用户名: 密码: 验证码:
精噁唑禾草灵和解草唑的水解、光解及对大型溞的急性毒性变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究污染物的环境转化所导致的生态毒理学效应的变化,对于化学污染物的环境风险性评价具有重要意义。精噁唑禾草灵(FE)是一种芳氧苯氧丙酸类高效茎叶选择性除草剂,解草唑(FCE)是FE的安全剂;由于优良的除草性能,FE和FCE得到了广泛应用。本文研究了FE和FCE的水解和光解动力学、影响因素和降解机理,并以大型溞为实验生物研究了FE水解和光解过程的毒性变化。
     FE和FCE在不同温度和pH值条件下的水解遵循一级动力学。随着助溶剂乙腈含量的降低和温度的升高,FE和FCE的水解速率逐渐增大。FE在pH=6.0时水解速率最小,随着pH值的增加或降低,水解速率均变大。不同pH值条件下,FE的水解产物不同。酸性条件下(pH=4.0,5.1),FE水解生成了6-氯苯并噁唑酮和2-(4-羟基苯氧基)丙酸乙酯;碱性条件下(pH=8.0,9.0,10.0),FE水解生成了精噁唑禾草灵酸;中性条件下(pH=6.0,7.0),同时生成了以上3种降解产物。FCE在酸性条件下水解很慢,随着pH值的升高,水解速率逐渐增大。碱性条件下(pH=8.0,9.0,10.0),FCE水解生成了解草唑酸。建立的温度和pH值的联合等式,能够用于预测FE和FCE在缓冲溶液中的水解半减期。结果表明,当水的温度范围在10~15℃,pH值范围在6~8之间时,FE的水解半减期介于390 d和24.5 d之间,FCE的半减期介于192 d和1.7 d之间。利用Bronsted酸碱催化理论推导了所用缓冲溶液对FE和FCE水解速率的影响,结果表明缓冲溶液对它们的水解存在明显的催化作用,加快了它们的水解速率。在pH值为4.0和9.0的条件下,FE和FCE对彼此的水解速率没有影响。
     实验室研究中,在λ>200 nm和λ>290 nm的光照条件下,FE和FCE的光化学转化符合一级动力学,在λ>200 nm光照条件下光解更快。太阳光照射下,FE能够发生光解,并且丙酮的存在显著加快了其光解。不同波长光照条件下,FE的光化学转化产物相同,但不同产物生成量不同。FE通过酯键断裂、酯键断裂后脱羧、光致异构化、异构化后脱醇、光致水解、脱氯和醚键断裂等途径生成了至少15种光解产物。在λ>200nm光照条件下,主要光解产物能够进一步光解。噁唑酚作为FE的光转化产物,在λ>200 nm光照条件下的光解半减期大于母体化合物,而在λ>290 nm光照条件下几乎不光解,说明FE光解生成了比自身光解更稳定的产物。FCE在λ>200 nm光照条件下的主要光化学转化途径为光致水解和-CCl_3基团脱落;同时还发生了-CCl_3基团被-OH取代;苯环与三唑环相联的C-N键断裂和三唑环开环等反应。在λ>290 nm的光照条件下,由于光竞争作用,硝酸盐对FE和FCE的光降解起抑制作用,浓度越大抑制作用越明显。由于光解与水解的共同作用,碳酸氢盐对FE和FCE的降解起促进作用,且浓度越大促进作用越明显,并且光解对FE和FCE在碳酸氢盐溶液中的降解贡献更大。在λ>290 nm的光照条件下,FE和FCE共存时对彼此的光解速率没有影响。
     FCE在最大可测试浓度范围内,没有对大型溞表现出急性毒性。对苯二酚和噁唑酚作为FE的降解产物,对大型溞48 h急性毒性高于母体化合物,其他测试的FE降解产物的急性毒性小于母体化合物,说明FE水解后对大型溞的急性毒性降低了,而光解不完全是解毒过程。由于噁唑酚在λ>290 nm条件下不光解,因此,FE光解生成了比自身光解更稳定和毒性更大的产物。FE水解和光解的共同产物6-氯苯并噁唑酮和R-2-(4-羟基苯氧基)丙酸乙酯以等毒性比方式混合时,对大型溞的联合毒性是独立作用。
Assessing the hazard of a pesticide requires an understanding of its degradation and toxicity of the products.Fenoxaprop-p-ethyl(FE),an aryloxyphenoxypropionate herbicide,is used to selectively control annual grass weeds in broadleaf crops.Fenchlorazole-ethyl(FCE) is the safener of FE,and they have been widely used in many countries.The purpose of this study was to elucidate the hydrolysis and photolysis behaviors of FE and FCE.The effects of different influential factors on the rate constants and the pathways of hydrolysis and photolysis of them were studied.Besides,evolution of acute toxicity upon hydrolysis and photolysis of FE was assessed using Daphnia magna.
     The hydrolysis of FE and FCE follow first-order kinetics at different pH levels and temperatures.FE and FCE hydrolysis rates decreased with the increasing of the ratio of acetonitrile and were greatly increased at elevated temperatures at pH=9.0.FE was relatively stable at pH=6.0,whereas it degraded rapidly with decreasing or increasing pH values.In acidic conditions(pH=4.0,5.1),the benzoxazolyl-oxy-phenyl ether linkage of FE was cleaved to form ethyl 2-(4-hydroxyphenoxy) propanoate(EHPP) and 6-chloro-2,3-dihydrobenzoxazol -2-one(CDHB).While in basic conditions(pH=8.0,9.0,10.0), fenoxaprop-p was formed via breakdown of the ester bond of the herbicide.Both the two pathways were concurrent in near neutral conditions(pH=6.0,7.0).For FCE,half-lives were greatly reduced at elevated pH levels at 30℃.In basic conditions(pH=8.0,9.0,10.0), fenchlorazole was formed via the breakdown of the ester bond of the safener.The hydrolysis rate constants of FE and FCE as a function of temperature and pH were mathematically combined to predict the hydrolytic dissipation of them.The equations suggested that the hydrolysis half-lives of FE ranged from 390 d to 24.5 d and that of FCE ranged from 192 d to 1.7 d when temperature between 10℃and 15℃and pH between 6 and 8.The maximum contribution of buffer catalysis to the hydrolysis of FE and FCE was assessed based on application of the Bronsted equations for general acid-base catalysis.The results suggested that the buffer solutions played an obvious catalysis role in hydrolysis of FE and FCE and the hydrolysis rate of them was quickened by the buffer solutions.The existence of FCE did not have significant effects on FE hydrolysis at pH 4.0 and 9.0.And FE did not impact the hydrolysis rates of FCE too.
     Under the irradiation atλ>200 nm andλ>290 nm,the photolysis of FE and FCE followed the first-order kinetics,and photodegraded rapidly atλ>200 nm.Under solar irradiation,FE can undergo photodegradation and acetone enhanced the photolysis rates significantly.The same photoproducts of FE were formed under both high and low wavelengths irradiation experiments but relative proportions of the photoproducts were different.FE was phototransformed to at least 15 products through de-esterification,loss of carboxyl after de-esterification,rearrangement,loss of ethanol after rearrangement, dechlorination,photohydrolysis,and the breakdown of the ether linkages.The main photolysis products were photodegraded under irradiation atλ>200 nm.4-[(6-chloro-2-benzoxazolyl)oxy] phenol(CBOP) as one of the photolysis products of FE,had a slower photolysis rate than FE atλ>200 nm irradiation and was almost resistant to photolysis atλ>290 nm irradiation.Therefore,photolysis of FE resulted in a more persistent product.The major degradation pathways of FCE under irradiation atλ>200 nm were hydroxylated process and loss of trichloromethyl fragment.The trichloromethyl fragment substituted by -OH,C-N cleavage and triazole ring-opening also occurred.Under irradiation atλ>290 nm, increasing nitrate concentrations increased the half-lives of FE and FCE due to screen of the incident light.The photolysis rates of FE and FCE increased with increasing concentrations of bicarbonate due to the degradation by both photolysis and hydrolysis,and photolysis played a more important role than hydrolysis.Under irradiation atλ>290 nm,FCE did not have significant effects on FE degradation rate,and FE neither has significant effects on FCE photolysis.
     It was not possible to obtain EC_(50) value of FCE since it is higher than its solubility in water.FE transformed products,1,4-dihydroxybenzene and CBOP were more toxic to Daphnia magna than the parent FE.Other tested products of FE were less toxic to Daphnia magna than the parent,which suggested toxicity of FE to Daphnia magna decreased due to its hydrolysis but increased due to its photodegradation.Since CBOP was resistant to photolysis atλ>290 nm irradiation,FE resulted in a product more photochemically stable and toxic than itself.The binary mixture toxicity of CDHB and EHPP,which were both hydrolysis and photolysis products of FE,mixed in the ratio of their individual EC_(50) values can be predicted by independent action model.
引文
[1]张大弟,张晓红.农药污染与防治.北京:化学工业出版社.2001.
    [2]刘志俊,刘治波.世界农药发展近况.化工科技市场.1999,12:14-17.
    [3]王新国,徐汉虹,赵善欢.21世纪的杀虫剂展望.西安联合大学学报.1999,2(4):5-10.
    [4]刘长令.农用杀菌剂研究开发的新进展(一).精细与专用化学品.2000,15:5-7.
    [5]杨秀荣,刘亦学,刘水芳,等.植物生长调节剂及其研究与应用.天津农业科学.2007,13(1):23-25.
    [6]苏少泉.除草剂作用靶标与新品种创制.北京:化学工业出版社.2001.
    [7]Hatzios,K.K.,Wu,J.G.Herbicide safeners:Tools for improving the efficacy and selectivity of herbicides.Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes.1996,31(3):545-553.
    [8]Abu-Qare,A.W.,Duncan,H.J.Herbicide safeners:uses,limitations,metabolism,and mechanisms of action.Chemosphere.2002,48(9):965-974.
    [9]Davies,J.,Caseley,J.C.Herbicide safeners:a review.Pesticide Science.1999,55(11):1043-1058.
    [10]许阳光,李学锋,吕明明.除草剂中的安全剂研究进展.中国植保导刊.2004,24(1):8-11.
    [11]晓岚.除草剂安全剂的评述(下).世界农药.2000,22:26-32.
    [12]刘维屏.农药环境化学北京:化学工业出版社.2005.
    [13]Cambon,J.P.,Bastide,J.Hydrolysis kinetics of thifensulfuron methyl in aqueous buffer solutions.Journal of Agricultural and Food Chemistry.1996,44(1):333-337.
    [14]Huang,J.P.,Mabury,S.A.Hydrolysis kinetics of fenthion and its metabolites in buffered aqueous media.Joumal of Agricultural and Food Chemistry.2000,48(6):2582-2588.
    [15]Khan,M.N.,Bakar,B.B.,Yin,F.W.N.Kinetic study on acid-base catalyzed hydrolysis of azimsulfuron,a sulfonylurea herbicide.International Journal of Chemical Kinetics.1999,31(4):253-260.
    [16]Ramesh,A.,Balasubramanian,M.Kinetics and hydrolysis of fenamiphos,fipronil,and trifluralin in aqueous buffer solutions.Journal of Agricultural and Food Chemistry.1999,47(8):3367-3371.
    [17]王敏欣,朱书全.水环境中农药的水解研究分析.黑龙江科技学院学报.2004,14(2):74-77.
    [18]Kwon,J.W.,Armbrust,K.L.,Grey,T.L.Hydrolysis and photolysis of flumioxazin in aqueous buffer solutions.Pest Management Science.2004,60(9):939-943.
    [19]Morrica,P.,Barbato,F.,Dello Iacovo,R.,et al.Kinetics and mechanism of imazosulfuron hydrolysis.Journal of Agricultural and Food Chemistry.2001,49(8):3816-3820.
    [20]Comber,S.D.W.Abiotic persistence of atrazine and simazine in water.Pesticide Science.1999,55(7):696-702.
    [21]Sarmah,A.K.,Kookana,R.S.,Duffy,M.J.,et al.Hydrolysis of triasulfuron,metsulfuron-methyl and chlorsulfuron in alkaline soil and aqueous solutions.Pest Management Science.2000,56(5):463-471.
    [22] Bertrand, C, Witczak-Legrand, A., Sabadie, J., et al. Flazasulfuron: Alcoholysis, chemical hydrolysis, and degradation on various minerals. Journal of Agricultural and Food Chemistry. 2003, 51(26): 7717-7721.
    [23] Blaha, L., Klanova, J., Klan, P., et al. Toxicity increases in ice containing monochlorophenols upon photolysis: Environmental consequences. Environmental Science & Technology. 2004, 38(10): 2873-2878.
    [24] Burrows, H. D., Canle, M., Santaballa, J. A., et al. Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B-Biology. 2002, 67(2): 71-108.
    [25] Chen, J. W., Quan, X., Peijnenburg, W. J. G. M, et al. Quantitative structure-property relationships (QSPRs) on direct photolysis quantum yields of PCDDs. Chemosphere. 2001,43(2): 235-241.
    [26] Lanyi, K., Dinya, Z. Photodegradation study of some triazine-type herbicides. Microchemical Journal. 2003, 75(1): 1-14.
    
    [27] 戴树桂. 环境化学. 北京:高等教育出版社. 1996.
    [28] Lin, Y. J., Lee, A., Teng, L. S., et al. Effect of experimental factors on nitrobenzaldehyde photoisomerization. Chemosphere. 2002,48(1): 1-8.
    [29] Evgenidou, E., Fytianos, K. Photodegradation of triazine herbicides in aqueous solutions and natural waters. Journal of Agricultural and Food Chemistry. 2002, 50(22): 6423-6427.
    [30] Lam, M. W., Tantuco, K., Mabury, S. A. PhotoFate: A new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environmental Science & Technology. 2003, 37(5): 899-907.
    [31] Jacobs, L. E., Chin, Y. P., Weavers, L. K. Nitrate and dissolved organic matter's effect on the photofate of PAHs in natural waters. Abstracts of Papers of the American Chemical Society. 2005, 230: U1565-U1565.
    [32] Zhan, M. J., Yang, X., Xian, Q. M., et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere. 2006, 63(3): 378-386.
    [33] Walse, S. S., Morgan, S. L., Kong, L., et al. Role of dissolved organic matter, nitrate, and bicarbonate in the photolysis of aqueous fipronil. Environmental Science & Technology. 2004, 38(14): 3908-3915.
    [34] Dimou, A. D., Sakkas, V. A., Albanis, T. A. Trifluralin photolysis in natural waters and under the presence of isolated organic matter and nitrate ions: kinetics and photoproduct analysis. Journal of Photochemistry and Photobiology a-Chemistry. 2004,163(3): 473-480.
    [35] Liu, Y. H., Yang, R. B., Guo, Z.-Y., et al. Photolysis of triadimefon in aquatic environment and its affecting factors. Rural Eco-Environment. 2005,21(4): 68-71.
    [36] Sharpless, C. M., Seibold, D. A., Linden, K. G. Nitrate photosensitized degradation of atrazine during UV water treatment. Aquatic Sciences. 2003, 65(4): 359-366.
    [37] Kamat, P. V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews. 1993, 93(1): 267-300.
    [38] Kopf, G., Schwack, W. Photodegradation of the Carbamate Insecticide Ethiofencarb. Pesticide Science. 1995, 43(4): 303-309.
    [39]Sanz-Asensio,J.,Plaza-Medina,M.,Martinez-Soria,M.T.,et al.Study of photodegradation of the pesticide ethiofencarb in aqueous and non-aqueous media,by gas chromatography-mass spectrometry.Journal of Chromatography A.1999,840(2):235-247.
    [40]仪美芹,王开运,姜兴印,等.微生物降解农药的研究进展.山东农业大学学报(自然科学版).2002,33(4):519-524.
    [41]Zvinavashe,E.,Murk,A.J.,Vervoort,J.,et al.Quantum chemistry based quantitative structure-activity relationships for modeling the(sub)acute toxicity of substituted mononitrobenzenes in aquatic systems.Environmental Toxicology and Chemistry.2006,25(9):2313-2321.
    [42]孔志明.环境毒理学.南京:南京大学出版社.2004.
    [43]张彤,金洪钧.水生态毒理学中检测慢性毒性的短期试验方法.环境保护科学.1994,20(3):1-7.
    [44]刘国光,王莉霞,徐海娟,等.水生生物毒性试验研究进展.环境与健康杂志.2004,21(6):419-421.
    [45]严国安,沈国兴,严雪,等.农药对藻类的生态毒理学研究Ⅰ:毒性效应.环境科学进展.1999,7(5):96-106.
    [46]高世荣,许永香,郭琪,等.影响蚤类毒性试验因素的研究.解放军预防医学杂志.1989,(1):9-13.
    [47]叶伟红,刘维屏.大型蚤毒性试验应用与研究进展.环境污染治理技术与设备.2004,5(4):4-7.
    [48]Mark,U.,Solbe,J.Analysis of the ECETOC aquatic toxicity(EAT) database - V - The relevance of Daphnia magna as a representative test species.Chemosphere.1998,36(1):155-166.
    [49]刘征涛,周风帆,于红霞,等.有机毒物对水蚤的急性毒性.环境化学.1994,13(3):263-265.
    [50]EPA.,U.S.Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms.EPA-821-R-02-012.Washington:United States Environmental Protection Agency Office of Water.2002.
    [51]Tatarazako,N.,Oda,S.The water flea Daphnia magna(Crustacea,Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans.Ecotoxicology.2007,16(1):197-203.
    [52]修瑞琴.大型水溞生物测试技术研究进展.国外医学:卫生学分册.1990,17(6):335-338.
    [53]袁振华.大型水溞生物测试技术的应用研究进展.上海环境科学.1996,15(4):43-45.
    [54]沈英娃,王宏,卢灵.化学品环境管理与水生实验动物.中国比较医学杂志.2004,14(1):54-57.
    [55]林玉锁,龚瑞忠,朱忠林.农药与生态环境保护.北京:化学工业出版社.2000.
    [56]Krieger,R.I.Pesticide exposure assessment.Toxicology Letters.1995,82-3:65-72.
    [57]王萍,刘丰茂,江树人.农药接触对农业劳动者健康危害的研究进展.农药学学报.2004,6(2):9-14.
    [58]Sherer,T.B.,Richardson,J.R.,Testa,C.M.,et al.Mechanism of toxicity of pesticides acting at complex Ⅰ:relevance to environmental etiologies of Parkinson's disease.Journal of Neurochemistry.2007,100(6):1469-1479.
    [59]Sato,T.,Taguchi,M.,Nagase,H.,et al.Augmentation of allergic reactions by several pesticides.Toxicology.1998,126(1):41-53.
    [60]Shimizu,K.,Matsubara,K.,Ohtaki,K.,et al.Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture.Neuroscience Research.2003,46(4):523-532.
    [61]Wilson,S.,Dzon,L.,Reed,A.,et al.Effects of in vitro exposure to low levels of organotin and carbamate pesticides on human natural killer cell cytotoxic function.Environmental Toxicology.2004,19(6):554-563.
    [62]洪承皎,田海林,童建,等.有机磷农药对机体免疫功能的影响.卫生毒理学杂志.2000,14(1):46-47.
    [63]沈国兴,严国安,彭金良,等.农药对藻类的生态毒理学研究Ⅱ:毒性机理及其富集和降解.环境科学进展.1999,7(6):131-140.
    [64]Mohapatra,P.K.,Mohanty,L.,Mohanty,R.C.Effect of dimthoate on photosynthesis and pigment fluorescence of synechocystis sp.PCC 6803.Ecotoxicology and Environmental Safety.1997,36(3):231-237
    [65]唐学玺,李永祺,李春雁.有机磷农药对海洋微藻致毒性的生物学研究Ⅱ.久效磷胁迫下扁藻和三角褐指藻脂质过氧化伤害的研究.海洋学报.1997,19(1):139-143.
    [66]汝少国,李永祺,敬永畅.十种有机磷农药对扁藻的毒性.环境科学学报.1996,16(3):337-341.
    [67]Megharaj,M.,Venkateswarlu,K.,Rao,A.S.Effect of insecticides and phenolics on nitrogen fixation by Nostoc linckia Bulletin of Environmental Contamination and Toxicology.1988,41(2):277-281.
    [68]Barata,C.,Porte,C.,Baird,D.J.Experimental designs to assess endocrine disrupting effects in invertebrates - A review.Ecotoxicology.2004,13(6):511-517.
    [69]Bond,J.A.,Bradley,B.P.Heat-Shock Reduces the Toxicity of Malathion in Daphnia-Magna.Marine Environmental Research.1995,39(1-4):209-212.
    [70]Rosa,E.,Barata,C.,Damasio,J.,et al.Aquatic ecotoxicity of a pheromonal antagonist in Daphnia magna and Desmodesmus subspicatus.Aquatic Toxicology.2006,79(3):296-303.
    [71]Barata,C.,Navarro,J.C.,Varo,I.,et al.Changes in antioxidant enzyme activities,fatty acid composition and lipid peroxidation in Daphnia magna during the aging process.Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology.2005,140(1):81-90.
    [72]Guilhermino,L.,Lopes,M.C.,Carvalho,A.P.,et al.Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna.Chemosphere.1996,32(4):727-738.
    [73]Kashian,D.R.Toxaphene detoxification and acclimation in Daphnia magna:do cytochrome P-450enzymes play a role? Comparative Biochemistry and Physiology C-Toxicology & Pharmacology.2004,137(1):53-63.
    [74]Tarrant,K.A.,Field,S.A.,Langton,S.D.,et al.Effects on earthworm populations of reducing pesticide use in arable crop rotations.Soil Biology & Biochemistry.1997,29(3-4):657-661.
    [75]Rida,A.M.M.A.,Bouche,M.B.Earthworm toxicology:From acute to chronic tests.Soil Biology & Biochemistry.1997,29(3-4):699-703.
    [76]Singh,J.,Singh,D.K.Available nitrogen and arginine deaminase activity in groundnut(Arachis hypogaea L.) fields after imidacloprid,diazinon,and lindane treatments.Journal of Agricultural and Food Chemistry.2005,53(2):363-368.
    [77]Prado,A.G.S.,Airoldi,C.Effect of the pesticide 2,4-D on microbial activity of the soil monitored by microcalorimetry.Thermochimica Acta.2000,349(1-2):17-22.
    [78]Mileson,B.E.,Chambers,J.E.,Chen,W.L.,et al.Common mechanism of toxicity:A case study of organophosphorus pesticides.Toxicological Sciences.1998,41(1):8-20.
    [79]Soderlund,D.M.,Clark,J.M.,Sheets,L.P.,et al.Mechanisms of pyrethroid neurotoxicity:implications for cumulative risk assessment.Toxicology.2002,171(1):3-59.
    [80]马承铸,顾真荣.环境激素类化学农药污染及其监控(综述).上海农药学报.2003,19(4):98-103.
    [81]孟海涛,王丽君,由京周,等.环境激素类农药的危害.职业卫生与应急救援.2003,21(3):125-127.
    [82]詹宁育.农药杀虫剂的雄性生殖毒理学研究进展.国外医学卫生学分册.2000,27(2):92-96.
    [83]杨先乐,湛嘉,黄艳平.有机磷农药对水生生物毒性影响的研究进展.上海水产大学学报.2002,11(4):378-382.
    [84]Akbarsha,M.A.,Sivasamy,P.Male reproductive toxicity of phosphamidon:histopathoiogical changes in epididymis.Indian Journal of Experimental Biology 1998,36(1):34-38.
    [85]Pant,N.,Srivastava,S.C.,Prasad,A.K.,et al.Effects of carbaryl on the rat's male reproductive system Veterinary and Human Toxicology.1995,37(5):421-425.
    [86]Settimi,L.,Masina,A.,Andrion,A.,et al.Prostate cancer and exposure to pesticides in agricultural settings.International Journal of Cancer.2003,104(4):458-461.
    [87]Alavanja,M.C.R.,Dosemeci,M.,Samanic,C.,et al.Use of agricultural pesticides and lung cancer risk in the agricultural health study cohort.Epidemiology.2004,15(4):S178-S179.
    [88]Sanderson,W.T.,Talaska,G.,Zaebst,D.,et al.Pesticide prioritization for a brain cancer case-control study.Environmental Research.1997,74(2):133-144.
    [89]Bolognesi,C.Genotoxicity of pesticides:a review of human biomonitoring studies.Mutation Research-Reviews in Mutation Research.2003,543(3):251-272.
    [90]Ritchie,J.M.,Vial,S.L.,Fuortes,L.J.,et al.Organochlorines and risk of prostate cancer.Journal of Occupational and Environmental Medicine.2003,45(7):692-702.
    [91]Bolognesi,C.,Perrone,E.,Landini,E.Micronucleus monitoring of a floriculturist population from western Liguria,Italy.Mutagenesis.2002,17(5):391-397.
    [92]Swenson,A.,Bushhouse,S.A.Childhood cancer incidence and trends in Minnesota,1988-94.American Journal of Epidemiology.1998,147(11):S43-S43.
    [93]Garry,V.F.Pesticides and children.Toxicology and Applied Pharmacology.2004,198(2):152-163.
    [94]王鸣华,章维华,蒋木更.野燕麦除草剂的研究进展.农药.2003,42(8):6-7,5.
    [95]Hendley,P.,Dicks,J.W.,Monace,T.J.,et al.Translocation and metabolism of pyridinyloxyphenoxypropanoate herbicides in rhizomatous quackgrass(Agropyron repens).Weed science.1985,33(1):11-24.
    [96]Gorbach,S.G.,Kuenzler,K.,Asshauer,J.The metabolism of Hoe 23408 OH in wheat.Journal of Agricultural and Food Chemistry.1977,25(3):507-511.
    [97]Smith,A.E.Persistence and transformation of the herbicides[14C]fenoxaprop-ethyl and [14C]fenthiaprop-ethyl in two prairie soils under laboratory and field conditions Journal of Agricultural and Food Chemistry.1985,33(3):483-488.
    [98]朱国念,赵莉.氰氟草酯在池塘水中的生物降解.农业环境保护.2002,21(2):153-155.
    [99]Smith,A.E.Degradation of the herbieide diclofop-methyl in Prairie soil.Journal of Agricultural and Food Chemistry.1977,25(4):893-898.
    [100]Smith,A.E.Degradation of the Herbicide Dichlorfop-Methyl in Prairie Soils.Journal of Agricultural and Food Chemistry.1977,25(4):893-898.
    [101]汤富彬,朱国念.土壤中精喹禾灵残留测定及微生物降解研究.农业环境科学学报.2006,(25):742-745.
    [102]Negre,M.,Gennari,M.,Cignetti,A.,et al.Degradation of Fluazifop-butyl in Soil and Aqueous Systems.Journal of Agricultural and Food Chemistry.1988,36(6):1319-1322.
    [103]蔡喜运.环糊精和腐殖酸对手性除草剂禾草灵的水生毒理和生物有效性影响研究:(博士学位论文).杭州:浙江大学,2006.
    [104]朱国念,吴刚,赵莉,等.氰氟草酯及其活性代谢物在水溶液中的光化学降解研究.农药学学报.2003,5(3):65-70.
    [105]刘维屏,许惠庆,陈子雯,等.禾草灵在大田系统中迁移、降解动态规律研究.环境化学.1991,10(2):48-54.
    [106]Mwalilino,J.K.,Zhu,G.N.,Zhao,L.,et al.Degradation of cyhalofop-butyl(XDE-537) in soil.Acta Agriculturae Zhejiangensis.2002,14(4):205-209.
    [107]Tal,A.,Zarka,S.,Rubin,B.Fenoxaprop-P resistance in Phalaris minor conferred by an insensitive acetyl-coenzyme A carboxylase.Pesticide Biochemistry and Physiology.1996,56(2):134-140.
    [108]Burton,J.D.,Gronwald,J.W.,Somers,D.A.,et al.Kinetics of inhibition of acetyl-coenzyme A carboxylase by sethoxydim and haloxyfop.Pesticide biochemistry and physiology 1991,39(2):100-109.
    [109]Lee,W.M.,Elliott,J.E.,Brownsey,R.W.Inhibition of acetyl-CoA carboxylase isoforms by pyridoxal phosphate.Journal of Biological Chemistry.2005,280(51):41835-41843.
    [110]Sasaki,Y.,Nagano,Y.Plant acetyl-CoA carboxylase:Structure,biosynthesis,regulation,and gene manipulation for plant breeding.Bioscience Biotechnology and Biochemistry.2004,68(6):1175-1184.
    [111]黄帆,郭正元,徐珍.氰氟草酯和精噁唑禾草灵对三叶浮萍的毒性效应.中国农学通报.2006,22(11):406-409.
    [112]Leist,K.H.Toxicity test of HOE 33171 OH AT 203 in a 32-day Study with SPF-mice.Hoechst Report # 336/80.DPR 51910-005,#114443.1980.
    [113]顾军,钟义红,环飞,等.高效吡氟氯禾灵致突变性及大鼠亚慢性毒性研究.江苏预防医学.2006,17(4):58-61.
    [114]陈日萍,陈彤,俞少勇,等.芳氧苯氧丙酸类除草剂对大鼠睾丸生精细胞的损伤作用.浙江省医学科学院学报.2006,(4):22-25.
    [115]Betancourt,M.,Resendiz,A.,Casas,E.,et al.Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assisted semen analysis(CASA) in vitro.Reproductive Toxicology.2006,22(3):508-512.
    [116]任乙,曹德昌,周益民,等.骠马防除小麦田杂草技术.杂草科学.1991,(4):14-17.
    [117]Bieringer,H.,Horlein,G.,Langeluddeke,P.Hoe 33171 -- A new selective herbicide for the control of annual and perennial warm climate grass weeds in broadleaf crops.Brighton Crop Protection Conference-Weed.1982:11-17.
    [118] Hansen, O. C, Institut, T. Quantitative Structure-Activity Relationships (QSAR) and Pesticides. Danish Ministry of the Environment, Environmental Protection Agency. 2004,94.
    [119] Yaacoby, T., Hall, J. C, Stephenson, G. R. Influence of fenchlorazole-ethyl on the metabolism of fenoxaprop-ethyl in wheat, barley, and crabgrass Pesticide Biochemistry and Physiology. 1991, 41: 296-304.
    [120] Edwards, R., Cole, D. J. Glutathione transferases in wheat (Triticum) species with activity toward fenoxaprop-ethyl and other herbicides. Pesticide Biochemistry and Physiology. 1996, 54(2): 96-104.
    [121] Cummins, I., Edwards, R. Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. Plant Journal. 2004, 39(6): 894-904.
    [122] Zhang, A. P., Liu, W. P., Wang, L. M., et al. Characterization of Inclusion Complexation between Fenoxaprop-p-ethyl and Cyclodextrin. Journal of Agricultural and Food Chemistry. 2005, 53(18): 7193 -7197.
    [123] D'Ascenzo, G., Gentili, A., Marchese, S., et al. Multiresidue method for determination of post emergence herbicides in water by HPLC/ESI/MS in positive ionization mode. Environmental Science & Technology. 1998, 32(9): 1340-1347.
    [124] Huff, H. P., Bottner, B., Ebert, E., et al. HOE 04630-the optical active isomer of fenoxaprop-ethyl for broad spectrum grass-weed control in dicotyledonous crops. British Crop Protection Conference-Weeds. 1989: 717-722.
    [125] Cartwright, D. The synthesis, stability and biological activity of the enantiomers of pyridylxoyphenoxypropionates. British Crop Protection Conference-Weeds. 1989, (707-716).
    [126] Stoklosa, A., Kiec, J. Studies on wild oat (Avena fatua L.) resistance to fenoxaprop-P. Journal of Plant Diseases and Protection. 2006: 115-122.
    [127] Letouze, A., Gasquez, J. Inheritance of fenoxaprop-P-ethyl resistance in a blackgrass (Alopecurus myosuroides Huds.) population. Theoretical and Applied Genetics. 2001, 103(2-3): 288-296.
    [128] Cocker, K. M., Moss, S. R., Coleman, J. O. D. Multiple mechanisms of resistance to fenoxaprop-P-ethyl in United Kingdom and other European populations of herbicide-resistant Alopecurus myosuroides (Black-Grass). Pesticide Biochemistry and Physiology. 1999, 65(3): 169-180.
    [129] Kuk, Y. I., Wu, J. R., Derr, J. F., et al. Mechanism of fenoxaprop resistance in an accession of smooth crabgrass (Digitaria ischaemum). Pesticide Biochemistry and Physiology. 1999, 64(2): 112-123.
    [130] Bakkali, Y., Ruiz-Santaella, J. P., Osuna, M. D., et al. Late watergrass (Echinochloa phyllopogon): Mechanisms involved in the resistance to fenoxaprop-p-ethyl. Journal of Agricultural and Food Chemistry. 2007, 55(10): 4052-4058.
    [131] Romano, M. L., Stephenson, G. R., Abraham, T., et al. The effect of monooxygenase and glutathione S-transferase inhibitors on the metabolism of diclofop-methyl and fenoxaprop-ethyl in barley and wheat. Pesticide biochemistry and physiology 1993,46 (3): 181-189.
    [132] Tal, A., Romano, M. L., Stephenson, G. R., et al. Glutathione conjugation: a detoxification pathway for fenoxaprop-ethyl in barley, crabgrassl, oat, and wheat. Pesticide biochemistry and physiology. 1993, 46(3): 190-199.
    [133] Wink O., Dorn E., K., B. Metabolism of the herbicide Hoe 33171 in soybeans. Journal of Agricultural and Food Chemistry. 1984, 32(2): 187-192.
    [134]Kocher,H.,Kellner,H.M.,Lotzsch,K.,et al.Mode of action on metabolic fate of the herbicide fenoxaprop-ethyl,HOE 33171.British Crop Protection Conference-Weeds.1982:341-347.
    [135]Gennari,M.,Vincenti,M.,Negre,M.,et al.Microbial-Metabolism of Fenoxaprop-Ethyl.Pesticide Science.1995,44(3):299-303.
    [136]Song,L.Y.,Hua,R.M.,Zhao,Y.C.Biodegradation of fenoxaprop-p-ethyl by bacteria isolated from sludge.Journal of Hazardous Materials.2005,118(1-3):247-251.
    [137]宋立岩,花日茂,赵由才.精噁唑禾草灵微生物降解的初步研究.环境化学.2005,24(2):193-195.
    [138]Hoagland R.E.,R.M.,Z.Biotransformations of fenoxaprop-ethyl by fluorescent pseudomonas strains.Journal of Agricultural and Food Chemistry.1998,46(11):4759-4765.
    [139]贾福艳.精恶唑禾草灵在土壤及甘蓝中残留动态及在土壤中吸附特性研究.吉林:吉林农业大学,2004.
    [140]Zablotowicz,R.M.,Hoagland,R.E.,Staddon,W.J.,et al.Effects of pH on chemical stability and de-esterification of fenoxaprop-ethyl by purified enzymes,bacterial extracts,and soils.Journal of Agricultural and Food Chemistry.2000,48(10):4711-4716.
    [141]Toole,A.P.,Crosby,D.G.Environmental persistence and fate of feoxaprop-ethyl.Environmental Toxicology and Chemistry.1989,8:1171-1176.
    [142]朱国念,刘惠君,朱金文.噁唑禾草灵在小麦及土壤环境中的残留与降解研究.农药.2000,39(5):19-21.
    [143]Zablotowicz R.M.,Hoagland R.E.,Staddon W.J.,et al.Effects of pH on Chemical stability and de-esterification of fenoxaprop-ethyl by purified enzymes,bacterial extracts,and soils.Journal of Agricultural and Food Chemistry.2000,48(10):4711-4716.
    [144]Pusino,A.,Petretto,S.,Gessa,C.Montmorillonite surface-catalyzed hydrolysis of fenoxaprop-ethyl.Journal of Agricultural and Food Chemistry.1996,44(4):1150-1154.
    [145]Available at website:http://www.epa.gov/fedrgstr/EPA-PEST/1998/January/Day-09/p556.htm.
    [146]张微,潘灿平.一些农药和兽药的ADI值.中国兽药杂志.2005,39(3):39-45.
    [147]黄长江,于允府.一种优良除草剂骠马S.山西化工.1992,2:59.
    [148]State of California environmental protection agency.Chemical known to the state to cause cancer or reproductive toxicity.Available at website:www.oecd.org/dataoecd/5/37/2752836.pdf.1999.
    [149]杨志强,董波,吴进才.普通小球藻对嗪草酮、骠马和甲草胺的敏感性研究.应用生态学报.2004,15(9):1621-1625.
    [150]黄帆,郭正元,徐珍,等.氰氟草酯和精噁唑禾草灵对蝌蚪的毒性研究.农业环境科学学报.2007,26(3):1063-1066.
    [151]张贵生,傅荣恕.除草剂精噁唑禾草灵对鲦红细胞微核及核异常的影响.菏泽学院学报.2006,28(2):84-86.
    [152]张贵生.镧和精恶唑禾草灵对餐鲦红细胞微核及核异常的影响.水产科学.2007,26(7):408-410
    [153]Braconi,D.,Sotgiu,M.,Millucci,L.,et al.Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain.Journal of Agricultural and Food Chemistry.2006,54(8):3163-3172.
    [154]黄曦.日本修订农残标准企业应引起重视.中国检验检疫.2004,7:31.
    [155]Yaacoby,T.,Hall,J.C.,Stephenson,G.R.Influence of fenchlorazole-ethyl on the metabolism of fenoxaprop-ethyl in Wheat,Barley,and Crabgrass.Pesticide biochemistry and physiology.1991,41(33).
    [156]Bieringer,H.,Bauer,K.,Heubach,G.,et al.Hoe 70542 - A new molecule for use in combination with fenoxaprop-ethyl allowing selective post-emergence grass weed control in wheat.Brighton Crop Protection Conference-Weed.1989:77-82.
    [157]Romano M.L.,Tal A.,Yaacoby T.,et al.Metabolism of the herbicide safener fenchlorazole-ethyl in wheat,barley,and Digitaria ischaemum.Brighton Crop Protection Conference-Weed.1991:1087-1096.
    [158]Steen,R.J.C.A.,Bobeldijk,I.,Brinkman,U.A.T.Screening for transformation products of pesticides using tandem mass spectrometric scan modes.Journal of Chromatography A.2001,915(1-2):129-137.
    [159]黄锡斌.HOE70542-用于与噁唑禾草灵混配使用的新型麦田选择性除草剂.农药译从.1994,16(1):58-60.
    [160]Tal,J.A.,Hall,J.C.,Stephenson,G.R.Nonenzymatic Conjugation of Fenoxaprop-Ethyl with Glutathione and Cysteine in Several Grass Species.Weed Research.1995,35(3):133-139.
    [161]Thom,R.,Cummins,I.,Dixon,D.P.,et al.Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification.Biochemistry.2002,41(22):7008-7020.
    [162]Cummins,I.,Cole,D.J.,Edwards,R.Purification of multiple glutathione transferases involved in herbicide detoxification from wheat(Triticum aestivum L.) treated with the safener fenchlorazole-ethyl.Pesticide Biochemistry and Physiology.1997,59(1):35-49.
    [163]Kocher H.,Butiner E.,Schmidt E.,et al.Influence of Hoe 70542 on the behavior of fenoxaprop-ethyl in wheat.Brighton Crop Protection Conference-Weed.1989:495-500.
    [164]Lin,K.D.,Yuan,D.X.,Z.,D.Y.,et al.Hydrolytic Products and Kinetics of Triazophos in Buffered and Alkaline Solutions with Different Values of pH.journal of Agricultural and Food Chemistry.2004,52(17):5404-5411.
    [165]Noblet,J.A.,Smith,L.A.,Suffet,I.H.Influence of natural dissolved organic matter,temperature,and mixing on the abiotic hydrolysis of triazine and organophosphate pesticides.Journal of Agricultural and Food Chemistry.1996,44(11):3685-3693.
    [166]Liu,B.,McConnell,L.L.,Torrents,A.Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay.Chemosphere.2001,44(6):1315-1323.
    [167]Greenhalgh,R.,Dhawan,K.L.,P,W.Hydrolysis of fenitrothion in model and natural aquatic systems.Journal of Agricultural and Food Chemistry.1980,28(1):102-105.
    [168]Morrica,P.,Trabue,S.,Anderson,J.J.,et al.Kinetics and Mechanism of Cymoxanil Degradation in Buffer Solutions Journal of Agricultural and Food Chemistry.2004,52(1):99-104.
    [169]Lartiges,S.B.,Garrigues,P.P.Degradation Kinetics of Organophosphorus and Organonitrogen Pesticides in Different Waters under Various Environmental-Conditions.Environmental Science &Technology.1995,29(5):1246-1254.
    [170]Hong,F.,Win,K.Y.,Pehkonen,S.O.Hydrolysis of terbufos using simulated environmental conditions:rates,mechanisms,and product analysis.Journal of Agricultural and Food Chemistry.2001,49(12):5866-5873.
    [171]Hong,F.,Pehkonen,S.Hydrolysis of phorate using simulated environmental conditions:Rates,mechanisms,and product analysis.Journal of Agricultural and Food Chemistry.1998,46(3):1192-1199.
    [172]Zepp,R.G.,Lee Wolfe,N.,Gordon,J.A.,et al.Dynamics of 2,4-D esters in surface waters:hydrolysis,photolysis,and vaporization.Environmental Science & Technology.1975,9(13):1144-1150.
    [173]Pierpoint,A.C.,Hapeman,C.J.,Torrents,A.Kinetics and mechanism of amitraz hydrolysis.Journal of Agricultural and Food Chemistry.1997,45(5):1937-1939.
    [174]傅玉普,郝策,曹殿学.多媒体物理化学.大连:大连理工出版社.1998.
    [175]Beltran,E.,Fenet,H.,Cooper,J.F.,et al.Kinetics of abiotic hydrolysis of isoxaflutole:Influence of pH and temperature in aqueous mineral buffered solutions.Journal of Agricultural and Food Chemistry.2000,48(9):4399-4403.
    [176]赵莉.氰氟草酯在稻田生态系统中的降解研究.杭州:浙江大学硕士论文,2001.
    [177]Negre,M.,Gennari,M.,Cignetti,A.,et al.Degradation of fluazifop-butyl in soil and aqueous systems.Journal of Agricultural and Food Chemistry.1988,36(6):1319-1322.
    [178]Feng,L.,Zhang,W.H.,Han,S.K.,et al.Hydrolysis kinetics of phenylthio-carboxylates.Chemosphere.1996,32(9):1691-1697.
    [179]Dinelli,G.,Vicari,A.,Bonetti,A.,et al.Hydrolytic dissipation of four sulfonylurea herbicides.Journal of Agricultural and Food Chemistry.1997,45(5):1940-1945.
    [180]杜左强.基于对象的空间数据库的方位查询算法.信息技术.2004,28(7):98-100.
    [181]Braschi,I.,Calamai,L.,Cremonini,M.A.,et al.Kinetics and hydrolysis mechanism of triasulfuron.Journal of Agricultural and Food Chemistry.1997,45(11):4495-4499.
    [182]Mabey,W.,Mill,T.Critical review of hydrolysis of organic compounds in water under environmental conditions.Journal of Physical and Chemical Reference Data.1978,7(2):383-415.
    [183]Perdue,E.M.,Wolfe,N.L.Prediction of buffer catalysis in field and laboratory studies of pollutant hydrolysis reactions.Environmental Science & Technology.1983,17(11):635-642.
    [184]石晓勇,史致丽.黄河口磷酸盐缓冲机制的探讨,Ⅲ.磷酸盐交叉缓冲图及”稳定pH范围”.海洋与湖泊.2000,31(5):441-447.
    [185]赵亮,魏皓,冯世筰.渤海氮磷营养盐的循环和收支.环境科学.2002,23(1):78-81.
    [186]Hoagland,R.E.,Zablotowicz,R.M.Biotransformations of fenoxaprop-ethyl by fluorescent Pseudomonas strains.Journal of Agricultural and Food Chemistry.1998,46(11):4759-4765.
    [187]Bonnemoy,F.,Lavedrine,B.,Boulkamh,A.Influence of UV irradiation on the toxicity of phenylurea herbicides using Microtox(R) test.Chemosphere.2004,54(8):1183-1187.
    [188]展漫军,杨曦,孔令仁.天然水体中亚硝酸根和硝酸根的光化学研究进展.环境污染治理技术与设备.2004,5(10):14-19.
    [189]邓南圣,吴峰.环境光化学.北京:化学工业出版社.2003 30.
    [190]Tissot,A.,Boule,P.,Lemaire,J.Photochemistry and environment.Ⅶ.The photohydrolysis of chlorobenzene.Studies of the excited state involved.Chemosphere.1984,13(3):381-389.
    [191]Chu,W.,Tsui,S.M.Photoreductive model of Disperse Orange 11 in aqueous acetone and triethylamine.Journal of Environmental Engineering-Asce.2001,127(8):741-747.
    [192]Low,G.K.-C.,Batley,G.E.,Brockbank,C.I.Solvent-induced photodegradation as a source of error in the analysis of polycyclic aromatic hydrocarbons.Journal of Chromatography.1987,392:199-210.
    [193]Chu,W.,Jafvert,C.T.Photodechlorination of Polychlorobenzene Congeners in Surfactant Micelle Solutions.Environmental Science and Technology.1994,28(13):2415-2422.
    [194]Vulliet,E.,Emmelin,C.,Chovelon,J.M.Influence of pH and irradiation wavelength on the photochemical degradation of sulfonylureas.Journal of Photochemistry and Photobiology a-Chemistry.2004,163(1-2):69-75.
    [195]Zertal,A.,Sehili,T.,Boule,P.Photochemical behaviour of 4-chloro-2-methylphenoxyacetic acid-Influence of pH and irradiation wavelength.Journal of Photochemistry and Photobiology a-Chemistry.2001,146(1-2):37-48.
    [196]Meunier,L.,Boule,P.Direct and induced phototransformation of mecoprop [2-(4-chloro-2-methylphenoxy)propionic acid]in aqueous solution.Pest Management Science.2000,56(12):1077-1085.
    [197]Jirkovsky,J.,Faure,V.,Boule,P.Photolysis of diuron.Pesticide Science.1997,50(1):42-52.
    [198]Bunce,N.J.,Bergsma,J.P.,Bergsma,M.D.,et al.Structure and mechanism in the photoreduction of aryl chlorides in alkane solvents.Journal of Organic Chemistry 1980,45(18):3708-3713
    [199]Climent,M.J.,Miranda,M.A.Photodegradation of dichlorprop and 2-naphthoxyacetic acid in water.Combined GC-MS and GC-FTIR study.Journal of Agricultural and Food Chemistry.1997,45(5):1916-1919.
    [200]DeLorenzo,M.E.,Scott,G.I.,Ross,P.E.Toxicity of pesticides to aquatic microorganisms:A review.Environmental Toxicology and Chemistry.2001,20(1):84-98.
    [201]Hequet,V.,Gonzalez,C.,Le Cloirec,P.Photochemical processes for atrazine degradation:Methodological approach.Water Research.2001,35(18):4253-4260.
    [202]Zepp,R.G.,Hoigné,J.,Bader,H.Nitrate-induced photooxidation of trace organic chemicals in water Environmental Science and Technology.1987,21(5):443-450.
    [203]Malouki,M.A.,Lavedrine,B.,Richard,C.Phototransformation of methabenthiazuron in the presence of nitrate and nitrite ions.Chemosphere.2005,60(11):1523-1529.
    [204]Machado,F.,Boule,P.Photonitration and Photonitrosation of Phenolic Derivatives Induced in Aqueous-Solution by Excitation of Nitrite and Nitrate Ions.Journal of Photochemistry and Photobiology a-Chemistry.1995,86(1-3):73-80.
    [205]Peller,J.,Wiest,O.,Kamat,P.V.Hydroxyl radical's role in the remediation of a common herbicide,2,4-dichlorophenoxyacetic acid(2,4-D).Journal of Physical Chemistry A 2004,108(50):10925-10933
    [206]岳永德,汤锋,花日茂,等.混和农药及表面活性剂对毒死蜱光解影响的研究.安徽农业大学学报.2000,27(1):1-4.
    [207]Abu-Qare,A.W.,Duncan,H.J.Photodegradation of the herbicide EPTC and the safener dichlormid,alone and in combination.Chemosphere.2002,46(8):1183-1189.
    [208]Sinclair,C.J.,Boxall,A.B.A.Assessing the ecotoxicity of pesticide transformation products.Environmental Science & Technology.2003,37(20):4617-4625.
    [209]Belfroid,A.C.,van Drunen,M.,Beek,M.A.,et al.Relative risks of transformation products of pesticides for aquatic ecosystems.Science of the Total Environment.1998,222(3):167-183.
    [210]EU.Guidance Document of the Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated Under Council Directive 91/414/EEC;Sanco/221/2000-rev.10.2003.
    [211]USEPA.Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms(Fifth edition),U.S.Environmental Protection Agency,EPA-821-R-02-012,Office of Water,Washington,DC.2002.
    [212]OECD.Guidelines for testing chemicals.201.Alga,Growth Inhibition Test.Paris:Organisation for Economic Co-operation and Development,1984.
    [213]OECD.Guidelines for testing chemicals.202.Daphnia sp.acute immobilization test and reproduction test.Paris:Organisation for Economic Co-operation and Development,1984.
    [214]水质物质对蚤类(大型蚤)急性毒性测定方法(GB/T13266-1991).
    [215]Wright,D.A.,Welboum,P.Environmental Toxicology.Cambridge:Cambridge University Press.2002:28-29.
    [216]Lilius,H.,Hastbacka,T.,Isomaa,B.A Comparison of the Toxicity of 30 Reference Chemicals to Daphnia-Magna and Daphnia-Pulex.Environmental Toxicology and Chemistry.1995,14(12):2085-2088.
    [217]Available at:http://cfpub.epa.gov/ecotox/.
    [218]Ingelse,B.A.,Reijenga,J.C.,Flieger,M.,et al.Capillary electrophoretic separation of herbicidal enantiomers applying ergot alkaloids.Journal of Chromatography A.1997,791(1-2):339-342.
    [219]ECOSAR 1998.ECOSAR Classes for Microsoft Windows(ECOWIN v0.99C).USEPA,Washington,DC.
    [220]陈景文.有机污染物定量结构-性质关系与定量结构-活性关系.大连:大连理工大学出版社.1999.
    [221]王连生.有机污染化学.北京:高等教育出版社.2004.
    [222]Verhaar,H.J.M.,Van Leeuwen,C.J.,Hermens,J.L.M.Classifying environmental pollutants.1:Structure-activity relationships for prediction of aquatic toxicity..Chemosphere.1992,(25):471-491.
    [223]Hoshi Sakoda,M.,Usui,K.,Ishizuka,K.,et al.Structure-activity relationships of benzoxazolinones with respect to auxin-induced growth and auxin-binding protein.Phytochemistry.1994,37(2):297-300.
    [224]Bravo,H.R.,Lazo,W.Antialgal and antifungal activity of natural hydroxamic acids and related compounds.Journal of Agricultural and Food Chemistry.1996,44(6):1569-1571.
    [225]Harder,A.,Escher,B.I.,Landini,P.,et al.Evaluation of bioanalytical assays for toxicity assessment and mode of toxic action classification of reactive chemicals.Environmental Science &Technology.2003,37(21):4962-4970.
    [226]Bravo,H.R.,Copaja,S.V.,Lazo,W.Antimicrobial activity of natural 2-benzoxazolinones and related derivatives.Journal of Agricultural and Food Chemistry.1997,45(8):3255-3257.
    [227]Schuurmann,G.,Aptula,A.O.,Kuhne,R.,et al.Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay.Chemical Research in Toxicology.2003,16(8):974-987.
    [228]Schultz,T.W.,Sinks,G.D.,Cronin,M.T.D.Quinone-induced toxicity to Tetrahymena:structure-activity relationships.Aquatic Toxicology.1997,39(3-4):267-278.
    [229]程迪.部分农药品种生产污染物治理技术简介.中国农药.2007,(2):29-35.
    [230]Cai,X.Y.,Liu,W.P.,Jin,M.Q.,et al.Relation of diclofop-methyl toxicity and degradation in algae cultures.Environmental Toxicology and Chemistry.2007,26(5):970-975.
    [231]Broderius,S.J.,Kahl,M.D.,Hoglund,M.D.Use of Joint Toxic Response to Define the Primary-Mode of Toxic Action for Diverse Industrial Organic-Chemicals.Environmental Toxicology and Chemistry.1995,14(9):1591-1605.
    [232]孙金秀,姚佩佩.化学物质联合作用的危险性评价.国外医学卫生学分册.1997,24(6):332-336.
    [233]Bliss,C.I.The toxicity of poisons applied jointly.Annual Applied Biology.1939,26(5):585-615.
    [234]Backhaus,T.,Faust,M.,Scholze,M.,et al.Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action.Environmental Toxicology and Chemistry.2004,23(2):258-264.
    [235]Faust,M.,Altenburger,R.,Backhaus,T.,et al.Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants.Aquatic Toxicology.2001,56(1):13-32.
    [236]Junghans,M.,Backhaus,T.,Faust,M.,et al.Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction.Pest Management Science.2003,59(10):1101-1110.
    [237]Junghans,M.,Backhaus,T.,Faust,M.,et al.Toxicity of sulfonylurea herbicides to the green alga Scenedesmus vacuolatus:Predictability of combination effects.Bulletin of Environmental Contamination and Toxicology.2003,71(3):585-593.
    [238]Nirmalakhandan,N.,Xu,S.,Trevizo,C.,et al.Additivity in microbial toxicity of nonuniform mixtures of organic chemicals.Ecotoxicology and Environmental Safety.1997,37(1):97-102.
    [239]Altenburger,R.,Backhaus,T.,Boedeker,W.,et al.Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri:Mixtures composed of similarly acting chemicals.Environmental Toxicology and Chemistry.2000,19(9):2341-2347.
    [240]Backhaus,T.,Altenburger,R.,Boedeker,W.,et al.Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri.Environmental Toxicology and Chemistry.2000,19(9):2348-2356.
    [241]Altenburger,R.,Schmitt,H.,Schuurmann,G.Algal toxicity of nitrobenzenes:Combined effect analysis as a pharmacological probe for similar modes of interaction.Environmental Toxicology and Chemistry.2005,24(2):324-333.
    [242]Faust,M.,Altenburger,R.,Backhaus,T.,et al.Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action.Aquatic Toxicology.2003,63(1):43-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700