用户名: 密码: 验证码:
厌氧折流板反应器与膜曝气生物膜反应器的耦合作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于污水中的氮元素是诱发水体富营养化的主要因素,因此脱氮成为水处理研究领域的热点问题。脱氮过程不仅需要大量专属微生物的协同作用,而且对环境条件的要求十分苛刻,所以高效去除中高浓度有机含氮废水中的含氮污染物更是水处理行业中的难题。目前国内外普遍采用的厌氧、好氧串联方法,不仅工艺流程长、基建费用高、占地面积大,而且需要回流等额外设施。
     本实验首先分别启动驯化厌氧折流板反应器和膜曝气生物膜反应器,然后利用膜曝气生物膜外层的厌氧状态与厌氧折流板反应器内部环境相融合的特性,将驯化好的膜组件置入运行稳定的厌氧隔室内构成耦合反应器。此工艺所具有的产酸、产甲烷、硝化和反硝化的多相分离特征,不仅避免了不同生化过程中相互竞争和抑制现象的产生,而且充分发挥了不同微生物种群之间的协同互生作用,实现了单一反应器处理中高浓度有机含氮废水的同时去碳脱氮功效。
     (1)厌氧折流板反应器采用直接接种厌氧颗粒污泥的低负荷同步启动方式,15d后处理效果便趋于稳定。随后两次提高进水有机负荷,COD的去除率始终保持在90%以上。当进水COD浓度为1800 mg/L时三个隔室出水VFA浓度依次为673 mg/L、148 mg/L和24 mg/L,总产气率依次为1.13 L/d,2.57 L/d和0.71 L/d,表明反应器对有机污染物的去除效果良好。通过对各隔室出水水质的分析和颗粒污泥表面生物相的研究,证明反应器内基本实现了产酸相和产甲烷相的分离。
     (2)通过与其它材质的膜进行对比表明,包裹无纺布的炭膜对微生物具有较强的吸附能力,适宜作为膜曝气组件。实验分别考察了以空气和纯氧为气源的膜曝气生物膜反应器运行效果,前者稳定运行时的COD和TN去除率分别为83.6%和81.6%,而后者分别为82.4%和84.2%,均实现了同时去碳脱氮的功效。不同气源所形成的生物膜均具有特殊的分层结构,生物膜内层具有较高的氧气浓度,微生物种群分布主要以好氧自养菌为主,而外层处于缺氧和厌氧状态,主要以异养菌为主。两组膜组件在高负荷运行时所产生的过厚生物膜,阻碍了底物和氧源在生物膜内的有效传递,降低了处理效果。最后优选出曝空气膜组件与厌氧折流板反应器进行耦合实验研究。
     (3)耦合反应器对COD具有更好的去除效果,平均出水浓度和去除率分别为51mg/L和96.8%。当进水有机负荷提高50%时,出水COD浓度仍处于60 mg/L以下,具有良好的抗有机负荷冲击能力。反应器对含氮污染物的去除效果明显,稳定运行期间对TN的平均去除率为80.1%。因为流入液体中有机底物的减少和硝态氮的增加,使得3号隔室的沼气产量和甲烷含量均明显减少,但是取而代之的是更为稳定和优良的出水水质。实验结果显示耦合反应器内的生物膜保持了内层好氧、外层缺氧/厌氧的特殊结构,而当内层的硝化细菌活性降低时,脱氮效果随之恶化。
     (4)基于AQUASIM 2.0所建立的混合生物膜模型,验证了好氧自养菌主要分布在生物膜的内层,而异养菌主要分布在生物膜的外层。灵敏度分析结果表明,微生物的最大比生长速率、细菌对氧的饱和常数和化学计量参数值对模拟中底物变量浓度的计算具有非常重要的影响,而其它常数在预测模型质量方面所起到的作用较弱。模拟结果表明,C/N比值和生物膜厚度对于生物膜的处理功效均有重要的影响,C/N比值较低造成的反硝化碳源不足和C/N比值较高形成的对自养菌的抑制均会使得TN的去除率下降;而生物膜过厚时所造成的对底物传质的阻碍和过薄时形成的缺氧/厌氧环境的缺乏,同样会降低脱氮的效果。数值模拟的应用有助于耦合反应器结构设计的优化及实际工程的应用。
Nitrogen pollution is a key eutrophication factor in receiving water, so the removal of nitrogen has ever been a hot topic in the field of wastewater treatment for years. Generally, the performance of nitrogen removal process not only requires the coupling of large quantities of special microorganisms, but also depends on very strict operation conditions. It accounts for the difficulty in nitrogen removal in high-strength wastewaters with nitrogenous organic pollutants, and this has been particularly emphasized as an important issue in the worldwide wastewater treatment. Recently, the aerobic and anaerobic combination technology has been widely used for municipal and industrial wastewater treatment in the world, which still has problems such as system complexity, large footprint, high operating costs, and requirement of extra water recycling equipments within the process etc.
     In this study, an anaerobic baffled reactor (ABR) and membrane-aerated biofilm reactor (MABR) were combined for nitrogen removal from synthetic wastewater. Two processes were separately started up. The aerating membrane module was installed into a compartment of anaerobic baffled bioreactor to form the Hybrid MAB-ABR (HMABR) and its construction was based on the consistent anaerobic condition of the outside anaerobic biofilm on the aerated membrane and anaerobic baffled reactor. In this hybrid process, dependent on the biological phase-separation of acidate bacteria and methanogens bacteria in the ABR and the unique stratification of the aerating membrane biofilm into aerobic nitrifying bacteria and anaerobic denitrifying bacteria, the possible coupling was developed, rather than the competition and inhibition in different pollution removal processes. Thus, the improved simultaneous removal of carbon and nitrogen for high-strength nitrogenous organic pollutants was realized in a single reactor.
     (1) ABR was started up with anaerobic granule sludge as inoculation under low-loading start-up conditions. After the initial start-up phase of 15 days, pseudo-steady state of the ABR was reached. The loading rate was increased by increasing influent organic carbon concentration for two times, and the COD removal efficiency was still kept above 90%. When the influent COD concentration was 1800 mg/L, the effluent VFA concentrations of the three compartments were kept steady, which were 673 mg/L, 148 mg/L and 24 mg/L in average, and the total volumes of biogas produced in these three compartments were 1.13 L/d, 2.57 L/d and 0.71 L/d, respectively. The experiment results show the good performance of pollution removal in the ABR. By the chemical analysis of water quality and the microscope observations of granules surface, the biological phase-separation of acidate bacteria and methanogens bacteria was validated in the ABR.
     (2) Tubular carbon-membrane, wrapped up with non-woven materials as support media for biofilm was applied as membrane module for the aerating membrane by its virtue of better bacteria adhering capacity than other materials. Either air or pure oxygen was pumped into membrane lumen of the aerating membrane to examine the operation performance of the MABR. When pseudo-steady states were reached, simultaneous nitrogen and carbon removal were realized with highest removal efficiencies of 83.6 % and 81.6 % using air as aerating gas, while 82.4 % and 84.2 % using pure oxygen as aerating gas, respectively. The biomass unique stratification structure was also formed due to the gradient of oxygen concentration. The region near the carbon membrane shell side was favorable for aerobic autotrophic bacteria due to sufficient oxygen supply and organic carbon-depletion conditions; whereas the region near bulk liquid was favorable for growth of heterotrophic denitrifying bacteria. With the increased loading rate, the excess growth of biomass acts as a diffusive barrier for COD and ammonia, and eventually deteriorates nitrogen removal efficiency. Afterward, the air aerating membrane module and anaerobic baffled reactor were coupled to form HMABR for the simultaneous removal of nitrogenous and carbonaceous organic pollutants.
     (3) The HMABR has excellent COD removal performance, the average effluent concentration and removal efficiency was 51 mg/L and 96.8 %, respectively. When organic loading rate was increased by 50 %, the effluent COD concentration was still below the level of 60 mg/L, indicating its good capability of counteracting influent organic loading fluctuation. The HMABR also demonstrated good nitrogen removal performance with the average TN removal efficiency of 80.1 % during the steady state. At the same time, due to the decreased COD concentration and increased nitrate concentration in the third compartment after installing the membrane module, the biogas volume and methane content in the third compartment were decreased, resulting in the steady and excellent effluent quality. The experiment results show that the biofilm in the hybrid reactor kept the unique configuration of inner aerobic, outer anaerobic. In this case, when the inner aerobic nitrifying bacteria were inactive, the nitrogen removal performance deteriorated correspondingly.
     (4) A mathematical simulation model of MAB was founded by employing the simulation program of AQUASIM 2.0 to validate that the aerobic autotrophic bacteria were mainly distributed in the inner biofilm, while anaerobic heterotrophic bacteria were mainly distributed in the outer biofilm. Sensitivity analysis results indicated that values of the maximum specific growth rate, oxygen saturation constant and the stoichiometric parameters were the most significant in simulating concentration change of inlet substrates, while other constants were of minor significance in terms of predictive quality of the model. In most runs, the modeling results indicated that the C/N ratio and biofilm thickness were important factors for the biofilm operational regime. When C/N ratio was too low, the amount of COD was not sufficient for heterotrophic bacteria, causing deterioration of nitrogen removal efficiency due to lack of COD. On the other hand, too high C/N ratio resulted in growth inhibition of autotrophic bacteria. Moreover, the high biofilm thickness would be a diffusive barrier for COD and ammonia, and too thin biofilm thickness reduced the aerobic or anaerobic region available for bacteria, which also eventually deteriorated nitrogen removal efficiency. The mathematical modeling has the potential to be used for optimizing configuration design, and practical application of HMABR process.
引文
[1]武江津,王凯军,丁庭华.三废处理技术工程手册:废水卷.北京:化学工业出版社,2000.
    [2]Schroepfer G L.The anaerobic contact process as applied to packing house wastes.Sewage and industrial Wastes,1955,27(4):460-486.
    [3]Young J,Mccarti P L.Treatment of domestic strength wastewater with anaerobic hybrid reactors.Water Pollution Control Federal,1969,41(1):160-173.
    [4]Lettinga G,van Velsen A F M,Hobma S W et al.Use of the upflow sludge blanket(USB) reactor concept for biological wastewater treatment,especially for anaerobic treatment.Biotechnology and Bioengineering,1980,22(4):699-734.
    [5]Lettinga G.Anaerobic digestion and wastewater treatment systems.Antonie van Leeuwenhoek,International Journal of General and Molecular Microbiology,1995,67(1):3-28.
    [6]张希衡.废水厌氧生物处理工程.北京:中国环境科学出版社,1996.
    [7]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998.
    [8]顾夏声.废水生物处理数学模式.北京:清华大学出版社,1993.
    [9]Bryant M P,Wolin E A,Wolin M J et al.Methanobacillus omelianskii,a sumbiotic association of two species of bacteria.Archives of Microbiology,1967,59(1):20-31.
    [10]Bryant M P.Microbial methane production-theoretical aspects.Journal of Animal Science,1979,48(1):193-201.
    [11]Zeikus J G.Microbial population in digesters.London:Applied Science Publisher,1980.
    [12]管位农,朱晓玫,潘新明.厌氧生物技术在污水处理中的应用.甘肃科技,2004.
    [13]任南琪,王爱杰.厌氧生物技术原理与应用.北京:化学工业出版社,2004.
    [14]胡纪翠,周孟津,左剑恶等.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2002.
    [15]周洪波,Cord-Ruwisch,陈坚等.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响.中国沼气,2000,18(4):20-23.
    [16]任南琪.有机废水产酸发酵的生理生态学分析.中国沼气,1995,13(1):1-6.
    [17]李建政,任南琪.产酸相最佳发酵类型工程控制对策.中国环境科学,1998,18(5):398-402.
    [18]Maidak B L,Cole J R,Parker Jr C T et al.A new version of the RDP(Ribosomal Database Project).Nucleic Acids Research,1999,27(1):171-173.
    [19]McCarty P L,Mosey F E.Modelling of anaerobic digestion processes(a discussion of concepts).Water Science and Technology,1991,24(8):17-33.
    [20]Lettinga G,Field J,Van J.Advanced anaerobic wastewater treatment in the near future.Water Science and Technology,1997,35(10):5-12.
    [21]Serebrennikova Y M,Fanning K A.Nutrients in the Southern Ocean GLOBEC region:variations,water circulation,and cycling.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2004,51(17-19):1981-2002.
    [22]Bachmann A,Beard V L,McCarty P L.Comparison of Fixed Film Reactors with a Modified Sludge Blanket Reactor,Fixed Film Biological Processes for Wastewater Treatment.New Jersey:Noyes Data,1983.
    [23]Tilche A,Yang X.Light and scanning electron microscope observation on the granular biomass of experimental SBAR and HABR reactors.Netherlands:Proceeding of Gasmat Workshop,1987.
    [24]Boopathy R,Tilche A.Pelletization of biomass in a hybrid anaerobic baffled reactor(HABR)treating acidified wastewater.Bioresource Technology,1992,40(2):101-107.
    [25]Yang P Y,Moengangongo T H.Operational stability of a horizontally baffled anaerobic reactors for dilute swine wastewater in the tropics.Trans ASAE,1987,30(4):1105-1110.
    [26]Skiadas I V,Lyberatos G.The periodic anaerobic baffled reactor.Water Science and Technology,1998,38(8-9):401-408.
    [27]Nachaiyasit S,Stuckey D C.The effect of shock loads on the performance of an anaerobic baffled reactor(ABR).1.Step changes in feed concentration at constant retention time.Water Research,1997,31(11):2737-2746.
    [28]戴友芝,施汉昌,冀静平等.厌氧折流板反应器处理有毒废水及其污泥特性的研究.环境科学学报,2000,20(3):284-289.
    [29]Grobicki A,Stuckey D C.Hydrodynamic characteristics of the anaerobic baffled reactor.Water Research,1992,26(3):371-378.
    [30]郭静,李清雪,马华年等.ABR反应器的性能及水力特性研究.中国给水排水,1997,13(4):17-20.
    [31]孙剑辉,张波,彭云辉.新型高效生物处理技术—厌氧折流板反应器.工业水处理,2002,22(4):5-8.
    [32]Nachaiyasit S,Stuckey D C.Microbial response to environmental changes in an anaerobic baffled reactor(ABR).Antonie van Leeuwenhoek,International Journal of General and Molecular Microbiology,1995,67(1):111-123.
    [33]沈耀良,王惠民,赵丹.厌氧折流板反应器处理淀粉废水及污泥特性.上海环境科学,2002,21(3):139-142.
    [34]Garuti G,Dohanyos M,Tilche A.Anaerobic-aerobic combined process for the treatment of sewage with nutrient removal:the ANANOX process.Water Science and Technology,1992,25(7):383-394.
    [35]Bodik I,Kratochvil K,Gasparikova E et al.Nitrogen removal in an anaerobic baffled filter reactor with aerobic post-treatment.Bioresource Technology,2003,86(1):79.
    [36]鞠宇平,张林生.ABR-SBR工艺处理电泳涂膜废水.中国给水排水,2003,19(2):51-52.
    [37]Barberio C,Fani R.Biodiversity of an Acinetobacter population isolated from activated sludge.Research in Microbiology,1998,149(9):665-673.
    [38]李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.
    [39]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.
    [40]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社,2002.
    [41]沈耀良,王宝贞.废水生物处理新技术—理论与应用.北京:中国环境科学出版社,1999.
    [42]周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备,2000,1(6):11-18.
    [43]任延丽,靖元孝.反硝化细菌在污水处理作用中的研究.微生物学杂志,2005,25(2):88-92.
    [44]沈耀良,王宝贞.废水生物除磷工艺中聚磷菌的作用机制及运行控制要点.环境科学与技术,1995,2(1):11-16.
    [45]Head I M,Hiorns D,Embley T M et al.The phylogeny of autotrophic ammonia oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences.Journal of Genetic Microbiology,1993,139(6):1147-1153.
    [46]Chen G-H,Wong M-T,Okabe S et al.Dynamic response of nitrifying activated sludge batch culture to increased chloride concentration.Water Research,2003,37(13):3125-3135.
    [47]Lipski A,Spieck E,Makolla A et al.Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity.Systematic and Applied Microbiology,2001,34(9):377-384.
    [48]Wanner O,Cunningham A B,Lundman R.Modeling biofilm accumulation and mass transport in a porous medium under high substrate loading Biotechnology and Bioengineering,1995,47(6):703-712.
    [49]Tiedje J M.Ecology of denitrification and dissimilatory nitrate reduction to ammonium.New York:Biology of Anaerobic Microorganisms,1988.
    [50]Strous M,Van Gerven E,Zheng P et al.Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation(anammox) process in different reactor configurations.Water Research,1997,31(8):1955-1962.
    [51]袁林江,彭党聪,王志盈.短程硝化—反硝化生物脱氮.中国给水排水,2000,16(2):29-31.
    [52]吕锡武,李峰,稻森悠平等.氨氮废水处理过程中的好氧反硝化研究.给水排水,2000,26(4):17-12.
    [53]Xiaodi Hao,Joseph J.Heijnen,Loosdrecht M C M v.Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal(CANON) process.Biotechnology and Bioengineering,2002,77(3):266-277.
    [54]范振兴,王建龙.低温对同体碳源填充床反硝化的影响.清华大学学报(自然科学版),2008,48(3):436-439.
    [55]Verstraete W,Philips S.N-removal by Sharon.Water Quality International,1997,3(4):30-31.
    [56]Mulder J W,Van Loosdrecht M C M,Hellinga C et al.Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering.Water Science and Technology,2001,43(11):127-134.
    [57]Dos Santos F L M,Livingston A G.Novel bioreactors for destruction of volatile organic compounds.Chemical Engineering Research and Design,1993,71(A3):324-326.
    [58]Wasche S,Horn H,Hempel D C.Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface.Water Research,2002,36(19):4775-4784.
    [59]Third K A,Burnett N,Cord-Ruwisch R.Simultaneous nitrification and denitrification using stored substrate(PHB) as the electron donor in an SBR.Biotechnology and Bioengineering,2003,83(6):706-720.
    [60]Zeghal S,Puznava N,Subra J P et al.Process control for nutrients removal using lamella sedimentation and floating media filtration.Water Science and Technology,1998,38(3):227-235.
    [61]Pochana K,Keller J.Study of factors affecting simultaneous nitrification and denitrification(SND).Water Science and Technology,1999,39(6):61-68.
    [62]Helmer C,Kunst S.Simultaneous nitrification/denitrification in an aerobic biofilm system.Water Science and Technology,1998,37(4-5):183-187.
    [63] Hippen A, Rosenwinkel K-H, Baumgarten G et al. Aerobic deammonification: A new experience in the treatment of wastewaters. Water Science and Technology, 1997,35(10): 111-120.
    [64] Mulder A, van de Graaf A A, Robertson L A et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995,16(3): 177-184.
    [65] Zheng P, Lin F M, Hu B L et al. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge. Journal of Environmental Sciences, 2004,16(2): 339-342.
    [66] Kuypers M M M, Lavik G, Woebken D et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(18): 6478-6483.
    [67] Risgaard-Petersen N, Meyer R L, Revsbech N P. Denitrification and anaerobic ammonium oxidation in sediments: Effects of microphytobenthos and NO_3~- Aquatic Microbial Ecology, 2005, 40(1): 67-76.
    [68] Tal Y, Watts J E M, Schreier H J. Anaerobic ammonia-oxidizing bacteria and related activity in Baltimore inner harbor sediment. Applied And Environmental Microbiology, 2005, 71(4): 1816-1821.
    [69] Jianlong W, Jing K. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor. Process Biochemistry, 2005,40(5): 1973-1978.
    [70] Devol A H. Nitrogen cycle: Solution to a marine mystery. Nature, 2003,422(6932): 575-576.
    [71] Kuypers M M M, Silekers A O, Lavik G et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003,422(6932): 608-611.
    [72] Shivaraman N, Shivaraman G. Anammox - A novel microbial process for ammonium removal. Current Science, 2003, 84(12): 1507-1508.
    [73] Third K A, Gibbs B, Newland M et al. Long-term aeration management for improved N-removal via SND in a sequencing batch reactor. Water Research, 2005, 39(15): 3523-3530.
    [74] Sliekers A O, Derwort N, Gomez J L C et al. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research, 2002, 36(10): 2475-2482.
    [75] Zhang D, Xu H, Li X et al. Oxygen-limited autotrophic nitrification and denitrification - A novel technology for biological nitrogen removal. Chinese Journal of Applied Ecology, 2003, 14(12): 2333-2336.
    [76] Windey K, De Bo I, Verstraete W. Oxygen-limited autotrophic nitrification denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Research, 2005, 39(18): 4512-4520.
    [77] Furukawa K, Lieu P K, Tokitoh H et al. Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances. Water Science and Technology, 2006, 53(6): 83-90.
    
    [78] 许保玖. 当代给水与废物处理原理(第二版). 北京: 高等教育出版社,2000.
    
    [79] Weiss P T, Oakley B T, Gulliver J S et al. Bubbleless fiber aerator for surface water. Journal of Environmental Engineering, 1996,122(7): 631-639.
    [80] Schaffer R B, Ludzack F V, Ettinger M B. Sewage treatment by oxygenation through permeable plastic films. J Wat Pollut Contr Fed, 1960,32(9): 939-941.
    [81] Vick Roy T B, Blanch H W, Wilke C R. Microbial hollow fiber bioreactors. Trends in biotechnology, 1983, 27(5): 638-643.
    [82] Timberlake D L, Strand S E, Williamson K J. Combined aerobic heterotrophic oxidation, nitrification and denitrification in a permeable-support biofilm. Water Research, 1988, 22(12): 1513-1517.
    [83] Casey E, Glennon B, Hamer G. Biofilm development in a membrane-aerated biofilm reactor: Effect of intra-membrane oxygen pressure on performance. Bioprocess Engineering, 2000, 23(5): 457-465.
    [84] Casey E, Glennon B, Hamer G. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance. Biotechnology and Bioengineering, 2000, 67(4): 476-486.
    [85] Cole A C, Shanahan J W, Semmens M J et al. Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater. Desalination, 2002,146(1-3): 421-426.
    [86] Hibiya K, Terada A, Tsuneda S et al. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. Journal of Biotechnology, 2003,100(1): 23-32.
    [87] Terada A, Hibiya K, Nagai J et al. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. Journal of Bioscience and Bioengineering, 2003, 95(2): 170-178.
    [88] Zanzotto A, Szita N, Boccazzi P et al. Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnology and Bioengineering, 2004, 87(2): 243-254.
    [89] Shanahan J W, Cole A C, Semmens M J et al. Acetate and ammonium diffusivity in membrane-aerated biofilms: Improving model predictions using experimental results. Water Science and Technology, 2005, 52(7): 121-126.
    [90] Ahmadi Motlagh A R, Voller V R, Semmens M J. Advective flow through membrane-aerated biofilms: Modeling results. Journal of Membrane Science, 2006,273(1-2): 143-151.
    [91] Yamagiwa K, Ohkawa A, Hirasa O. Simultaneous organic carbon removal and nitrification by biofilm formed on oxygen enrichment membrane. Journal of Chemical Engineering of Japan, 1994, 27(5): 638-643.
    [92] Yamagiwa K, Yoshida M, Ito A et al. A new oxygen supply method for simultaneous organic carbon removal and nitrification by a one-stage biofilm process. Water Science and Technology, 1998, 37(4): 117-124.
    [93] Debus O, Baumgartl H, Sekoulov I. Influence of fluid velocites on the degradation of volatile aromatic compounds in membrane bound biofilms. Water Science and Technology, 1994, 29(10-11): 253-262.
    [94] Debus O. Transport and reaction of aromatics, O_2 and CO_2 within a membrane bound biofilm in competition with suspended biomass. Water Science and Technology, 1995, 31(1): 129-141.
    [95] Casey E, Glennon B, Hamer G. Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor. Biotechnology and Bioengineering, 1999, 62(2): 183-192.
    [96] Semmens M J, Dahm K, Shanahan J et al. COD and nitrogen removal by biofilms growing on gas permeable membranes. Water Research, 2003, 37(18): 4343-4350.
    
    [97] 李慧,郑斐, 朱文亭. 利用中空纤维膜无泡供氧. 膜科学与技术,2005,31(9):42-44.
    [98]Cole A C,Semmens M J,LaPara T M.Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen.Appl Environ Microbiol,2004,70(4):1982-1989.
    [99]Casey E,Glennon B,Hamer G.Review of membrane aerated biofilm reactors.Resources,Conservation and Recycling,1999,27(1-2):203-215.
    [100]王晓东,赵新华,李霞.膜曝气生物膜反应器的研究进展.化工进展,2005,24(10):1141-1146.
    [101]Wobus A,Ro?ske I.Reactors with membrane-grown biofilms:Their capacity to cope with fluctuating inflow conditions and with shock loads of xenobiotics.Water Research,2000,34(1):279-287.
    [102]Debus O,Wanner O.Degradation of xylene by a biofilm growing on a gas-permeable membrane.Water Science and Technology,1992,26(3-4):607-616.
    [103]将柏泉,刘小兵.无泡曝气硅橡胶平板膜生物反应器处理生活污水研究.南昌大学学报(工科版),2005,27(4):21-24.
    [104]Kappell A S,Semmens M J,Novak P J et al.Novel application of oxygen-transferring membranes to improve anaerobic wastewater treatment.Biotechnology and Bioengineering,2005,89(4):373-380.
    [105]Kolb F R,Wilderer P A.Activated carbon membrane biofilm reactor for the degradation of volatile organic pollutants.Wat Sci Technol,1995,31(1):205-213.
    [106]Brindle K,Stephenson T.The application of membrane biological reactors for the treatment of wastewater.Biotechnology and Bioengineering,1996,62(2):183-192.
    [107]Pankhania M,Stephenson T,Semmens M J.Hollow fibre bioreactor for wastewater treatment using bubbleless membrane aeration.Water Research,1994,28(10):2233-2236.
    [108]Pankhania M,Brindle K,Stephenson T.Membrane aeration bioreactors for wastewater treatment:completely mixed and plug-flow operation.Chemical Engineering Journal,1999,73(2):131-136.
    [109]刘贯一,刘晓阳,孙锦程.改良生物膜法的硝化与反硝化条件实验.中国给水排水,2003,19(5):64-66.
    [110]Suzuki Y,Miyahara S,Takeishi K.Oxygen supply method using gas-permeable film for wastewater treatment.Water Science and Technology,1993,28(7):243-250.
    [111]Terada A,Yamamoto T,Igarashi R et al.Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification.Biochemical Engineering Journal,2006,28(2):123-130.
    [112]Terada A,Yamamoto T,Hibiya K et al.Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor.Water Science and Technology,2004,49(11-12):263-268.
    [113]Shin J H,Sang B I,Chung Y C et al.Feasibility study on the removal of nitrous compounds with a hollow-fiber membrane biofilm reactor.Water Science and Technology,2005,51(6-7):365-371.
    [114]张雪琴,将柏泉.无泡曝气膜生物反应器处理生活污水的研究.南昌大学学报(工科版),2003,25(2):42-45.
    [115]Gong Z,Yang F,Liu S et al.Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox.Chemosphere,2007,69(5):776-784.
    [116]Liu H J,Yang F L,Wang T H et al.Carbon membrane-aerated biofilm reactor for synthetic wastewater treatment.Bioprocess and Biosystem Engineering,2007,30(1):217-224.
    [117]张锡辉,孟庆宇.无泡曝气工艺实验研究.科技导报,2006,27(4):24-26.
    [118]沈志松,钱国芬,朱晓慧等.无泡式中空纤维膜发酵供氧的初步研究.膜科学与技术,1998,18(6):42-48.
    [119]王猛,施宪法,柴晓利.膜生物反应器处理生活污水无泡供氧研究.环境污染与防止,2002,24(6):355-356.
    [120]Matsumura M,Tsubota H,Ito O et al.Development of bioreactors for denitrification with immobilized cells.Journal of Fermentation and Bioengineering,1997,84(2):144-150.
    [121]Semmens M J,Dahm K,Shanahan Jet al.COD and nitrogen removal by biofilms growing on gas permeable membranes.Water Research,2003,37(18):4343-4350.
    [122]Zhu S,Chen S.Effects of organic carbon on nitrification rate in fixed film biofilters.Aquacultural Engineering,2001,25(1):1-11.
    [123]LaPara T M,Cole A C,Shanahan J W et al.The effects of organic carbon,ammoniacal-nitrogen,and oxygen partial pressure on the stratification of membrane-aerated biofilms.Journal of Industrial Microbiology and Biotechnology,2006,33(4):315-323.
    [124]Casey E,Glennon B,Hamer G.Biofilm development in a membrane-aerated biofilm reactor:effect of flow velocity on performance.Biotechnol Bioeng,2000,67(4):476-486.
    [125]Schramm A,De Beer D,Gieseke A et al.Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm.Environ Microbiol,2000,2(6):680-686.
    [126]Shanahan J W,Semmens M J.Multipopulation model of membrane-aerated biofilms.Environmental Science and Technology,2004,38(11):3176-3183.
    [127]Walter B,Haase C,Rabiger N.Combined nitrification/denitrification in a membrane reactor.Water Research,2005,39(13):2781-2788.
    [128]Matsumoto S,Terada A,Tsuneda S.Modeling of membrane-aerated biofilm:Effects of C/N ratio,biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification.Biochemical Engineering Journal,2007,37(1):98-107.
    [129]Bell A,Aoi Y,Terada A et al.Comparison of spatial organization in top-down- and membrane-aerated biofilms:A numerical study.Water Science and Technology,2005,52(7):173-180.
    [130]Furumai H,Rittmann B E.Evaluation of multiple-species biofilm and floc processes using a simplified aggregate model.Water Science and Technology,1994,29(10-11):439-446.
    [131]Tian Cheng Z,Fu Y C,Bishop P L.Competition for substrate and space in biofilms.Water Environment Research,1995,67(6):992-1003.
    [132]Holman J B,Wareham D G.COD,ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process.Biochemical Engineering Journal,2005,22(2):125-133.
    [133]Maidak B L,Cole J R,Lilburn T Get al.The RDP-II(Ribosomal Database Project).Nucleic Acids Research,2001,29(1):173-174.
    [134]张凤君,杜祥军,赵芝清等.中空纤维膜作生物膜载体无泡供氧处理污水研究.吉林大学学报,2005,35(2):236-238.
    [135]Terada A,Yamamoto T,Tsuneda S et al.Sequencing batch membrane biofilm reactor for simultaneous nitrogen and phosphorus removal:Novel application of membrane-aerated biofilm.Biotechnology and Bioengineering,2006,94(4):730-739.
    [136]Castillo P A,Gonzalez-Martinez S,Tejero I.Biological phosphorus removal using a biofilm membrane reactor:Operation at high organic loading rates.Water Science and Technology,1999,40(4-5):321-329.
    [137]Goncalves F R,Rogalla F.Biological phosphorous removal in fixed films reactors.Water Science and Technology,1992,25(12):165-174.
    [138]Garzon-Zuniga M A,Gonzalez-Martinez S.Biological phosphate and nitrogen removal in a biofilm sequencing batch reactor.Water Science and Technology,1996,34(9):293-301.
    [139]Grlmberg S J,Rury M J,Jlmenez K M et al.Trinitrophenol treatment in a hollow fiber membrane biofilm reactor.Water Science and Technology,2000,41(4-5):235-238.
    [140]Hage J C,van Houten R T,Tramper Jet al.Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp.strain DCA1.Applied Microbiology and Biotechnology,2004,64(8):718-725.
    [141]Li Y Z,He Y L,Ohandja D G et al.Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR:Comparative study.Bioresource Technology,2008,99(13):5867-5872.
    [142]Clapp L W,Regan J M,Ali F et al.Activity,structure,and stratification of membrane attached methanotrophic biofilms cometabolically degrading trichloroethylene.Water Science and Technology,1999,39(7):153-161.
    [143]Kappell A S,Semmens M J,Novak P J et al.Novel application of oxygen-transferring membranes to improve anaebobic wastewater treatment.Biotechnology and Bioengineering,2005,89(4):373-380.
    [144]Barnes D,Bliss P J.Biological control of nitrogen in wasterwater treatment.Cambridge:University Press,1983.
    [145]Sawyer C N,McCarty P L,Parkin G F.Chemistry for environmental engineering.New York:McGraw-Hill International Editions,1994.
    [146]Zhao H W,Mavinic D S,Oldham W K et al.Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage.Water Research,1999,33(4):961-970.
    [147]Menoud P,Wong C H,Robinson H A et al.Simultaneous nitrification and denitrification using Siporax(TM) packing.Water Science and Technology,1999,40(4-5):153-160.
    [148]Sallis P J,Uyanik S.Granule development in a split-feed anaerobic baffled reactor.Bioresource Technology,2003,89(3):255-265.
    [149]Hu B,Chen S.Pretreatment of methanogenic granules for immobilized hydrogen fermentation.International Journal of Hydrogen Energy,2007,32(15):3266-3273.
    [150]胡勇,尚连生,刘永红等.厌氧颗粒污泥床反应器污泥的流失与对策.工业用水与废水,2007,38(4):6-8.
    [151]Wang J,Huang Y,Zhao X.Performance and characteristics of an anaerobic baffled reactor.Bioresource Technology,2004,93(2):205-208.
    [152]Chu L B,Zhang X W,Yang F L et al.Treatment of domestic wastewater by using a microaerobic membrane bioreactor.Desalination,2006,189(1-3):181-192.
    [153]Gong Z,Liu S,Yang F et al.Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal.Bioresource Technology,2008,99(8):2749-2756.
    [154]国家环境保护总局编委会.水和废水监测分析方法(第四版增补版).北京:中国环境科学出版社.2006.
    [155]Laguna A,Ouattara A,Gonzalez R O et al.A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge.Water Science and Technology,1999,40(8):1-8.
    [156]Uyanik S,Sallis P J,Anderson G K.The effect of polymer addition on granulation in an anaerobic baffled reactor(ABR).Part Ⅰ:process performance.Water Research,2002,36(4):933-943.
    [157]Uyanik S,Sallis P J,Anderson G K.The effect of polymer addition on granulation in an anaerobic baffled reactor(ABR).Part Ⅱ:compartmentalization of bacterial populations.Water Research,2002,36(4):944-955.
    [158]McCarty P L,McKinney R E.Salt toxicity in anaerobic digestion.Journal of Water Pollution Control Federation,1961,33(4):399-415.
    [159]Wilderer P A,Brautigam J,Sekoulov I.Application of gas permeable membranes for auxiliary oxygenation of sequencing batch reactors.Conservation & Recycling,1985,8(1-2):181-192.
    [160]Cote P,Bersillon J L,Huyard A et al.Bubble-free aeration using membranes:process analysis.Journal of the Water Pollution Control Federation,1988,60(11):1986-1992.
    [161]Brindle K,Stephenson T,Semmens M J.Nitrification and oxygen utilisation in a membrane aeration bioreactor.Journal of Membrane Science,1998,144(1-2):197-209.
    [162]Wanner O,Debus O,Reichert P.Modelling the spatial distribution and dynamics of a xylene-degrading microbial population in a membrane-bound biofilm.Water Science and Technology,1994,29(10-11):243-251.
    [163]Rishell S,Casey E,Glennon B et al.Characteristics of a methanotrophic culture in a membrane-aerated biofilm reactor.Biotechnology Progress,2004,20(4):1082-1090.
    [164]Koresh J E,Softer A.Molecular sieve carbon permselective membrane.Part 1.Presentation fo a new device for gas mixture separation.Separation Science and Technology,1983,18(8):723-734.
    [165]Bauer J W,Elyassini J,Moncorge G.New developments and applications of carbon membranes.Key Engineering Materials,1991,61(2):207-212.
    [166]王振余,郭树才.炭膜处理染料水溶液的研究.膜科学与技术,1997,17(5):7-10.
    [167]王细凤,潘艳秋,王同华等.炭膜处理含油污水的实验研究.高校化学工程学报,2001,21(6):59-62.
    [168]Ismail A F,David L I B.A review on the latest development of carbon membranes for gas separation.Journal of Membrane Science,2001,193(1):1-18.
    [169]Venkatarman K,Choate W T,Torre E R.Characterization studies of ceramic membranes a novel technique using a coulter porometer.Journal of Membrane Science,1988,39(3):259-271.
    [170]吕常文.微孔滤膜孔隙率的简易测定法介绍.膜科学与技术,1989,9(1):42-44.
    [171] Terada A, Kaku S, Matsumoto S et al. Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with a fibrous support around a gas-permeable membrane. Biochemical Engineering Journal, 2006, 31(1): 84-91.
    [172] Zhang H M, Xiao J N, Cheng Y J et al. Comparison between a sequencing batch membrane bioreactor and a conventional membrane bioreactor. Process Biochemistry, 2006, 41(1): 87-95.
    [173] Mobarry B K, Wagner M, Urbain V et al. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Applied and Environmental Microbiology, 1996, 62(6): 2156-2162.
    [174] Manz W, Amann R I, Ludwig W et al. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Systematic and Applied Microbiology, 1992, 15: 593-600.
    [175] Satoh H, Ono H, Rulin B et al. Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors. Water Research, 2004, 38(6): 1633-1641.
    [176] Wagner M, Rath G, Amann R et al. In situ identification of ammonia-oxidizing bacteria. Systematic and Applied Microbiology, 1995,18(2): 251-264.
    [177] Suzuki Y, Hatano N, Ito S et al. Performance of nitrogen removal and biofilm structure of porous gas permeable membrane reactor. Water Science and Technology, 2000,41(4-5): 211-217.
    [178] Andreadakis A D. A comparative study of the air and oxygen activated sludge sustems. Environmental Technology Letters, 1897, 8(1): 209-220.
    [179] Namkung E, Rittmann B E. Soluble microbial products (SMP) formation kinetics by biofilms. Water Research, 1986,20(6): 759-806.
    [180] Schiener P, Nachaiyasit S, Stuckey D C. Production of soluble microbial products (SMP) in an anaerobic ba,ed reactor: composition, biodegradability, and the effect of process parameters. Environmental Technology, 1998,19(1): 391-400.
    [181] Akunna J C, Bizeau C, Moletta R. Nitrate reduction by anaerobic sludge using glucose at various nitrate concentrations: ammonification, denitrification, and methanogenic activities. Environmental Technology, 1994,15(1): 41-49.
    [182] du Preez L A, Maree J P. Pilot-scale biological sulphate and nitrate removal utilising producer gasas energy source. Water Science and Technology, 1994,30(12): 275-285.
    [183] Takai T, Hirata A, Yamauchi K et al. Effects of temperature and volatile fatty acids on nitrification-denitrification activity in small-scale anaerobic-aerobic recirculation biofilm process. Water Science and Technology, 1997,35(6): 101-108.
    [184] Akunna J C, Bizeau C, Moletta R. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Research, 1993, 27(8): 1303-1312.
    [185] Barber W P, Stuckey D C. Nitrogen removal in a modified anaerobic baffled reactor (ABR): 1, denitrification. Water Research, 2000, 34(9): 2413-2422.
    [186] Ruiz G, Jeison D, Rubilar O et al. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresource Technology, 2006, 97(2): 330.
    [187]Aguilera J,Petit T,de Winde J H et al.Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations.FEMS Yeast Research,2005,5(6-7):579-593.
    [188]陈莉莉,左剑恶,楼俞等.同时产甲烷反硝化在UASB反应器中的实现.中国沼气,2006,24(2):3-7.
    [189]McCarty P L.Kinetics of waste assimilation in anaerobic treatment.In Developments in Industrial Microbial Sciences.Washington:American Institute of Biological Sciences,1966.
    [190]El-Mahrouki I M L,Watson-Craik I A.The effects of nitrate and nitrate-supplemented leachate addition on methanogenesis from Municipal Solid Waste.Journal of Chemical Technology and Biotechnology,2004,79(8):842-850.
    [191]Evren Tugtas A,Pavlostathis S G.Inhibitory effects of nitrogen oxides on a mixed methanogenic culture.Biotechnology and Bioengineering,2007,96(3):444-455.
    [192]Barber W P,Stuckey D C.Nitrogen removal in a modified anaerobic baffled reactor(ABR):2,nitrification.Water Research,2000,34(9):2423-2432.
    [193]Kluber H D,Conrad R.Inhibitory effects of nitrate,nitrite,NO and N_2O on methanogenesis by Methanosarcina barked and Methanobacterium bryantii.FEMS Microbiology Ecology,1998,25(3):331-339.
    [194]Roy R,Conrad R.Effect of methanogenic precursors(acetate,hydrogen,propionate) on the suppression of methane production by nitrate in anoxic rice field soil.FEMS Microbiology Ecology,1999,28(1):49-61.
    [195]Wanner O.New experimental findings and biofilm modelling concepts.Water Science and Technology,1995,32(8):133-140.
    [196]Morgenroth E,Van Loosdrecht M C M,Wanner O.Biofilm models for the practitioner.Water Science and Technology,2000,41(4-5):509-512.
    [197]Wanner O,Gujer W.A multispecies biofilrn model.Biotechnology and Bioengineering,2004,28(3):314-328.
    [198]Noguera D R,Okabe S,Picioreanu C.Biofilm modeling:Present status and future directions.Water Science and Technology,1999,39(7):273-278.
    [199]Picioreanu C,van Loosdrecht M C M,Heijnen J J.A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms.Biotechnology and Bioengineering,2000,68(4):355-369.
    [200]Picioreanu C,van Loosdrecht M C M,Heijnen J J.Two-Dimensional Model of Biofilm Detachment Caused by Internal Stress from Liquid Flow.Biotechnology and Bioengineering,2001,72(2):205-218.
    [201]郝晓地,甘一萍,周军等.数学模拟技术在污水处理工艺设计、优化、研发中的应用(上).给水排水,2004,30(5):33-36.
    [202]郝晓地,甘一萍,周军等.数学模拟技术在污水处理工艺设计、优化、研发中的应用(下).给水排水,2004,30(6):16-18.
    [203]Reichert P.AQUASIM 2.0—Computer Program for the Identification and Simulation of Aquatic Systems.Dubendorf:EAWAG,1998.
    [204] Koch G, Egli K, van Dermeer J R et al. Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Science and Technology, 2000, 41(4-5): 191-198.
    
    [205] Wiesmann U. Biological nitrogen removal fromwastewater. Berlin: Springer-Verlag, 1994.
    [206] Henze M, Gujer W, Matsuo T et al. Activated sludge models ASM1, ASM2, ASM2d and ASM3. London: IWA publishing, 2000.
    [207] Picioreanu C, Kreft J U, van Loosdrecht M C M. Particle-based multidimensional multispecies biofilm model. Applied and Environmental Microbiology, 2004,70(5): 3024-3040.
    [208] Arcangeli J P, Arvin E. Modelling the growth of a methanotrophic biofilm: Estimation of parameters and variability Biodegradation, 1999,10(3): 177-191.
    [209] Van Kempen R, Mulder J W, Uijterlinde C A et al. Overview: Full scale experience of the SHARON [registered trademark] process for treatment of rejection water of digested sludge dewatering. Water Science and Technology, 2001,44(1): 145-152.
    [210] Peng Y, Zhu G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology, 2006,73(1): 15-26.
    [211] Surmacz-Gorska J, Cichon A, Miksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification. Water Science and Technology, 1997, 36(10): 73-78.
    [212] Lopez-Fiuza J, Buys B, Mosquera-Corral A et al. Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory. Enzyme and Microbial Technology, 2002,31(7): 976-985.
    [213] Hsieh Y L, Tseng S K, Chang Y J. Nitrogen removal from wastewater using a double-biofilm reactor with a continuous-flow method. Bioresource Technology, 2003,88(2): 107-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700