用户名: 密码: 验证码:
压电激励的无损及裂纹梁系统的力电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构中裂纹的存在及其不断的扩展,对结构安全性构成了重大的威胁。利用主动式压电传感器的力电转换特性,将其集成在结构中,可以进行结构在线健康监测。然而,结构中的裂纹对压电传感器的电阻抗的影响规律尚不十分清楚。因此,开展压电单元激励的完整或含裂纹结构的力电特性的深入研究,具有重要的理论和实际应用价值。本文主要采用解析的分析方法,并结合有限元方法和实验研究方法,系统研究压电单元与无损梁或裂纹梁的相互作用,分析梁系统的力电特性。获得的主要研究成果有:
     (1)在阻抗法和等效电路法的基础上,提出有限阻抗单元法,将其应用于梁形压电智能结构的解析分析。用本文方法计算智能梁的动态响应,并将计算结果与用阻抗法得到的结果或有限元结果比较,表明了本文方法可以有效描述压电片和压电柱激励的直梁系统的力电动态特性,拓展了阻抗法和等效电路法的应用范围。
     (2)基于有限阻抗单元法和裂纹的等效弹簧模型,导出了压电激励的含裂纹的梁系统的压电阻抗函数,并据此分析了裂纹及其他参数对系统电阻抗的影响。然后,通过实验研究了不同裂纹深度、不同裂纹位置以及不同的裂纹形式等对梁系统的电阻抗的影响规律。分析与实验结果均表明:对于单边或双边对称裂纹,当裂纹位于梁的某阶位移模态节点上时,尽管裂纹深度不断增加,这阶模态的频率并不发生变化,而其他阶数的模态的频率会逐渐减小;当裂纹位于梁的某阶位移模态反节点上时,随着裂纹深度的增加,比较于前后相邻的两个模态的频率,此阶模态的频率明显减少。以上研究为利用主动式压电传感器进行直梁结构损伤监测提供了理论参考。
     (3)基于小曲率曲梁理论和等效单层方式,建立了压电层对称布置的夹层圆形曲梁的动态控制方程,得到了代表夹层梁动态特性的7×7等效阻抗矩阵。将智能直梁中的有限阻抗单元法拓展到智能曲梁中,用有限个夹层梁阻抗单元和弹性梁阻抗单元来分析压电驱动的圆形曲梁或圆环的动态力电特性。用本文方法计算圆形曲梁或圆环智能结构的动态响应,并将计算结果与有限元结果或已有的实验结果进行比较,表明了本文方法可以有效分析对称压电单元驱动的圆形曲梁或圆环的动态特性。比较于早期的两种解析方法-阻抗法和静态模型,此方法不仅可以考虑压电单元惯性、刚度和曲率,而且可以分析多种智能曲梁结构。
     (4)针对压电片的单面非对称和双面对称两种布置方式,提出用于分析压电单元激励的圆形曲梁的静态响应的解析方法。首先建立了相应的压电夹层梁的静态控制方程,然后导出夹层悬臂梁和带分布式压电单元的节式悬臂梁径向位移响应的解析表达式。采用本文方法计算出的智能梁的移移响应与有限元结果吻合,表明了本文提出的方法的合理性和导出的解析表达式的正确性。以圆形曲梁静态响应分析为基础,进一步进行了参数研究和位移控制研究。对压电单元相关参数的研究显示:对于节式悬臂梁,自由端径向位移响应与梁长所对应的圆心角和标识激励器位置的圆心角密切相关。梁的圆心角的临界值仅取决于给定的激励器的圆心角大小。对悬臂式夹层梁位移控制研究表明:当控制悬臂夹层梁的自由端径向位移响应为零时,随着集中力载荷的位置变化和梁长的变化,最优控制电压将出现峰值和反号。以上研究为智能曲结构设计和控制提供了直接的参考。
     (5)基于压电驱动的圆形曲梁的动态分析,导出了压电激励的含裂纹的曲梁系统的电阻抗函数,并据此分析了不同裂纹深度以及不同裂纹位置对系统电阻抗的影响,得到与前述含裂纹直梁基本一致的规律。以上研究为利用主动式压电传感器进行曲梁结构损伤监测提供了的理论参考。
The existence and the growing of cracks in structures will undoubtedly affect the structural safety in use. It is necessary to take the structural health monitoring, especially for the important structures. Piezoelectric materials can be used as the active sensors for the online health monitoring of structures by means of their piezoelectric properities. However, the effect of cracks on the electric impedance of the active sensors is unclear at present. Therefore, it is valuable that the further studies on the electro-mechanical coupling behaviors between piezoelectric elements and non-cracked or cracked structures should be done. In this dissertation, the electro-mechanical characteristics of piezoelectric-driven non-cracked or cracked beams are systematically investigated by using proposed analytical approach, FEM and experimental method. The achievements of the present study are as follows:
     (1)Based on the impedance method and the equivalent electric circuit method, an analytical method called finite impedance elements method is proposed to analyze the dynamics of a straight beam actuated simultaneously by the piezoelectric stacks and the piezoelectric patches. Three types of beam segments including piezoelectric sandwich segments, elastic beam segments and the piezoelectric stacks are all regarded as different impedance elements, these impedance elements are used to analyze the composite beam. The physical fields can be obtained by solving the linear impedance equations of all impedance elements in the system. The results on the dynamical response of these smart structures are compared with the results calculated by impedance method or FEM. The comparisons show the developed method is efficient to analyze the electro-mechanical behaviors of these structures. The method improves the impedance method and the equivalent circuit method on the scopes of their application.
     (2)For a piezoelectric sandwich with nonconductive middle elastic layer, a 5×5 equivalent impedance matrix representing the dynamics of the sandwich is derived. Then, an electric impedance function of a cracked beam with piezoelectric actuators is built. The effect of the open cracks and other system parameters on the electric impedance of the system may be analyzed by using the impedance function. Further, the experiment on the electric impedance of the cracked beam system is conducted, the different depth and location of the crack and the different types of the crack are considered. Some important characteristics shown from both the theoretical results and the experimental results are as follows: for a single-edge or double-edge crack, as the crack is located at the node point the displacement mode of the undamaged beam, the frequency of the system corresponding to the mode almost keeps unchanged as the crack depth increases, other mode frequencies decrease gradually. However, as a crack is located at the anti-node point of the displacement mode, the descent amplitude of the corresponding mode frequency is bigger than that of the closest two modes. These characteristics may be taken as the reference of the crack detection in straight beam by using active piezoelectric sensors.
     (3)Based on the small curvature beam theory and the equivalent single-layer approach, the governing equation of a circular piezoelectric sandwich beam is derived. Consequently, a 7×7 equivalent impedance matrix representing the dynamics of the sandwich is given. Based on finite impedance elements method, the electro-mechanical behaviors of the piezoelectric-driven circular ring or beam is analyze analytically by using the sandwich impedance elements and the elastic impedance elements. In numerical examples, the results of the dynamical responses of different types of smart structures are compared with the results obtained from FEM or the known experimental results. The agreement among these results shows that the developed approach well describes the dynamics of the piezoelectric-driven beam or ring. Compared with the impedance method and the static approach, both the effect of the inertia, the rigidity and the curvature of the piezoelectric elements and the different types of smart curved beam may be considered by the present approach.
     (4)The static responses of piezo-driven circular beam are studied in the dissertation. Firstly, the static governing equations of circular unimorph beam and bimorph beam are derived. Then, the explicit expressions of the displacement responses are given for the cantilever sandwich beam and the cantilever segmented beam with distribute actuators. The present results of the displacement responses are validated by the results obtained from FEM. The agreement between these results shows the accuracy of the modeling and these explicit expressions. In the parameters studies of the segmented beam, it is found that the change trends of the radial displacement responses seriously depend on the central angles representing the actuator location and the beam length. In the study of the displacement control by using piezoelectric elements, as the radial displacement response at the free end of a cantilever sandwich is controlled to zero, it is found that the peak control voltage and the negative control voltage will occur with the changes of the load location and the beam length. The developed method and the obtained analytical expressions may be directly used as the reference of the design and the control of curved smart structures.
     (5)For a cracked circular beam with symmetric actuators, the continuous conditions at the interface of the open crack are derived. Based on the dynamics of the piezoelectric-driven beam, the electric impedance function of the damaged system is built by using the similar process to analyze of the cracked straight beam with actuators. The effect of the depth and the location of the crack on the electric impedance is investigated by the present method and the FEM. The following important characteristics are obtained by the present analysis: as the crack is located at the node point of the displacement mode of the undamaged beam, the frequency of the damaged system changes little as the crack depth increases, other mode frequencies decrease; Howerer, as the crack is located at the anti-node of the mode, the corresponding mode frequency seriously decreases. For the given crack depth, as the crack is close gradually to the anti-node point of the mode, the descent amplitude of the corresponding frequency increases; As the crack is close gradually to the node point of the mode, the descent amplitude of the corresponding frequency decreases. These characteristics may be taken as the reference of crack detection in curved beam by active piezoelectric sensors.
引文
[1]陶宝琪,智能材料结构.北京:清华大学出版社, 1998
    [2]李传兵,廖昌荣,张玉璘等.压电智能结构的研究进展.压电与声光, 2002, 24(1): 42-46
    [3] Castanien K E, Liang C. Application of active structural health monitoring technique to aircraft fuselage structures. Proceedings of SPIE, 1996, 2721: 38-49
    [4] Zou Y, Tong L. Steven G P. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures- a review. Journal of Sound and Vibration, 2000, 230(2): 357-378
    [5] Giurgiutiu V, Cuc A. Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention. Shock and Vibration Digest, 2005, 37(2): 83-105
    [6] Song Gangbing, Gu Haichang, Li Hongnan. Application of the Piezoelectric Materials for Health Monitoring in Civil Engineering: An Overview. Engineering, Construction and Operations in Challenging Environments Earth and Science 2004: Proceedings of the Ninth Biennial ASCE Aerospace Division International Conference, 2004: 680-687
    [7]李国清.压电材料与智能结构的力电耦合模型分析及其计算方法研究.华中科技大学博士学位论文, 2003
    [8]严蔚. EMI结构健康监测技术与定量化分析.浙江大学博士学位论文, 2007
    [9] Kuang You-Di, Li Guo-Qing, Chen Chuan-Yao. An admittance function of active piezoelectric elements bonded on a cracked beam. Journal of Sound and Vibration, 2006, 298(1-2): 393-403
    [10] Kuang You-Di, Li Guo-Qing, Chen Chuan-Yao. Admittance function of active piezoelectric elements bonded on a curved cracked beam. Journal of Intelligent Material Systems and Structures (on-line)
    [11] Liang C, Sun F P, Rogers C A. An impedance method for dynamic analysis of active material system. Journal of Vibration and Acoustics, 1994, 116(1): 120-128
    [12] Zhou S W, Liang C, Rogers C A. An impedance-based system modeling approach for induced strain actuator-driven structures. Journal of Vibration and Acoustics, 1996, 118(7): 323-331
    [13] Li Guo-Qing, Chen Chuan-Yao, Hu Yuan-Tai. Equivalent electric circuits of thin plates ith two-dimensional piezoelectric actuators. Journal of Sound and Vibration, 2005, 285(1-2): 145-165.
    [14] Alzahrani B A, Alghamdi A A A. Review of the mechanics of materials models for one-dimensional surface-bonded piezoelectric actuators Smart Materials and Structures, 2003, 12(3): N1-N4
    [15] Bailey T, Hubbard J E J. Distributed piezoelectric-polymer active vibration control of a cantilever beam. Journal of Guidance, Control and Dynamic, 1985, 8(5): 605-611
    [16] Chaudhry Z, Rogers C A. The pin-force model revisited. Journal of Intelligent Material System and Structure, 1994, 5(5): 347-354
    [17] Wang B T, Rogers C A Modeling of finite-length spatially-distributed induced strain actuators for laminated beams and plates. Journal of Intelligent Material System and Structure, 1991, 2(1): 38-58
    [18] Crawley E F, Anderson E. Detailed models of piezoceramic actuator of beams. Journal of Intelligent Material System and Structure, 1990, 1(1): 4-25
    [19] Crawley E F, De Luis J. Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal, 1987, 25(10): 1373-1385
    [20] Crawley E F, Lazarus K B. Induced strain actuation of isotropic and anisotropic plates. AIAA Journal, 1991, 29(6): 944-951
    [21] Dimitriadis E K, Fuller C R, Roger C A. Piezoelectric actuation for distributed vibration excitation for thin plates. Journal of Vibration and Acoustic, 1991, 113(6): 103-107
    [22] Park C, Walz C, Chopra I. Bending and torsion models of beams with induced-strain actuators. Smart Materials and Structures, 1996, 5(1): 98-113
    [23] Chaudhry Z, Roger C A. Enhancing induced strain actuator authority through discrete attachment to structural elements. AIAA Journal, 1993, 31(7): 1287-1292
    [24] Lalande F, Chaudhry Z, Roger C A. Impedance-based modeling of induced strain actuators bonded on ring structures. Journal of Sound and Vibration, 1997, 201(2): 169-187
    [25] Zhou S, Liang C, Roger C A. Impedance-based system modeling approach for induced strain actuator-driven structures. Journal of Vibration and Acoustic, 1996, 118(3): 323-331
    [26] Lalande F, Chaudhry Z, Roger C A. Impedance-based modeling of actuators bonded on shell structures. Journal of Intelligent Material Systems and Structures, 1995, 6(6): 765-775
    [27] Liang C, Sun F P, Rogers C A. Coupled electric-mechanical analysis of piezoelectric ceramic actuator driven systems-determination of the actuator power consumption and system energy transfer. Proceedings, SPIE Smart Structures and Materials 93, Albuquerque, NM, 1993: 286-298
    [28] Zhou S, Roger C A. Power flow and consumption in piezoelectrically actuated structures. AIAA Journal, 1995, 33(7): 1305-1311
    [29] Liang C, Sun F P, Roger C A. Determination of design of optimal actuator location and configuration based on actuators power factors. Journal of Intelligent Material Systems and Structures, 1995, 8(4): 456-464
    [30] Cheng C C, Lin C C. An impedance approach for determining optimal locations and shapes of multiple induced strain actuators. Smart Materials and Structures, 2005, 14(6): 1120-1126
    [31] Berlincourt A B, Curran D R, Jaffe H. Piezoelectric and piezomagnetic materials and their function in transducers. In: W. P. Maison(Ed. ), Physical Acoustics, Part A, Academic Press. 1964, 1: 169-127
    [32] Shuyu L. Vibration analysis and frequency equation for an ultrasonic transducer consisting of a longitudinal vibrator and a flexural circular plate. Acoustica, 1995, 8(1): 53-57
    [33] Ebenezer D D. Three-port parameters and equivalent circuit of radially polarized piezoelectric ceramic cylinders of finite length. Journal of the Acoustic Society of America, 1996, 99(5): 2908-2912
    [34] Kadokura M, Hirashima T; Sasaki Y. Analysis and design of AT-cut quartz resonators by three dimensional finite element method. Proceeding of the Advanced in Electronic Packaging, ASME, 1997, 1: 1101-1108
    [35] Chen Y C, Wu L, Chang K K, et al. Analysis and simulation of stacked-segment electromechanical transducers with partial electrical excitation by PSPICE. Japanese Journal of Applied Physics, Part 1, 1997, 36(10): 6550-6557
    [36] Tanaka H, Aoyagi R. Derivation of equivalent circuit of multilayered bending vibration. Proceeding of Acoustic Engineering, Tohoku University, Japan, 1992: 262-263
    [37] Aoyagi R, Tanaka H. Equivalent circuit analysis of piezoelectric bending vibrators. Japanese Journal of Applied Physics, Part 1, 1995, 33(5B): 3010-3014
    [38] Tanaka H, Aoyagi R. Analysis of piezoelectric bending accelereometer using the equivalent circuit. Japanese Journal of Applied Physics, Part 1, 1996, 35(5B): 3035-3037
    [39] Cho Y S, Eugene P Y, Han C S, et al. Five-port equivalent electric circuit of piezoelectric bimorph beam. Sensors and Actuators, 2000, 84: 140-148
    [40] Heyliger P, Brooks S. Exact solution for laminated piezoelectric plates in cylindrical bending. Journal of Applied Mechanics, 1996, 63(4): 903-910
    [41] Pagano N J. Exact solution for composites in cylindrical bending. Journal of Composite Materials, 1969, 3(3): 398-411
    [42] Pagano N J. Exact solution for rectangular bidirectional composites and sandwich plates. Journal of Composite Materials, 1970, 4(1): 20-34
    [43] Ray M C, Rao K M, Samanta B. Exact analysis of coupled electroelastic behavior of a piezoelectric plate under cylindrical bending. Computers and Structures, 1992, 45(4): 667-677
    [44] Ray M C, Bhattacharya R, Samanta B. Exact solution for static analysis of intelligent structures. AIAA Journal, 1993, 31(9): 1684-1691
    [45] Heyliger P. Exact solution for simply supported laminated piezoelectric plates. Journal of Applied Mechanics, 1997, 64: 299-306
    [46] Heyliger P. Static behavior of laminated elastic/piezoelectric plates. AIAA Journal,1994, 32(12): 2481-2484
    [47] Bisegna P, Maceri F. An exact three-dimensional solution for simply supported rectangular piezoelectric plates. Journal of Applied Mechanics, 1996, 63(3): 628-638
    [48] Lee J S, Jiang L Z. Exact electroelastic analysis of piezoelectric laminate via state space approach. International Journal of Solid and Structures, 1996, 33(7): 977-990
    [49] Vel S S, Batra R C. Exact solution for rectangular sandwich plates with embedded piezoelectric shear actuators. AIAA Journal, 2001, 39(7): 1363-1373
    [50] Rajapakse R K N D. Plane strain/stress solutions for piezoelectric solids. Composites Part B, 1997, 28: 385-396
    [51] Ruan Xiaoping, Danforth S C, Safari A, et, al. A theoretical study of the coupling effects in piezoelectric ceramics. International Journal of Solids and Structures, 1999, 36(1): 465-487
    [52] Lim C W, Chen W Q, Zeng Q C. Exact solution for thick laminated piezoelectric beams. Mechanics of Advanced Materials and Structures, 2007, 14(2): 81-87
    [53] Chen W Q, Lee Kang Yong. Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections. Composite Structures, 2004, 65(3-4): 329-337
    [54] Chen W Q, Cai J B, Ye G R, Wang Y F. Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer International Journal of Solids and Structures, 2004, 41(18-19): 5247-5263
    [55] Gopinathan S V, Varadan V V, Varadan V K. A review and critique of theories for piezoelectric laminates. Smart Materials and Structures, 2000, 9: 24-48
    [56] Wang J, Yang J S. Higher-order theories of piezoelectric plates and its finite element methods. Review of the Applied mechanics, 2000, 53(40): 85-99
    [57] Lee C K. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships. Journal of Acoustic Society of American, 1990, 87(3): 1144-1158
    [58] Chattopadhyay A, Gu H. New higer order plate theory in modeling delaminatedbuckling of composite laminates. AIAA Journal, 1994, 32(8): 1709-1716
    [59] Saravanos D A, Heyliger P R, Hopkin D A. Layer mechanics and finite element for the dynamic analysis of piezoelectric composite plates. International Journal of Solids and Structures, 1997, 34(3): 359-378
    [60] Mitch J A, Reddy J N. A refined hybrid plate theory for composite laminates with piezoelectric laminates. International Journal of Solid and Structures, 1995, 32(16): 2345-2367
    [61] Saravanos D A, Heyliger P R. Mechanics and computational models for laminated piezoelectric beams, plates and shell. Review of the Applied Mechanics, 1999, 52(10): 305-320
    [62]姚伟岸,钟万勰.辛弹性力学.北京:高等教育出版社, 2002
    [63] Gu Qian, Xu Xin-sheng, Leung A Y T. Application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media. Journal of Zhejiang University Science, 2005, 6A(9): 915-921
    [64] Chandrashekhara K, Agarwal A N. Active vibration control of laminated composite plates using piezoelectric devices: a finite element approach. Journal of intelligent material systems and structures, 1993, 4(10): 496-508
    [65] Lam K Y, Peng X Q, Liu G R, et al. A finite element model for piezoelectric composite laminates. Smart Materials and Structures, 1997, 6: 583-591
    [66] Wang J, Yu J, Yong. Y K, et al. A new theory for electrode piezoelectric plates and its finite element application for the forced vibrations analysis of Quartz crystal resonators. International Journal of Solids and Structures, 2000, 37(40): 5635-5673
    [67] Dimitris V, Saravanos D A. Small-amplitude free-vibration analysis of piezoelectric composite plates subject to large deflections and initial stresses. Journal of Vibration and Acoustics, 2006, 128(1): 41-49
    [68] Howard S M, Pao Y H. Analysis and experiments on stress waves in planar trusses. Journal of Engineering Mechanics, 1998, 124(8): 884-891
    [69] Pao Y H, Keh D C. Dynamic response and wave propagation in plane trusses and frames. AIAA Journal, 1999, 37(5): 594-603
    [70] Adams R D, Crawley P, Pye C J, et al. A vibration technique of non-destructiveassessing the integrity of structure. Journal of Mechanical Engineering Science. 1978, 20(2): 93-100
    [71]唐国金,周建平.裂纹梁的线弹簧模型.兵工学报, 1998, 19(1): 64-68
    [72] Ju F D, Akgun M, Paze T L, et al. Diagnosis of fracture damage in simple structure. Bureau of Engineering Research, Report No CE-62(82) AFOSR-993-1, University of New Mexic, Alburqueque, Nm
    [73] Lee H P, Ng T Y. Nature frequencies and modes for the flexural vibration of cracked beam. Applied Acoustic, 1995, 43: 151-163
    [74] Narkis Y. Identification of crack location in vibrating simply supported beams. Journal of Sound and Vibration, 1994, 172(4): 549-588
    [75] Bamnipos G, Trochides A. Dynamic behavior of a cracked cantilever beam. Applied Acoustic, 1995, 45: 97-112
    [76] Boltezer M, Strancar B, Kuhelj A. Identification of transverse crack location in flexural vibrations free-free beam. Journal of Sound and Vibration, 1998, 211(5): 729-734
    [77] Christides S, Barr A D S. One-dimensional theory of cracked Benoulli-Euler beams. International Journal Mechanics Science, 1984, 26(11-12): 639-648
    [78] Shen M H H, Pierre C. Natural modes of Bernoulli-Euler beams with symmetric cracks. Journal of Sound and Vibration, 1990, 138(1): 115-134
    [79] Fernadez-Saze J, Rubio L, Navarro C. Approximate calculation of the fundamental frequency for bending vibrations of cracked beam. Journal of Sound and Vibration, 1999, 225(2): 345-352
    [80] Chondros T G, Dimarogonas A D, Yao J. A continuous cracked beam vibration theory. Journal of Sound and Vibration, 1998, 215(1): 17-34
    [81] Krawczuka M, Palaczb, B M, Ostachowiczb W. The dynamic analysis of a cracked Timoshenko beam by the spectral element method Journal of Sound and Vibration, 2003, 264(5): 1139-1153
    [82] Chati M, Rand R, Mukerjee S. Model analysis of cracked beam. Journal of Sound and Vibration, 1997, 207(2): 249-270
    [83] Luo T L, Wu J S, Hung J P. A study of non-linear vibrational behavior of crackedstructures by the finite element method. Journal of Mechanical Science and Technology, 2005, 13(3): 176-183
    [84] Chondros T G, Dimarogonas A D, Yao J. Vibration of a beam with a breathing crack. Journal of Sound and Vibration, 2001, 239(1): 57-67
    [85] Silva J M M, Gomez A J M A. Experimental dynamic analysis of cracked free-free beam. Experimental Mechanics, 1990, 30(1): 20-25
    [86] Gomez A J M A, Silva J M M. Theoretical and experimental data on crack depth effects in the dynamic behavior of free-free beams. International Modal Analysis Conference, IMAC, Union Coll, Schenectady, NY, USA, 1991, 9: 274-283
    [87] Gomez A J M A, Silva J M M. Experimental determination of the influence of the section size in the dynamic behavior of cracked beams. Proceeding of IMMDC2, Los Angeles, USA, 1990, 124-130
    [88] Loutridis S, Douka E, Hadjileontiadis L J. Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency. NDT and E International, 2005, 38(5): 411-419
    [89] Douka E, Hadjileontiadis L J. Time-frequency analysis of the free vibration response of a beam with a breathing crack. NDT and E International, 2005, 38(1): 3-10
    [90] Bovsunovsky A, Bovsunovsky O. Crack detection in beams by means of the driving force parameters variation at non-linear resonance vibrations. Key Engineering Materials, 2007, 347: 413-420
    [91] Orhan S. Analysis of free and forced vibration of a cracked cantilever beam. NDT and E International, 2007, 40( 6): 443-450
    [92] Andreaus U, Casini P, Vestroni F. Nnon-linear dynamics of a cracked cantilever beam under harmonic excitation. International Journal of Non-Linear Mechanics, 2007, 42(3): 566-575
    [93] Yao J Y, Dimarogonas A D. Vibration of a circular ring with a transverse crack. ASME paper 88-WA/DSC-42
    [94] Krawczuk M, Ostachowicz W. Natural vibrations of a clamped arch with an transverse crack. Journal of Vibration and Acoustics, 1997, 119(2): 145-151
    [95] Waker R N, Burdess J S, Evans J T. Changes in the natural frequencies of repeated mode pairs induced by cracks in a vibrating ring. Journal of Sound and Vibration, 1998, 214(4): 761-770
    [96] Erasmo V, Michele D, Francesco T. Analytical and numerical results for vibration analysis of multi-stepped and multi-damaged circular arches. Journal of Sound and Vibration, 2007, 299(1-2): 143-163
    [97] Dimarogonas A D. Vibration of cracked structures: a state of the art review. Engineering Fracture Mechanics, 1996, 55(5): 831-857
    [98] Khadem S E, Rezaee M. An analytical approach for obtained the location and depth of all-over part-through crack on externally in-plane loaded rectangular plate using vibration analysis. Journal of Sound and vibration, 2000, 230(2): 291-308
    [99] Khadem S E, Rezaee M. Introduction of modified comparison functions for vibration analysis of a rectangular cracked plate. Journal of Sound and Vibration, 2000, 236(2): 245-258
    [100] Ma C C, Huang C H. Experimental and numerical analysis of vibrating cracked plates at resonant frequencies. Experimental Mechanics, 2001, 41(1): 8-18
    [101] Shih Yan-Shin, Wu Guan-Yuan. Effect of vibration on fatigue crack growth of an edge crack for rectangle plate. International Journal of Fatigue, 2000, 24(5): 557-566
    [102] Javidruzi M, Vafai A, Chen J F, et al. Vibration, buckling and dynamic stability of cracked cylindrical shells. Thin-Walled Structures, 2004, 42(1): 79-99
    [103] Nguyen H L T, Vuong Q G. Natural frequency analysis of a fixed-fixed Cracked Plate in bending. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences - DETC2005, 2005, 1: 2211-2217
    [104] Wu Guan-Yuan, Shih Yan-Shin. Dynamic instability of rectangular plate with an edge crack. Computers and Structures, 2005, 84(1-2): 1-10
    [105] Kudva J N, Munir N, Tan P W. Damage detecting in smart structures using neural networks and finite-element analyses. Smart Materials and Structures, 1992, 1: 108-112
    [106] Egashira M, Shinya N. Local strain sensing using piezoelectric polymer. Journal ofIntelligent Material Systems and Structures, 1993, 4(7): 558-596
    [107] Morikawa S R K, Gama A L, Braga A M B. Monitoring surface breaking defects in beams with piezoelectric sensors and actuators. Proceedings of SPIE, 2001, 4327: 302-311
    [108] Rees D, Chiu W K, Jone R. A numerical study of crack monitoring in patched structures using a piezoelectric sensor. Smart Materials and Structures, 1992, 1: 202-205
    [109] Yin L, Wang X M, Shen Y P. Damage-monitoring in composite laminates by piezoelectric sensors. Computers and Structures, 1995, 59(4): 623-630
    [110] Galea S C, Chiu W K, Paul J J. Use of piezoelectric films in detecting and monitoring damage in composites. Journal of Intelligent Material Systems and Structures, 1993, 4(3): 330-336
    [111]李山青,久保司郎,阪上隆英等.用压电材料进行损伤鉴别的理论与数值分析.力学学报, 2001, 33(3): 415-421
    [112] Giurgiutiu V, Redmond J, Roach D, et al. Active sensors for health monitoring of aging aerospace structures: Proceedings of SPIE, 2000, 3985: 294-305
    [113] Huang Guoliang. A crack detection technique using piezoelectric actuator/sensor systems. Ph. D Thesis from University of Alberta, 2004
    [114] Giurgiutiu V, Rogers C A. Recent Advancements in the Electro-Mechanical (ELM) Impedance Method for Structural Health Monitoring and NDE, Proceedings of SPIE, 1998, 3329: 536-547
    [115] Lopes V, Park G, Cudney H H, et al. Impedance-based structural health monitoring with artificial neural networks. Journal of Intelligent Material Systems and Structures, 2000, 11(3): 206-214
    [116]高峰,沈亚鹏基.于压电导率特性识别结构裂纹方法的研究.实验力学, 2000, 15(1): 60-67
    [117]高峰,王德俊,江钟伟等.压电阻抗技术用于螺栓松紧健康诊断.中国机械工程, 2001, 12(9): 1048-1049
    [118] Naidu A S K, Soh C K. Damage severity and propagation characterization with admittance signatures of piezo transducers. Smart Materials and Structures, 2004, 13:393-403
    [119]王丹生,朱宏平,陈晓强等.利用压电自传感驱动器进行裂纹钢梁损伤识别的实验研究.振动与冲击, 2006, 25(6): 139-142
    [120]孙明清,李卓球,侯作富.压电材料在土木工程结构健康检测中的应用.混凝土, 2003, 161(3): 22-24
    [121] Xu Y G, Liu G R. Modified electro-mechanical impedance model of piezoelectric actuator-sensor for debonding detection of composite repair patches. Journal of Intelligent Material Systems and Structures, 2002, 13(6): 389-396
    [122] Pohl J, Herold S, Mook G, et al. Damage detection in smart CFRP composites using impedance spectroscopy. Smart Materials and Structures, 2001, 10: 834-842
    [123] Littlefield A G, Fairweather J A, Craig K C. Use of FEA derived impedance to design active structures. Journal of Intelligent Material Systems and Structures, 2002, 13(6): 377-388
    [124] Bhalla S, Soh C K. Structural healthing monitoring by piezo-impedance transducer, I: modeling. Journal of Aerospace Engineering, 2004, 17(4): 154-165
    [125] Bhalla S, Soh C K. Structural healthing monitoring by piezo-impedance transducer, II: applications. Journal of Aerospace Engineering, 2004, 17(4): 166-175
    [126] Zagrai A N, Giurgiutiu V. Electro-mechanical impedance method for crack detection in thin plates. Journal of Intelligent Material System and Structures, 2002, 12(10): 709-718
    [127] Hu Yuantai, Zhang Xuesong, Yang Jiashi, et al. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric. IEEE Transactions on Ultrasonics, Ferroelectric, and Frequency control, 2003, 50(7): 773-781
    [128] BATRA R C, LIANG X Q. The vibration of a simply supported rectangular elastic plate due to pieozelectric actuators. International Journal of Solids and Structures, 1996, 33(11): 1597-1618
    [129]董艳阳.自动阻抗测量仪工作原理及阻抗测量方法.现代电子技术, 2002, 5: 24-26
    [130] Paipetis S A, Dimarogonas A D. Analytical methods in rotor dynamic. London: Elsevier Applied Science
    [131] Jayachandran V, King P, Meyer N E, et al. Real-time feedforward control of low-frequency interior noise using shallow spherical shell piezoceramic actuators. Smart Materials and Structures, 1999, 8: 579-584
    [132] Angelino M R and Washington G N. Design and construction of a piezoelectric point actuated active aperture antenna. Journal of Intelligent Material System and Structures, 2002, 13(2-3): 125-136
    [133] Niezrecki C, Balakrishnan S. Power characterization of THUNDER actuators as underwater propulsors. Proceedings of SPIE, 2001, 4327: 88-98
    [134] Wise S A. Displacement properties of RAINBOW and THUNDER piezoelectric actuators. Sensors and Actuators, 1998, 69(1): 33-38
    [135] Schwartz R W, Narayanan M. Development of high performance stress-biased actuators through the incorporation of mechanical pre-loads. Sensors and Actuators, 2002, 101(3): 322-331
    [136] Chaudhry Z, Lalende F, Rogers C A. Special considerations in the modeling of induced strain actuator patches bonded to shell structures. Proceedings of SPIE, 1994, 2190: 563-569
    [137] Sonti V R, Jones J D. Curved piezoactuator model for active vibration control of cylindrical shells. AIAA Journal, 1996, 34(5): 1034-1040
    [138] Tani J, Miura H, Qiu Jin-hao, et al. Vibraton control of an arch system using piezoelectric actuators. Transaction of the Japan Society of Mechanical Engineers, part C, 1994, 60(570): 438-442
    [139] Lester H C, Lefebvre S. Piezoelectric actuators models for active vibration control of cylinder. Recent Advances in Active Noise and Vibration Control, Blacksburg, 1991, VA3: 3-26
    [140] Zhou H S, Ye R. Analysis of piezoelectric structures with laminated piezoelectric triangle shell elements. AIAA Journal, 1996, 43(1): 110-115
    [141] Love A E H. Mathematical Theory of Elasticity. Cambridge: Cambridge University Press, 1920
    [142] Josef H. The dynamics of arches and frames. Elsevier Scientific Publishing Company, Amsterdans, Oxford and New York, 1981
    [143]刘鸿文,林建兴,曹曼玲.高等材料力学.北京:高等教育出版社, 1985
    [144] Gupta V K, Seshu P, Issac K K. Finite element and experimental investigation of piezoelectric smart shell. AIAA Journal, 2004, 42(10): 2112-2123
    [145] Kulkarni S A, Baforia K A. Finite element modeling of smart plates/shells using higher order shear deformation theory. Composite Structures, 2003, 62(1): 41-50
    [146] Ryu D H, Wang K W. Analysis of interfacial stresses and actuation authorities induced bysurface-bonded piezoelectric actuators on curved flexible beams. Smart Materials and Structures, 2004, 13: 753-761
    [147] Shi Zhifei. Bending behavior of piezoelectric curved actuators. Smart Materials and Structures, 2005, 14: 35-842
    [148] Ganguli A, Jhawar S, Seshu P. Shape control of curved beams using piezoelectric actuators. Proceedings of SPIE, 2002, 5062: 297-304
    [149] Auld B A. Acoustic fields and waves in solids. New York: Wiley, 1973, 1: 357-382
    [150] Gaudenzi P, Barboni R. Static adjustment of beam deflection by means of induced strain actuators. Smart Materials and Structures, 1999, 8: 278-283
    [151] Wuller W H, Herrmann G, Gao H. A note on curved cracked beams. International Journal of Solid and Structures, 1993, 30(11): 1527-1532
    [152] Crawley P, Ray R. A Comparison of the Natural Frequency Changes Produced by Cracks and Slots. Journal of Vibration, Acoustics, Stress and Reliability in Design, Transactions of the American Society of Mechanical Engineers, 1988, 110(3): 66-370
    [153] Douka E, Bamnios G, Trochidis A. A method for determining the location and depth of cracks in double-cracked beams. Applied Acoustics, 2004, 65(10): 997-1008
    [154] Sergio R K, Morikawa A, Gama L, et al. Monitoring surface breaking defects in beams with piezoelectric sensors and actuators. Proceedings of SPIE, 2001, 4327: 302-311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700