用户名: 密码: 验证码:
选择性激光熔化快速成形关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用选择性激光熔化技术能直接成形金属零件,它们可被应用于生物医学、航空航天等领域。与国外相比,我国对该技术的研究起步较晚,还存在较大的差距。选择性激光熔化成形金属零件过程中,球化、裂纹、变形、翘曲、脱层等的形成机理及其预防措施是国内外研究者需要攻克的关键技术瓶颈问题。为了解决这些问题,本文作者参与研制选择性激光熔化装备,并研究选择性激光熔化金属粉末(304L、316L)的成形特征,分析成形过程的热应力、热应变,利用X射线衍射(XRD)、金相显微(OM)、电镜扫描(SEM)、显微硬度等方法,分析成形件的组织结构和机械性能。为提高零件成形效率及机械性能,提出并研究选择性激光熔化技术与热等静压技术的复合成形技术。主要研究内容及结论如下:
     在择性激光熔化装备研制方面,选择波长为1064nm、1090nm的激光器,即固体半导体Nd-YAG、光纤激光器。采用动态聚焦和静态聚焦方式,使激光束聚焦焦点处激光功率密度超过10~6W/cm~2。将装备做成较高的真空度,使之能成形钛合金和高温合金零件。
     在研究金属粉末的选择性激光熔化的成形性方面,重点研究了304L、316L不锈钢粉末的成形性。研究表明:316L的成形性较304L的好;含碳量低的合金粉末成形性比含碳量高的成形性好;气雾化粉末比水雾化粉末的成形性好。
     在选择性激光熔化金属粉末的成形工艺方面,本文分层次进行了实验并优化工艺参数。首先,表达不同工艺参数下的单线(道)扫描成形轨迹特征,确定粉末的成形性;第二,进行单层多道扫描,确定完全致密度所需的扫描策略、工艺参数;最后,实施块体的成形,确定成形件的致密度与扫描策略、层厚等工艺参数之间的关系。扫描策略是影响致密度的一个关键因素,在已有的扫描策略(分组变向、轮廓等距偏移)基础上,提出新的扫描策略--变扫描矢长分块变向扫描、回填变向扫描(跳转变向扫描)。实验研究表明:在相同条件下回填变向扫描策略比其它扫描策略更能有效的提高致密度。较优工艺参数为:激光功率98W、扫描速度范围为30-100mm/s、扫描间距0.06mm、扫描层厚为0.06-0.08mm。
     在成形过程中的变形、裂纹、脱层等的研究方面,应用ANSYS模拟并分析了成形过程温度场、热应变场、热应力场。分析结果表明:成形件的残余拉应力较大;在基板与成形件接触处,出现应力集中。为了减小成形件的残余拉应力,可采取预热基板、重扫描策略、退火后处理的方法。
     在研究选择性激光熔化与热等静压(SLM/HIP)的复合成形技术方面,首先采用选择性激光熔化技术成形完全致密零件外壳或包套,接着经热等静压处理成形完全致密零件。通过对该复合成形技术的初步实验研究,结果表明:要求成形包套无任何缺陷(包套不存在相通的气隙)且保持包套内的高真空度(10~(-5)Torr)。
     通过本论文的系统研究,解决了选择性激光熔化技术所碰到的球化、翘曲、脱层等问题,实现该技术直接成形完全致密度金属件,为该技术深入发展奠定了一定的基础。
Metal parts could be directly manufactured with the selective laser melting(SLM) technology.They are applied to biomedical field,aerospace field,etc.There are wide gaps in the SLM technology home,compared with abroad.In the SLM processes,some problems,such as bailing effect,crack,curl,distortion,delamination and low processing efficient,might occur.To solve them,were studied the researches on the SLM machines, formabilities of metal powders such as 304L and 316L,optimum processing parameters, new scan strategies,analysis of temperature,residual stresses and residual strain fields, microstructures by XRD,optical micrograph,and SEM,mechanical properties of SLM parts by microhardness,and densification of SLM hollow parts by hot isostatic pressing (HIP) for higher efficient forming processing and mechanical properties.These research results are given as follows.
     To develop SLM machines,the Nd-YAG laser with 1064nm wavelength and fiber laser with 1090nm wavelength were utilized.To gain the laser power density of more than 10~6W/cm~2,the focal diameter has to be small enough to the order of magnitude of micron. Two kinds of focusing means such as dynamic focusing and static focusing were used.to avoid the oxidization and nitride of metal,the building chambers of the machines have to be airtight or protected by inert gases(argon,or helium) or in high vacuum(10~(-5)Torr). Thus the developed SLM machines were equipped with vacuum pumps.
     Powders are one of important factors having great impact on successfully forming fully dense metal parts wih the SLM technology.The single metal element and single pre-alloyed powders are better for the SLM processes.From the studies,the gas-atomized 316L powders have better formability than the waer-atomized 304L ones,and low-carbon powders do better than high-carbon ones.Thereupon the gas-atomized 316L stainless steel powder,whose size distribution of lower 20 microns is over 50%volume,is more suitable for the HRPM-ⅡSLM machine.
     A special program on the SLM processing was developed,and then optimum parameters were obtained.Firstly,the features of single tracks built on a thin layer powder deposited on a substrate are given in detail.From these features for processing parameters, the powder formability and track attributes can be gained.Secondly,thin layer multi-track builds are tested,and then the optimum scan space and scan strategies can be optimized to get higher surface finish quality for the full density.Thirdly,blocks are formed with parameters,and the parts densities are related to layer distances,scan strategies and other parameters.
     The scan strategy is one important factor on the full density of metal parts,new scan strategies such as consecutive sub-sector scan strategy with adjustable scan length, refilling scan strategy with bi-directional scan,and spiral scan strategies were developed, based on sub-area scan strategy,contour equidistant offsetting scan strategy.The tests results show that the refilling scan strategy with bi-directional scan is excellent to directly manufacture fully dense parts.To directly form dense parts with the SLM technology,the above presented program could be used to optimize parameters.The obtained optimum parameters are 98W laser power,30-100mm/s scan speed,0.06mm scan space,lower than 0.08mm layer distance.
     The temperature field,strain field and stress field in the SLM processing were simulated with finite element methods for the ANSYS software.From the simulation results,there exist residual tensile stresses,and the stress concentration on the connections between the baseplate and SLM parts.The simulation results agree with the phenomena such as cracks by tensile stresses in SLM parts.To reduce the residual stresses,some measurements can be made,including preheating powder and baseplate,stress-relieving treatment by annealing postprocessing,and rescanning after solidification of liquid metal in each layer.
     To increase the efficient of forming SLM parts and improve their mechanical properties,the SLM/HIP technology is presented.Firstly,the in-situ canings or shells of a part are manufactured with the SLM technology.Then they are processed with HIP technology for full density.From the preliminary studies on the SLM/HIP technology,the SLM canings can be densified completely by HIP.But the cannings must be airtight and the inner pressures must be less than 10~(-5) Torr,processed with HIP technology.
     In conclusion,the problems such as balling effect,crack,distortion,and dilamination, have been solved in the selective laser melting processing.The near fully dense metal parts can be manufactured with the SLM technology.
引文
[1]Abe F.,Osakada K.,Shiomi M.,et al.The manufacturing of hard tools from metallic powders by selective laser melting.Journal of Materials Processing Technology,2001,111(1-3):210-213
    [2]Agarwala M.,Bourell D.,Beaman J.J.,et al.Post-processing of selective laser sintered metal parts.Rapid Prototyping Journal,1995,1(2):36-44
    [3]Rhodes G.O.Development of stainless steel and copper alloy HIP P/M near-net shapes for rocket engine combustion chamber applications,in:Proceedings of the 1997 5th International Conference on Advanced Particulate Materials & Processes.Princeton,NJ,USA:Metal Powder Industries Federation,1997.347-355
    [4]Das S.,Wohlert M.,Beaman J.J.,et al.Processing of titanium net shapes by SLS/HIP.Materials and Design,1999,20(2-3):115-121
    [5]Karlsen W.L.,Kotila J.,Lind J.E.Fabrication of biomedical implants by combined direct metal laser sintering and hot isostatic pressing.International Journal of Powder Metallurgy(Princeton,New Jersey),2004,40(2):29-41
    [6]Santos E.C.,Osakada K.,Shiomi M.,et al.Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting.Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2004,218(7):711-719
    [7]http://www.fockeleundschwarze.de/english/fsrd.html.
    [8]陈彦宾.现代激光焊接技术.第1版.北京:科学出版社,2005.1-206
    [9]Wehmller M.,Warnke P.H.,Zilian C.,et al.Implant design and production-a new approach by selective laser melting.International Congress Series,2005,1281:690-695
    [10]Brandner J.J.,Hansjosten E.,Anurjew E.,et al.Microstructure devices generation by selective laser melting,in:Pfleging W.Proceedings of The Society of Photo-Optical Instrumentation Engineers(SPIE).1000 20th ST,PO BOX 10,Bellingham,WA 98227-0010 USA:SPIE-INT SOCIETY OPTICAL ENGINE, 2007. 645911-1-9
    [11] Yadroitsev, I., Bertrand Ph., Laget B., et al. Application of laser assisted technologies for fabrication of functionally graded coatings and objects for the International Thermonuclear Experimental Reactor components. Journal of Nuclear Materials, 2007,362(2-3):189-196
    [12] Yadroitsev I., Bertrand P., Smurov I. Parametric analysis of the selective laser melting process. Applied Surface Science, 2007, 253(19):8064-8069
    [13] Yadroitsev I., Thivillon L., Bertrand Ph., et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Applied Surface Science, 2007, 254(4):980-983
    [14] Santos E.C., Shiomi M., Osakada K., et al. Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture, 2006,46(12-13):1459-1468
    [15] Kruth J.P., Froyen L., Van Vaerenbergh J., et al. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149(1-3):616-622
    [16] Kruth J.P., Froyen L., Rombouts M., et al. New ferro powder for selective laser sintering of dense parts. CIRP Annals- Manufacturing Technology, 2003, 52(1):139-142
    [17] Osakada K., Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools & Manufacture, 2006,46(11):1188-1193
    [18] Osakada K., Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. in: Wang Z.R. Proceedings of The 1st Internaional Confercence On New Forming Technology. Harbin, 16 FuXingJie NanGangQu, Harbin 150006, HeiLongJiang, PEOPLES R CHINA: Harbin Institute Technology Publishers, 2004. 41-49
    [19] Santos E., Osakada K., Shiomi M., et al. Fabrication of titanium dental implants by selective laser melting. in: Miyamoto I. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE). 1000 20th ST, PO BOX 10, Bellingham, WA 98227-0010 USA: SPIE-INT SOCIETY OPTICAL ENGINE, 2004. 268-273
    [20]Shiomi M.,Osakada K.,Nakamura K.,et al.Residual stress within metallic model made by selective laser melting process.CIRP Annals - Manufacturing Technology,2004,53(1):195-198
    [21]Laoui T.,Santos E.,Osakada K.,et al.Properties of titanium dental implant models made by laser processing.Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2006,220(6):857-863
    [22]Santos E.C.,Morita M.,Shiomi M.,et al.Laser gas nitriding of pure titanium using CW and pulsed Nd:YAG lasers.Surface and Coatings Technology,2006,201(3-4):1635-1642
    [23]来克娴,杨永强,张林华.光纤激光器及其在选区激光熔化快速原型制造中的应用.激光与光电子学进展,2006,43(3):32-36
    [24]来克娴,杨永强,光纤激光器及其在选区激光熔化中的应用.广东焊接,2001,(13):1-3
    [25]史玉升,鲁中良,章文献等.选择性激光熔化快速成形技术与装备.表面工程,2006,19(5+):150-153
    [26]杨永强,吴伟辉,来克娴等.金属零件选区激光熔化直接快速成形工艺及最新进展.航空制造技术,2006,(02):73-78
    [27]史玉升,刘洁,杨劲松等.基于粉末材料快速成形的复杂零件和模具制造技术.航空制造技术,2006,(4):30-33
    [28]黄常帅,杨永强,吴伟辉.金属构件选区激光熔化快速成型铺粉控制系统研究.机电工程技术,2005,34(6):31-35
    [29]杨永强,吴伟辉.选区激光熔化快速成型系统及工艺研究.新技术新工艺,2006,(6):48-50
    [30]吴伟辉,杨永强.半导体泵浦激光器在选区激光熔化工艺中的应用研究.机电工程技术,2006,35(11):91-95
    [31]吴伟辉,杨永强.选区激光熔化快速成形系统的关键技术.机械工程学报,2007,43(8):175-180
    [32]Zhang W.,Shi Y.,Liu J.,etc.Type HRPM-Ⅱ machine for selective laser melting process.Virtual And Rapid Manufacturing -Advanced Research In Virtual And Rapid Prototyping,2007,541-544
    [33]鲁中良,史玉升,刘锦辉等.间接选择性激光烧结与选择性激光熔化对比研究.铸造技术,2007,28(11):1436-1441
    [34]鲁中良,史玉升,刘锦辉等.Fe-Ni-C合金粉末选择性激光熔化成形.华中科技大学学报(自然科学版),2007,35(8):93-96
    [35]Badrossamay M.,Childs T.H.C.Further studies in selective laser melting of stainless and tool steel powders.International Journal of Machine Tools and Manufacture,2007,47(5):779-784
    [36]Childs T.H.C.,Hauser C.,Badrossamay M.Mapping and modelling single scan track formation in direct metal selective laser melting.CIRP Annals-Manufacturing Technology,2004,53(1):191-194
    [37]Childs T.H.C.,Hauser C.,Badrossamay M.,Selective laser sintering(melting) of stainless and tool steel powders:experiments and modelling.Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2005,219(4):339-357
    [38]Childs T.H.C.,Hauser C.Raster scan selective laser melting of the surface layer of a tool steel powder bed.Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2005,219(4):379-384
    [39]Rehme O.,Emmelmann C.Rapid manufacturing of lattice structures with Selective Laser Melting.in:Bachmann Frieddch G.Proceedings of the Society of Photo-optical Instrumentation Engineers(SPIE).1000 20th ST,PO BOX 10,Bellingham,WA 98227-0010 USA:SPIE-INT SOCIETY OPTICAL ENGINE,2006.61070K-1-12
    [40]Santorinaios M.,Brooks W.,Sutcliffe C.J.,et al.Crush behaviour of open cellular lattice structures manufactured using selective laser melting.WIT Transcations On The Buit Environment,2006,85:481-490
    [41]Mercelis P.,Kruth J.P.Residual stresses in selective laser sintering and selective laser melting.Rapid Prototyping Journal,2006,12(5):254-265
    [42]Bibb R.,Eggbeer D.,Williams R.Rapid manufacture of removable partial denture frameworks.Rapid Prototyping Journal,2006,12(2):95-99
    [43]Wong M.,Tsopanos S.,Sutcliffe C.J.,et al.Selective laser melting of heat transfer devices.Rapid Prototyping Journal,2007,13(5):291-297
    [44]Gusarov A.V.,Yadroitsev Ⅰ.,Bertrand P.,et al.Heat transfer modelling and stability analysis of selective laser melting.Applied Surface Science,2007,254(4):975-979
    [45]Bertrand P.,Smurov.Ⅰ.Laser assisted direct manufacturing,in:Panchenko V.Proceedings of the Society of Photo-optical Instrumentation Engineers(SPIE).1000 20th ST,PO BOX 10,Bellingham,WA 98227-0010 USA:SPIE-INT SOCIETY OPTICAL ENGINE,2007.67320H-1-5
    [46]Sun M.L.,Lu L.,Fuh J.Y.H.Microstructure and properties of Fe-base alloy fabricated using selective laser melting,in:Miyamoto Ⅰ.Proceedings of the Society of Photo-optical Instrumentation Engineers(SPIE).1000 20th ST,PO BOX 10,Bellingham,WA 98227-0010 USA:SPIE-INT SOCIETY OPTICAL ENGINE,2002.139-142
    [47]Chalker P.R.,Clare A.,Davies S.,et al.Selective laser melting of high aspect ratio 3D nickel-titanium structures for MEMS applications,in:Bull S.J.Materials Reseach Society Symposium Proceedings.506 Keystone Drive,Warrendale,PA 15088-7563 USA:Materials Reseach Society Symposium,2006.93-98
    [48]Mumtaz K.A.,Erasenthiran P.,Hopkinson N.High density selective laser melting of Waspaloy??.Journal of Materials Processing Technology,2008,195(1-3):77-87
    [49]Hollander D.,Wirtz Tobias,Walter Matthias,et al.Development of Individual Three-Dimensional Bone Substitutes Using "Selective Laser Melting".European Journal of Trauma,2003,29(4):228-234
    [50]Kruth J.P.,Vandenbroucke B.,Van Vaerenbergh J.,et al.Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM,ed.Anonymous.London;11 New Fetter Lane,London EC4P 4EE,England:Taylor & Francis Ltd,2005.145-150
    [51]Lin C.Y.,Wirtz Tobias,LaMarca Frank,et al.Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process.Journal of Biomedical Materials Research Part A,2007,83(2):272-279
    [52]Vandenbroucke B.,Kruth J.P.Selective laser melting of biocompatible metals for rapid manufacturing of medical parts.Rapid Prototyping Journal,2007,13(4):196-203
    [53]Wu W.,Yang Y.,Huang Y.Direct manufacturing of Cu-based alloy parts by selective laser melting.Chinese Optics Letters,2007,5(1):37-40
    [54]吴伟辉,杨永强,黄延禄.铜基合金零件的选区激光熔化直接快速成型.Chinese Optics Letters,2007,5(1):37-40
    [55]吴伟辉,杨永强,来克娴.选区激光熔化快速成型过程分析.华南理工大学学报(自然科学版),2007,35(3):22-27
    [56]Abe F.,Santos E.C.,Kitamura Y.,et al.Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process.Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2003,217(1):119-126
    [57]Wright C.S.,Youseffi M.,Akhtar S.P.,et al.Selective laser melting of prealloyed high alloy steel powder beds.in:Vilarinho P.M.Materials Science Forum.Brandrain 6,CH-8707 Zurich-Uetikon,Switzerland:TRANS TECH PUBLICATIONS LTD,2006.516-523
    [58]姚化山,史玉升,章文献等.金属粉末选区激光熔化成形过程温度场模拟.应用激光,2007,27(6):456-460
    [59]Rehme O.,Emmelmann C.Reproducibility for properties of Selective Laser Melting products,in:Beyer E.Proceedings of the Third International WLT-Conference on Lasers in Manufacturing,Munich,Germany:WLT,2005.1-6
    [60]Bugeda G.,Cervera M.,Lombera G.Numerical prediction of temperature and density distributions in selective laser sintering processes.Rapid Prototyping Journal,1999,5(1):21-26
    [61]Kolossov S.,Boillat E.,Glardon R.,et al.3D FE simulation for temperature evolution in the selective laser sintering process.International Journal of Machine Tools & Manufacture,2004,44(2-3):117-123
    [62]Wang X.C.,Laoui T.,Bonse J.,et al.Direct selective laser sintering of hard metal powders:Experimental study and simulation.International Journal of Advanced Manufacturing Technology,2002,19(5):351-357
    [63]Labudovic M.,Hu D.,Kovacevic R.A three dimensional model for direct laser metal powder deposition and rapid prototyping.Journal of Materials Science,2003,38(1):35-49
    [64]Matsumoto M.,Shiomi M.,Osakada K.,et al.Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing.International Journal of Machine Tools and Manufacture,2002,42(1):61-67
    [65]Childs T.H.C.Tontowi A.E.Selective laser sintering of a crystalline and a glass-filled crystalline polymer:Experiments and simulations.Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2001,215(11):1481-1495
    [66]Childs T.H.G.,Hauser G.,Badrossamay M.Selective laser sintering(melting) of stainless and tool steel powders:Experiments and modelling.Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2005,219(4):339-357
    [67]Ebert T.,Meiners W.Non corrosive micro coolers with matched CTE.in:Zediker M.S.PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS(SPIE).1000 20TH ST,PO BOX 10,BELLINGHAM,WA 98227-0010 USA:SPIE- INT SOCIETY OPTICAL ENGINEERING,2007.E4561-1-7
    [68]Das S.,Wohlert M.,Beaman J.J.,et al.Direct Selective Laser Sintering of high performance metals for containerless HIP.in:McKotch R.A.Advances in Powder Metallurgy and Particulate Materials.105 College Road East,Princeton,NJ 08540-6692 USA:Metal Powder Industries FED,1997.2167-2178
    [69]Das S.,Beaman J.J.,Wohlert M.,et al.Direct laser freeform fabrication of high performance metal components.Rapid Prototyping Journal,1998,4(3):112-117
    [70]Das S.,Wohlert M.,Beaman J.J.,et al.Producing metal parts with selective laser sintering/hot isostatic pressing.JOM,1998,50(12):17-20
    [71]陆建,倪晓武,贺安之.激光与材料相互作用物理学.北京:机械工业出版社, 1996.1-220.
    [72]郑启光.激光先进制造技术.武汉:华中科技大学出版社,2002.1-285
    [73]Van der Schueren B,Kruth J.P.Powder deposition in selective metal powder sintering.Rapid Prototyping Journal,1995,1(3):23-31
    [74]樊丽秋.真空设备设计.第1版.上海:上海科学技术出版社,1990.1-350
    [75]Klocke F.,Celiker T.,Song Y.A.Rapid metal tooling.Rapid Prototyping Journal,1995,1(3):32-42
    [76]Hausner H.H.粉末冶金手册.第1版.北京市粉末冶金研究所译.北京:粉末冶金出版社,1982.1-468
    [77]松山芳治,三谷裕康,铃木寿.粉末冶金学.第1版.北京:科学出版社,1978.1-434
    [78]曹明翠,郑启光,陈祖涛等.激光热加工.第1版.武汉:华中理工大学出版社,1995.1-353
    [79]Duley W.W.Laser processing & analysis of materials.N.Y.:Plenum Pr,1983.1-459
    [80]Fischer P.,Romano V.,Weber H.P.,et al.Sintering of commercially pure titanium powder with a Nd:YAG laser source.Acta Materialia,2003,51(6):1651-1662
    [81]Tolochko N.K.,Laoui Tahar,Khlopkov Yurii V.,et al.Absorptance of powder materials suitable for laser sintering.Rapid Prototyping Journal,2000,6(3):155-160
    [82]吴长春.冶金热力学.第1版.北京:机械工业出版社,1991.1-200
    [83]王勖成,邵敏.有限单元法基本原理和数值方法.第2版.北京:清华大学出版社,2002.1-568
    [84]陶文铨.数值传热学.第1版.西安:西安交通大学出版社,1988.1-721
    [85]李佳桂.金属粉末选择性激光熔化成形模拟及试验研究:[硕士学位论文].武汉:华中科技大学图书馆,2007.
    [86]曹红奋,梅国梁.传热学:理论基础及工程应用.北京:人民交通出版社,2004.1-207
    [87]吕和祥,蒋和洋.非线性有限元.第1版.北京:化学工业出版社,1992.1-361
    [88]马福康.等静压技术.第1版.北京:冶金工业出版社,1992.1-490

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700