloys[J], Intermetallics, 2004, 12: 519-532.
    [9] Y. Wu, S. K. Hwang, et al., The effect of yttrium addition on the oxidation resistance of EPM TiAl-based intermetallics, Scripta Materialia, 2003, 48(12): 1655-1660.
    [10] Bin Yang, Jishan Zhang, et al., Effect of Ti/B Additions on the Formation of A13Ti in situ TiB2/Al [J], Composites Materials, 1999, 6(4): 285-288.
    [11] Jihua Peng, Shiqiong Li, et al, Phase transformation and microstructures in Ti–Al–Nb–Ta system [J], Materials Letters, 2002, 53: 57-62.
    [12]毛勇,李世琼等, Ti-22Al-20Nb-7Ta合金的显微组织和力学性能研究[J],金属学报,2000, 36(2): 135-140.
    [13] McAndrew, Wright Patterson air force base-technical report [J], 1960: 60-99.
    [14] H.Winter, US patent, no.3411901, 1968.
    [15] D.Banerjee, A. K.Gogia, T. K.Nandy, et al, A new ordered orthomrbic phase in a Ti3Al-Nb alloy[J], Acts Metall. Mater., 1988, 36(4):871-882.
    [16] R G. Rowe, Ti_2AlNb-based alloys outperform conventional titanium aluminides [J], Advanced Materials and Processes, 1992, 3:33-35.
    [17] D. Banerjee, The intermetallic Ti_2AlNb [J], Progress in Materials Science, 1997,42:135-158.
    [18] A. K.Gogia, T. K.Nandy, Banerjee D. et al., Microstructureand mechanical properties of orthormbic alloys in the Ti-Al-Nb system [J], lntermetallics,1998, 6(7-8):741-748.
    [19] C. J.Boehlert, D. B.Miracle, PartⅡ.The creep behavior of Ti-Al-Nb O+BCC orthorhombic alloys[J], Metall and Mater Trans A, 1999, 30 (9):2349-2367.
    [20] Jihua Peng, Yong Mao,Shiqiong Li et al, Microstructure controlling by heat treatment and complex processing for Ti_2AlNb based alloys[J], Materials Science and Engineering A, 2001; 299:75-80
    [21] Y. W. Kim, Ordered intermetallic alloys, part III:gamma titanium aluminides[J], Journal of the Minerals Metals and Materials Society, 1994,49(07):39..
    [22] C.J.Boehlert, J.F.Bingert, Microstructure,tensile and creep behavior of O+BCC Ti_2AlNb alloys processed using induction-float-zone melting[J], Journal of materials processing technology, 2001,117: 400-408.
    [23] L.Germann, D.Banerjee et al., Effect of composition on the mechanical properties of newly developed Ti_2AlNb-based titanium aluminide [J], Intermetallics, 2005 (13):920-924.
    [24] Seung Jin Yang, Soo Woo Nam et al., Abnormal acceleration of creep deformation rate above 700℃in the orthorhombic based Ti-22Al-27Nb alloy [J]. Journal of Alloys and Compounds, 2004, 368: 197-200.
    [25] T.K. Nandy, D. Banerjee., Creep of the orthorhombic phase based on the intermetallic Ti_2AlNb [J], Intermetallics, 2000, 8:915-928.
    [26] Seung Jin Yang, Soo Woo Nam et al., Investigation of creep deformation mechanisms and environmental on creep resistance in a Ti_2AlNb based intermetallic alloy [J], Intermetallics, 2004, 12, :261-274.
    [27] X.J.Xu, L.H. Xu, J.P. Liu, et al., Deformation-inducedγ←→α_2 phase transformation in a hot-forged Ti-45Al-10Nb alloy [J], Materials Science and Engineering A, 1997, 239: 287-292..
    [28] G. L.Chen, J.G. Wang, X. D. Ni, et al., A new intermetallic compound in TiAl+Nb composition area of the Ti-Al-Nb ternary system [J], Intermetallics, 2005, 329-336.
    [29] G. L. Chen, J. G. Wang, X. T. Wang, et al., Reply to the“Comment on‘Investigation on the 1000, 1150 and 1400oC isothermal section of the Ti-Al-Nb system”‘-Part I. Ordering of Nb inγ-TiAl andγ1 phase[J], Intermetallics, 1998,6:323-327.
    [30] X.J. Xu, L.H. Xu, G.L. Chen. Pilot processing and microstructure control of high Nb containing TiAl alloy [J], Intermetallics, 2005, 13:337-341.
    [31] C.J. Boehlert, Microstructure creep and tensile behavior of a Ti-12Al-38Nb (at.%) beta_orthorhombic alloy[J], Materials Science and Engineering A, 1999, 267: 82-98.
    [32] K.Ito, L.T.Zhang, et al, Multiphase and microstructure effects on the hydrogen absorption/sorption behavior of a Ti–22Al–27Nb alloy[J], Acta mater, 2001, 49:963-972.
    [33] L. A.Bendersky, and W. J.Boettinger, Phase transformations in the (Ti, Al)_3 Nb section of the Ti-Al-Nb system-I. Microstructural predictions based on a subgroup relation between phases [J], Acta Meta, 1994,42: 2323-2355.
    [34] A. M.Zakharav, G. V. Karsanor, V. S. Troitski, et al., Metall, 1984, 1:199.
    [35] J. H. Perepezko, Y. A. Chang, L. E. Seitzman et al., High temperature aluminides and alloys, Warrendale, PA: TMS; 1990, 19.
    [36] K.Keltenbach, S.Gama, D.P.Pinatti, et al., Henig E-Th. Metallkd, 1989;80:535.
    [37] Y. Q. Yan, Z. Q. Zhang, G. Z. Luo, et al., Microstructures observation and hot compressing tests of TiAl-based alloy containing high Nb [J], Materials Science and Engineering A, 2000,280: 187–191.
    [38] Y. H. Wen, Y. Wang, L. Q. Chen, Influence of an applied strain field on microstructural evolution during theα_2→O-phase transformation in Ti-Al-Nb system [J], Acta mater.,2001, 49:13-20.
    [39] M. Stueber, P. B. Barna,et al., Constitution and microstructure of magnetron sputtered nanocomposite coatings in the system Ti-Al-N-C[J], Thin Solid Films, 2005,493(1-2):104-112.
    [40] Chul Sik Jang, Jun-Ha Jeon, Pung Keun Song, et al.Synthesis and mechanical properties of TiAlC_xN_(1-x) coatings deposited by arc ion plating[J], Surface and Coatings Technology,2005,200: 1501-1506.
    [41] A. Kuper, U. X. Qiao, H. R. Stock, P. Mayr, A novel approach to gas boronizing [J], Surface and Coatings Technology, 2000,130:87-94.
    [42] Matja? Torkar, Djordje Mandrino, Valery Rosenband, XPS analysis of pulsed-plasma ion-nitrided Ni- and Ti-aluminides [J], Vacuum, 2005,80 (1-3):35-39.
    [43] J. Sun, J. S. Wu, B. Zhao, et al., Microstructure, wear and high temperatureoxidation resistance of nitrided TiAl based alloys [J], Materials Science and Engineering A, 2002, 329: 713–717.
    [44] Matjaz, Torkara, Djordje Mandrino, Valery Rosenband, XPS analysis of pulsed-plasma ion-nitrided Ni-and Ti-aluminides [J], Vacuum, 2005, 80:35-39.
    [45]王华明,李晓轩,于利根,γ-TiAl金属间化合物激光表面制备Al_2O_3/TiAl耐磨复合材料涂层[J],应用激光,1999, 19(5):247-252.
    [46]刘秀波,王春敏,于利根等,γ-TiAl金属间化合物激光熔敷高温自润滑耐磨复合材料涂层[J],应用激光, 1999, 19(5):221-224.
    [47] Y. Chen and H. M. Wang, Rapidly solidified MC carbide morphologies of a pulsed laser surface alloyedγ-TiAl intermetallic with carbon [J], Scripta Materialia, 2004,50 (4):507-510.
    [48] Liu Xiaoping, Xu Zhong et al.Plasma surface alloying with molybdenum and carburization of TiAl based alloys [J], Transactions of Nonferrous Metals Society of China, 2005, 15(3):420-424.
    [49]贺跃辉,汤义武等, TiAl基合金的表面渗碳行为及其机理[J],材料研究学报, 2005,19(2):139-146.
    [50]王利捷,郝建民,李波, TiAl基合金的离子渗碳研究[J],热加工工艺, 2005,9:51-52
    [51] Y. Chen, H. M. Wang, Growth morphologies and mechanism of TiC in the laser surface alloyed coating on the substrate of TiAl intermetallics[J], Materials Letters, 2003, 57(13-14):2029-2036.
    [52] T. Nodaa , M. Okabea and S. Isobe, Hard surface of TiAl intermetallic compound by plasma carburization[J], Materials Science and Engineering A , 1996, 213(1-2):157-161.
    [53]辛艳辉,林建国,任志昂, Ti-Al-Cr-Nb-V合金激光表面原位TiC颗粒增强涂层及耐磨性研究[J],材料热处理学报, 2004,25(4): 63-67.
    [54] Y. Chen, H M. Wang, Microstructure and high-temperature wear resistance of a laser surface alloyedγ-TiAl with carbon [J], Applied Surface Science, 2003, 220 : 186–192.
    [55]贾宝平,贺跃辉等,钛金属固体法渗硼新技术[J],中南大学学报(自然科学版), 2005,36(2):179-182.
    [56]刘秀波,于利根,王华明, TiAl合金激光表面合金化涂层的组织与耐磨性[J],中国有色金属学报, 2000, 10(6):785-789.
    [57]刘秀波,于利根,王华明,γ-TiAl金属间化合物激光表面合金化改性[J],稀有金属材料与工程, 2001, 30(3):224-227.
    [58] L D. Yu, S. Thongtem, T. Vilaithong, et al. Modification of tribology and high-temperature behavior of Ti-47Al intermetallic alloy nitrided by N ion implantation[J], Surface and Coatings Technology, 2000, 128-129: 410-417.
    [59]赵斌,吴建生,孙坚等, TiAl合金高温气体渗氮[J],金属学报,2001, 37(8): 837-840.
    [60] S. Thongtem, B. Chatdanai, T. Thongtem, et al., Nitridation of -TiAl alloys by direct metal-gas reaction at 1000-1300 K[J], Surface and Interface Analysis, 2005,37(9):765-769.
    [61] J. Magnan, A model for the effect of creep deformation and intrinsic growth stress on oxide/nitride scale growth rates with application to the nitridation of gamma-TiAl[J], Materials Science and Engineering A, 2006, 415: 94-103.
    [62]王华明, TiAl合金激光气体合金化[J],金属学报, 1997, 33(9):917-920.
    [63]王华明,郭淑平,史岗, TiAl金属间化合物激光气体合金化表面改性研究[J],中国激光,1997, 24(11):1049-1052.
    [64]汪洪海,郑启光,辜建辉等, TiAl合金的激光气相氮化[J],中国激光, A 25(10): 955-960.
    [65]贺跃辉,曲选辉,张兵等,渗硼处理对TiAl基合金室温机械性能的影响[J],热加工工艺, 1993,4: 5-7.
    [66]徐重,等离子表面冶金技术的现状与发展[J],中国工程科学, 2002,4(2):36-41.
    [67] Zhong Xu, Double glow surface alloying process [A], in: Proceedings of the Third Pacific Rim International Conference on Advanced Materials and Processing, Hawaii, 1998, 6: 1969-1978.
    [68]贺志勇,高原等,球墨铸铁的辉光离子渗金属[J],兵工学报, 1995,3:69-72.
    [69] Xu Zhang, Xishan Xie,et al., A study of nickel-based corrosion resisting alloy layer obtained by double glow plasma surface alloying technique[J], Surface and Coatings Technology, 2000,131:378-382.
    [70]郑传林,谢锡善,董建新, TiAl双层辉光离子渗Cr的工艺研究[J],航空材料工艺, 2002, 2:51-54.
    [71]郑传林,徐重,谢锡善等, NiCrMoNb合金化层对TiAl金属间化合物抗氧化性能的影响[J],稀有金属材料与工程, 2003, 32(1):37-38.
    [72] X. Zhang, Z.M. Yang, et al., Surface metallurgy of nickel base superalloy [J], J. Univ. Sci.Technol, Beijing, 1999(1): 47.
    [73]池成忠,高原等,碳速工具钢表面低温双辉等离子渗铬硬化的研究[J],机械工程材料,2003,27(11):30-32.
    [74]李争显,周慧,杜继红等,钛合金表面辉光无氢渗碳的研究[J],稀有金属材料与工程, 2004,33(12): 1355-1357.
    [75]许玮,刘小萍,郭朝丽等,等离子渗碳提高TiAl基合金耐磨性[J],热加工工艺, 2006, 35(4): 51-52.
    [76] Fu Yongqing, Nee Lam Loh, et al. Improvement in fretting wear and fatigue resistance of Ti–6Al–4V by application of several surface treatments and coatings[J], Surface and Coatings Technology,1998,106:193-997.
    [77] Fu Yongqing, Du Hejun, Effects of the counterface materials on the tribological characteristics of CNX coating deposited on plasma-nitrided Ti-6Al-4V[J], Materials Science and Engineering A, 2001,298:16-25.
    [78] A. Molinari, T.B. Straffelini, T. Bacci, Dry sliding wear mechanisms of the Ti6Al4V alloy [J], Wear,1997, 208:105-112.
    [79] Sun Kyu Kim, Young Hwan Ahn , Kwang Ho Kim, MoS_2-Ti composite coatings on tool steel by d.c. magnetron sputtering [J], Surface and Coatings Technology, 2003,169:428-432.
    [80] M.Steinmann, H.Meerkamm,et al., A new type of tribological coating for machine elements based on carbon, molybdenum disulphide and titanium diboride [J], Tribology International, 2004,37:879-885.
    [81] V. Ocelík, D. Matthews, J.Th.M. De Hosson, Sliding wear resistance of metal matrix composite layers prepared by high power laser [J], Surface and Coatings Technology, 2005,197: 303-315.
    [82] Xu Jiang,Liu Wenjin, Zhong Minlin, Dry wear behaviors of wear resistant composite coatings produced by laser cladding[J], Journal of University of Science and Technology Beijing, 2004 ,11:549-554.
    [83] N.M.Renevier,J.Hamphire,et al., Advantages of using self-lubricating, hard, wear- resistant MoS_2 -based coatings[J], Surface and Coatings Technology, 2001,142: 67-77.
    [84]梁文萍,徐重,缪强等, Ti_2AlNb双层辉光等离子渗Cr的摩擦磨损性能研究[J],摩擦学学报,2003, 27(2): 121-125.
    [85] Feng Tang, Shizuo Nakazawa and Masuo Hagiwarao, Creep behavior of tungsten-modified orthorhombic Ti-22Al-20Nb-2W alloy[J], Scripta mter., 2000,43:1065-1070.
    [86] Chungen Zhou, Ying Yang, Shengkai Gong, et al., Effect of Ti–Al–Cr coatings onthe high temperature oxidation behavior of TiAl alloys[J], Materials Science and Engineering A, 2001, 307: 182–187.
    [87] Feng Tang, Shizuo Nakazawa, Masuo Hagiwara, The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys [J], Materials Science and EngineeringA, 2002, 329:492-498.
    [88] Y. Mizuharaa, K. Hashimotob, N. Masahashic, Microstructure and phase stability of TiAl–W ternary alloy [J], Intermetallics, 2003,11: 807–816.
    [89] Seung Jin Yang, Soo Woo Nam, Masuo Hagiwara, Phase identification and effect of W on the microstructure and micro-hardness of Ti2AlNb-based intermetallic alloys[J], Journal of Alloys and Compounds, 2003, 350(1-2):280-287.
    [90] Yong Zheng, Min You, Weihao Xiong, et al., Valence-electron structure and properties of mainphases in Ti(C, N)-based cermets[J], Materials Chemistry and Physics, 2003, 82: 877–881.
    [91]瑞璜,固体与分子的经验电子理论[J],科学通报, 1978, 4: 217.
    [92]刘伟东,刘志林,屈华,合金γ-TiAl价电子结构的计算及其力学性能[J],稀有金属材料与工程, 2003,32(11): 902-906.
    [93]刘志林,李志林,刘伟东,界面电子结构与界面性能,北京:科学出版社, 2002.
    [94]刘志林,合金价电子结构与成分设计,长春:吉林科学技术出版社, 1990
    [95]孔凡涛,陈玉勇, TiAl-X三元金属间化合物的价电子结构分析[J],稀有金属材料与工程, 2003, 32(11): 898~901.
    [96]李文,刘贵富,张瑞林, Nb对Ti_3Al价电子结构及其脆性的影响[J],机械工程学报, 1999, 35(2): 101-104.
    [97]徐东生,李东,胡壮麒, Nb对Ti_3Al电子结构和韧化的影响[J],金属学报, 1993, 29(8): A349-353.
    [98] Wu Bo,Shen Jianyun,et al.,Site occupations and ordering behaviour of O phase in Ti2AlNb-based intermetallics [J], Trans.Nonferrous Met. Soc China, 2002, 12(4):635~638.
    [99] Bo Wu, Shen Jianyun, et al.,The ordering behaviour of the O phase in Ti2AlNb-based alloys[J], Intermetallics, 2002,10: 979-984.
    [100]朴英锡,李文,铌对Ti_3Al价电子结构及其脆性的影响[J],稀有金属, 2000, 24(1): 47-51.
    [101]刘伟东,刘志林,屈华等, Mn, Nb对γ-TiAl价电子结构及性能的影响[J],自然科学进展, 2003, 13(3):293~298.
    [102] Feng Tang, Tohru Awane,et al., Effect of compositional modification on Young's modulus of Ti2AlNb-based alloy [J], Scripta Materialia, 2002, 46:143~147.
    [103]贺志勇,高原,赵晋香等,离子渗金属机用锯条的研究[J],热加工工艺, 1994,1: 29-30.
    [104] Zhong Xu, Double glow surface alloying process [A], in: Proceedings of the Third Pacific Rim International Conference on Advanced Materials and Processing [C], Hawaii, 1998, 6:1969-1978.
    [105]李争显,徐重,周廉等,双层辉光离子渗金属电极结构的研究[J],真空, 2003,6:31-33.
    [106] J. Riising and C. Herzig, Concentration and temperature dependence of titanium self-diffusion and interdiffusion in the intermetallic phase Ti3Al [J],Intermetallics, 1996,4: 647-657.
    [107] H. E. Schaefer, K. Frenner, R. Wurschum, High-temperature atomic defect properties and diffusion processes in intermetallic compounds [J], Intermetallics, 1999, 7: 277-287.
    [108] Li Chengming, Tian Linhai, Xu Zhong, et al., Sputtering of W-Mo alloy under ion bombardment[J], Trans. Nonferrous Met. Soc. China, 1999, 9(3):629-633.
    [109]张平则,李忠厚,贺志勇等, Ti_6Al_4V表面双层辉光离子渗Cr研究[J],兵器材料科学与工程. 2005, 28:17-20.
    [110] D. Sergiy , H. Frank, et al., Niobium and titanium diffusion in the high niobium- containing Ti-54Al-10Nb alloy [J], Intermetallics, 2006:1-8.
    [111] J. Breuer, T. Wilger, M. Friesel ,et al., Interstitial and substitutional diffusion of metallic solutes in Ti3Al [J], Intermetallics, 1999, 7: 381-388.
    [112] K. Muraleedharan Nandy. T. K. Banerjee., Phase stability and ordering behaviour of the O phase in Ti-Al-Nb alloys [J], Intermetallics, 1995, 3(3):187-99.
    [113] C.Jiang, D. J. Sordelet, B.Gleeson, Site preference of ternary alloying elements in Ni3Al: A first-principles study [J], Acta materialia, 2006, 54: 1147-1154.
    [114]池成忠,高原,贺志勇等,双辉等离子渗铬T8钢碳迁移现象的分析[J],材料热处理报, 2003, 24(4):70-72.
    [115]张泰华,杨业敏,纳米硬度技术在表面工程力学性能检测中的应用[J],中国机械工程, 2002, 12(24): 2148-2150.
    [116]李河清,蔡珣,陈秋龙,纳米压入技术表征薄膜(涂层)的力学性能[J],材料热处理学报, 2001, 22(4): 52-55.
    [117]蒋艳平,赵冠湘,潘勇等,用纳米压痕法测量电沉积镍镀层的力学性能[J],湘潭大学自然科学学报, 2005, 27(3): 50-58.
    [118]刘美华,王静,王东爱,对压痕硬度试验方法的分析研究[J],工程塑料, 2005, 33(7): 39-42.
    [119] W C Oliver, G M.Pharr, An improved technique for determining hardness and elastic modulus using load and disp lacement sensing indentation experiments [J], Jour. .Mater Res, 1992, 7 (6) :1564.
    [120] W. C.Oliver, G.M.Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J], J Mater Res, 2004, 19 (1): 3.
    [121]张泰华,微/纳米力学测试技术及其应用,北京:机械工业出版社, 2004, 10:
    [122]景晓,陆兴,张钦亮,纳米压痕法测定Ni_(52.2)Mn_(24.4)Ga_(23.4)马氏体的力学性能[J],大连铁道学院学报, 2006, 27(2): 63-66.
    [123]周亮,姚英学, Sha Hjada A P.,纳米压痕硬度尺寸效应的残余面积最大压深模型[J],硅酸盐学报, 2005, 33(7): 817-821.
    [124] H. Ichimura, Y. Ishii, A. Rodrigo, Hardness analysis of duplex coating [J], Surface and Coatings Technology, 2003, 169–170: 735–738.
    [125] Y. W. Bao, W. Wang, Y. C. Zhou, Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements [J], Acta Materialia, 2004, 52: 5397–5404.
    [126]李成明,贺志勇,徐重,离子钨钼共渗的扩散机制[J],中国有色金属学报, 2000, 10(2): 185-188.
    [127] R. Navamathavan, Kyoung-Kook Kim, Dae-Kue Hwang, et al., A nanoindentation study of the mechanical properties of ZnO thin films on (0 0 0 1) sapphire [J], Applied Surface Science,2006, 253: 464-467.
    [128] T. Chudoba,U, N. Schwarzer,F. Richter,et al, Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter[J], Thin Solid Films, 2000, 377-378: 366-372.
    [129]赖德明,涂江平,张升才等.溅射沉积WSz, /Ag纳米复合薄膜在不同环境中的摩擦磨损性能研究[J],摩擦学学报, 2006,26(6):515-519.
    [130]戴振东,王珉,薛群基著.摩擦体系热力学引论.北京:国防工业出版社, 2002.1,102.
    [131]郑修麟主编.工程材料的力学行为.西安,西安工业大学出版社, 2004, 216-225.
    [132]张平则,双层辉光等离子表面合金化阻燃钛合金研究, [博士论文],山西太原,太原理工大学, 2004.
    [133] Karl-Heiz, Zum Gahr, Microstructure and wear of materials, The Netherlands, Elsevier Science Publishing Company INC. 1987:1-554.
    [134] Y. Wang, Z.Qian, X.Y.Li, et al, Sliding wear properties of TiAl alloys with/without TiN coatings [J], Surface and Coatings Technology, 1997,91:37-42.
    [135] Paul H.Mayrhofer, Christian Mitterer, et al, Microstructural design of hard coatings [J], Progress in Materials Science, 2006,51: 1032-1114.
    [136] [136] Martin Palm, The Al-Cr-Fe system-Phases and phase equilibrium in the Al-rich corner [J], Journal of Alloys and Compounds, 1997, 252: 192–200.
    [137]荆阳,庞思勤,张学恒等, TiAlN-MoS2/TiAlN硬质润滑膜研究[J],北京理工大学学报, 2002, 22(4): 457-460.
    [138] Jiang Xu, Wenjin Liu , Minlin Zhong, Dry wear behavior of wear resistant composite coatings produced by laser cladding[J], Materials,2004,11(6):549-554.
    [139] Kenneth Holmberg, Allan Matthews, Helena Ronkainen, Coatings tribology-contact mechanisms and surface design [J], Tribology International,1998, 31(1-3):107-120.
    [140] Kazuhisa Miyoshi, Bradley A.Lerch, Susan L.Draper, Fretting wear of Ti-48Al-2Cr-2Nb [J], Tribology International, 2003, 36:145-153.
    [141] Jeon G.Han, Joo S. Yoon, Hyung J. Kim, et al, High temperature wear resistance of (TiAl)N films synthesized by cathodic arc plasma deposition[J], Surface and Coatings Technology, 1996, 86-87: 82-87.
    [142] J.H. Wu, M. Sanghavi, J.H. Sanders, et al, Sliding behavior of multifunctional composite coatings based on diamond-like carbon [J], Wear, 2003, 255:859-868.
    [143] A.R.Rastkar, A.Bloyce, T.Bell, Sliding wear behaviour of two gamma-based titanium aluminides [J], Wear, 2000, 240:19-26.
    [144] Karl-Heiz, Zum Gahr, Microstructure and wear of materials, The Netherlands, Elsevier Science Publishing Company INC. 1987:1-554.
    [145] Kenneth Holmberg, Allan Matthews and Helena Ronkainen, Coatings tribology contact mechanisms and surface design [J]. Tribology International, 1998,31 (1-3):107-120.
    [146] K. Homberg, A concept for friction mechanisms of coated surfaces. Surface andCoatings Technology, 1992, 56, 1-10.
    [147] W. J. Salesky, G. Thoms, Design of medium carbon steels for wear applications, in Wear of Materials 1981. Ludema, K.C.et al., eds., ASME, New York 1981, pp 298-305.
    [148] K. J. Bhansali, A. E. Miller, Role of stacking fault energy on the galling and wear behavior of a cobalt base alloy, in Wear of Materials 1981. Rhee, S. K. et al., eds., ASME, New York 1981, pp 179-185.
    [149] A. S.Argon , Mechanical properties of near-surface material in friction and wear, In Fundamentals of Tribology, ed. N. P. Suh and N. Saka. MIT Press, London, 1980: 103-125.
    [150] N. P.Suh, Tribophysics, Prentice-Hall, Englewood Cliffs, NJ, 1986, 489 pp.
    [151]马红玉,张嗣伟,金属基复合材料涂层摩擦学的研究进展[J],中国表面工程, 2005, 1:8-14.
    [152] Berthier, Y., Godet, M. , Brendle, M., Velocity accommodation in friction[J], Tribology Transactions, 1989, 32(4): 490-496.
    [153] Karl-Heiz, Zum Gahr, Microstructure and wear of materials, The Netherlands, Elsevier Science Publishing Company INC. 1987:1-554.
    [154] D. Tabor, Hardness of Metals. Oxford.: Clarendon, 1951.
    [155] F. P. Bowden, D. Tabor, The friction and lubrication of solids, Oxford: ClarendonⅠ,Ⅱ, 1964.
    [156] Ernest Rabinowicz., An adhesive wear model based on variations in strength values [J], Wear,1980,63(1): 175-181.
    [157] Staffan Jacobson, Per Wallén, Sture Hogmark, Correlation between groove size, wear rate and topography of abraded surfaces[J], Wear, 1987,115(1-2):Pages 83-93.
    [158]汪选国,严新平,李涛生等,磨损数值仿真技术的研究进展[J],摩擦学学报, 2004, 3, 24(1):188-191.
    [159] J. Flaker, G. Fajdiga, S. Glode, et al, Numerical simulation of surface pitting due to contact loading[J],. International Journal of Fatigue, 2001,23 (7): 599-605.
    [160] Priit P ~odra, S orenAndersson, Simulating sliding wear with finite element method [J]. Tribology International, 1999, 32:71-81.
    [161]刘峰壁,直齿圆柱齿轮磨损过程模拟[J],机械科学与技术, 2004, 23(1): 55-59.
    [162]桂长林, Archard的磨损设计计算模型及其应用方法[J],润滑与密封, 1990, 1:16-20.
    [163] E. Rabinowicz. New Coefficients Predict Wear of Metal Parts [J]. Product Engineering, 1958, 29: 71-73.
    [164]贺志勇,赵晋香,高原等,等离子镍铬表面合金化合金元素利用率研究[J],中国腐蚀与防护学报, 1999,19(6):345-350.
    [165] G. Reisse, S. Weissmantel, B. Keiper,et al., Influence of ion bombardment on the refractive index of laser pulse deposited oxide films [J], Applied Surface Science, 1995,86:107-113.
    [166]许根慧,等离子体技术与应用,化学工业出版社, 2006, 242.
    [167] Noriaki Matsunami, Sputtering yields of YBa2Cu3O7 and Bi2Sr2Ca2Cu3O10 by 100 keV Ar+ impact at normal incidence [J], Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1998,134(3-4): 346-351.
    [168] http://www.mmlab.labs.gov.cn/ynw/downloads/chapter%206.doc.
    [169]李家全,铁军,余萍等,对阴极双辉等离子体的实验研究[J],核聚变与等离子体物理, 2002, 22(4): 249-252.
    [170]贺志勇,高原,古凤英等,双层辉光离子渗金属技术中的离子轰击行为[J],真空, 1995(1): 29-35.
    [171]李家全,余萍,袁斌等,双辉光离子渗金属—一种新颖的等离子体表面冶金技术[J],物理, 1996, 25(4): 229-238.
    [172] Chengji Li, Zhong Xu, Diffusion mechanism of ion bombardment[J], Surface Engineering, 1987(4):310-313.
    [173]孙东升,离子渗氮层的晶体缺陷和界面结构[J],金属学报,1993, 29(5): 53.
    [174]李忠厚,刘小萍,徐重,在双层辉光离子渗金属中空位浓度梯度对扩散的影响[J],应用科学学报, 2000(6): 183-185.
    [175]钱云鹏,何庆复,阎国臣等,工程合金中空位-溶质原子复合体扩散与非平衡偏聚[J],北方交通大学学报, 2001, 25(1):84-87.
    [176]李成明,贺志勇,徐重,离子钨钼共渗的扩散机制[J],中国有色金属学报, 2000,10(2): 185-188.
    [177]常海威,金属离子高温注入金属表面合金化机制研究[博士论文],辽宁省大连市,大连理工大学, 2006.10.
    [178]雷明凯,李明,常海威等,金属离子高温注入原理与工艺研究[J],中国表面工程, 2006, 19(2): 1-5.
    [179]常海威,陈涛,雷明凯, Cr离子高温注入Al靶的传质模型[J],金属学报, 2004, 40 (6): 629-633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700