用户名: 密码: 验证码:
郯庐断裂带南段晚中生代岩浆活动及其对岩石圈减薄的指示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对发育于郯庐断裂带南段上的一些晚中生代岩浆岩,包括滁州火山岩、巢湖侵入岩和庐江火山岩,进行了主量元素、微量元素、Sr-Nd-Pb同位素等地球化学研究和LA-ICPMS法单颗粒锆石U-Pb年代学研究。通过这些研究,首先确定了这些岩浆岩的具体形成时间,认识了它们的岩石学和地球化学特征;随后讨论了岩浆形成的深部过程和岩浆源区组成,并结合年代学结果讨论了岩浆演化特征;最后在区域对比的基础上,分析了郯庐断裂带内岩石圈减薄的方式和特点,并讨论了该断裂带在华北克拉通岩石圈减薄中的作用。
     滁州火山岩位于张八岭隆起北段的东侧边界上,该火山岩形成于早白垩世,具体喷发时期在132~116Ma之间,经历了约16Ma的喷发历史。132Ma的喷发年龄是目前已知的郯庐断裂带内最早的钙碱性岩浆岩形成年龄,该年龄应最接近郯庐断裂带下岩石圈伸展活动的开始时间。该火山岩是一套中—酸性的、粗安岩/粗面岩/英安岩为主的岩浆岩,岩石属于高钾钙碱性系列、准铝质、硅过饱和类型的岩石。火山岩富集LILE和LREE、相对亏损HFSE和HREE,具有富集的Sr-Nd-Pb同位素组成。地球化学特征显示,早期(~132Ma)和晚期火山岩(123~116Ma)具有一般钙碱性火山岩的特征,中期火山岩(129~125Ma)则具有类似于埃达克岩的特征。该火山岩的岩浆来源于华北克拉通,早期火山岩是EM l型富集地幔和古老华北下地壳源区混合的结果,中期火山岩是底侵的幔源物质与古老地壳物质发生部分熔融并混合形成的,晚期火山岩的岩浆源区则主要以古老的下地壳端元为主。地球化学特征显示,滁州火山岩的岩浆起源于壳—幔过渡带的深度范围,随喷发时代的变新岩浆中壳源比例逐渐增加,岩浆源区逐渐变浅。滁州火山岩的地球化学及岩浆演化特征不支持岩石圈整体拆沉作用模型,岩浆应形成于岩石圈由下至上逐渐减薄的背景下。区域对比发现,滁州火山岩比华北克拉通内部岩浆活动具有更早的开始时间和较长期的活动历史,暗示郯庐断裂带内具有更强烈的岩石圈减薄程度和更长期的减薄历史。与华北克拉通内部相比,滁州火山岩具有源区熔融程度更高、熔融规模更大、壳—幔相互作用更为强烈、源区深度更浅等特征,一致证明了郯庐断裂带是岩石圈内的强减薄带。
     巢湖侵入岩位于张八岭隆起南段的郯庐断裂带内,五个样品给出的岩体侵位时间在127~103Ma之间,总体经历了约24Ma的侵位历史。该套岩石是一套铝和硅均过饱和的、准铝质向过铝质过渡的岩浆岩,岩石富钾且全碱含量较高。早期和中早期侵入岩富集LILE、LREE,亏损HREE,无Eu异常或具有正的Eu异常,是一套埃达克质的二长花岗岩;晚期和中晚期侵入岩富集LILE但亏损Ba、Sr,REE总量较低且轻、重稀土分馏较弱,具有负的Eu异常,是一套A型花岗岩。先期的埃达克岩代表了该处岩石圈伸展活动的开始阶段,而后期的A型花岗岩则代表了岩石圈强烈伸展的时间。巢湖侵入岩的岩浆也来源于古老的华北克拉通,且主要为古老的华北克拉通下地壳,早期岩浆包含少量的富集地幔端元,而晚期岩浆则为更浅的地壳源区。地球化学特征表明该套侵入岩在岩浆侵位过程中没有明显的中、上地壳混染,岩浆源区经历了不同程度的部分熔融,并经历了不同造岩矿物和锆石、磷灰石、褐帘石等副矿物的分离结晶作用。随岩浆侵位时代的不同,岩浆源区的残留相明显不同,由早到晚源区残留从石榴子石到斜长石再向角闪石过渡,且由早到晚岩浆源区是逐渐变浅的。岩浆演化规律暗示岩浆活动的深部动力学过程为:华北克拉通岩石圈底部的逐渐拆沉减薄造成了软流圈顶面抬升,导致岩石圈内热流升高,化学作用逐渐加强,从而出现了不同深度下的下地壳源区部分熔融。与远离断裂带的克拉通内部相比,郯庐断裂带具有更强烈的岩石圈伸展程度、侵入岩具有更浅的岩浆源区、岩浆源区具有更强烈的演化程度和更大程度的部分熔融、岩浆活动具有更长期和复杂的历史,这一系列的证据也均证明郯庐断裂带是岩石圈减薄中的强减薄带。
     庐江火山岩位于华北克拉通最东南缘的郯庐断裂带内,岩浆喷发时间在125Ma~93Ma之间,经历了约32Ma的喷发历史。火山岩具有双峰式火山岩和玄粗岩岩系的特征,岩石富碱、富钾,相对贫MgO、TiO_2,具有富集的Sr-Nd-Pb同位素组成。玄武岩和粗面岩样品富集LILE、LREE并相对亏损HFSE、HREE,无明显Eu异常;流纹岩样品则相对亏损Ba、Sr、P、Ti,具有明显的Eu负异常。岩浆岩地球化学特征表明,该火山岩具有四类不同的源区背景:早期基性岩(125Ma)的源区主要为华北克拉通岩石圈地幔,兼有地壳源区的贡献;流纹岩(120Ma)源区主要为华北中、下地壳源区;粗面岩(100Ma)为华北下地壳和岩石圈地幔的混合源区;晚期基性岩(93Ma)主要为华北岩石圈地幔源区,兼有下地壳和软流圈物质的贡献。庐江火山岩的地球化学特征也不支持岩石圈地幔和下地壳的整体拆沉作用模型,岩浆活动应是在岩石圈底部的持续减薄作用下,岩石圈内热流逐渐升高、岩浆源区的热—化学状态的变化所造成的。不同时期的岩浆活动其地球化学特征差异较大,反映了岩浆源区随岩石圈热—化学状态的改变而不断演化和迁移的规律。岩石组合、同位素年代学、地球化学特征对比等—系列的证据表明,位于郯庐断裂带上的庐江火山岩,形成于强烈的伸展构造背景下,是岩石圈强烈减薄的产物。表明郯庐断裂带是岩石圈内的强减薄带,这与滁州火山岩和巢湖侵入岩揭示的信息是一致的。
     本文的研究结果表明,郯庐断裂带南段的晚中生代岩浆岩虽然具有不同的岩石类型和地球化学特征,但岩浆源区均属于华北克拉通,且岩浆往往具有壳—幔混源的特征。综合目前已有的华北克拉通晚中生代岩浆岩资料来看,郯庐断裂带内各部位的岩浆活动持续时间最长、结束时间最晚,且岩浆活动指示的往往是更为强烈的伸展构造背景。这些岩浆岩具有清晰的岩浆演化与源区迁移规律,显示岩浆源区组成和温压条件的不断改变,源区的迁移规律和一系列的地球化学证据均不支持岩石圈的整体拆沉作用观点,岩石圈应是以由下至上逐渐拆沉进入软流圈的方式发生减薄的。一系列的地球化学及地质学证据均表明,郯庐断裂带是岩石圈内的强减薄带,这与现今地球物理资料揭示的现象是一致的。分析认为,郯庐断裂带对华北克拉通岩石圈的整体性具有破坏作用,断裂带的存在和活动在岩石圈减薄过程中不仅具有增强和促进作用,还可能具有控制意义。
In this paper, Chronological, geochemical and Sr-Nd-Pb isotopic analyses have been carried out on the Late Mesozoic igneous rocks including Chuzhou volcanic rocks, Chaohu intrusive rocks and Lujiang volcanic rocks along the southern segment of the Tan-Lu fault zone. Based on these results, this paper demarcated formation time of these igneous rocks, summarized nature of their petrology and geochemistry, discussed deep processes of the magmatism, compositions of magma sources, and magmatic evolution features. Based on regional comparsions, this paper also analyzed patterns and characteristics of the lithosphere thinning beneath the Tan-Lu fault zone, revealed the importance and function of such a large-scale fault zone during the lithosphere thinning of the North China Craton.
     Chuzhou volcanic rocks are located on the eastern boundary of the the northern segment of the Zhangbaling uplift, were erupted during the Early Cretaceous, the eruption ages varied from 132Ma to 116Ma with a long period of 16Ma. 132Ma is the earliest eruption age of the cal-alkaline magma within the Tan-Lu fault zone, and this age should represent the beginning of the lithosphere extensive movement beneath the fault zone. These volcanic rocks are metaluminous and silicon-saturation, belonging to intermediate-acidic high-K cal-alkaline series, and notably rich in LILE and LREE, depleted in HREE and HFSE, and rich in Sr-Nd-Pb isotope component. Geochemical characteristics show that the earlier (about 132Ma) and the later (123~116Ma) rocks were characterized by common cal-alkaline volcanic rocks, medium-term with eruption age (129~125Ma) would resemble in geochemical characteristics of adakitic rocks. The geochemical data indicate a magma source of the North China craton. Early magma reflects a mixing between the EMI-type mantle and ancient lower crust of the NCC. Medium-term magma is a partial melting and mixture of the underplating mantle-derived components mantle and ancient lower crust. The late magma are mostly ancient lower crust components. From early to late, ancient crustal components in volcanic rocks gradually increased, and magma source became shallower and shallower, which implied Chuzhou volcanic rocks were originated from the transitional zone between the crust and mantle. Characteristics of geochemistry and magma evolvement could not support lithosphere whole detachment model, however magma should be formed under this setting of lithosphere thinning gradually from top down. Compared with the geochronology data of the contemporary volcanic rocks from the inner North China craton, the volcanic activities on the Tan-Lu fault zone began earlier and have a comparatively long history. Therefore, Chuzhou volcanic rocks indicated an intensive degree and a long period of the lithospheric thinning within the fault zone accompanying with these characteristics of higher degree melting and scale. More intensive interaction between the crust and mantle, and shallower depth of magma source, further demonstrated the Tan-Lu fault zone may be an extensive lithosphere thinning zone in eastern North China Craton.
     Chaohu intrusions were obtained from the southern segment of the Zhangbaling uplift along the Tan-Lu fault zone. Five samples show an emplacment ages range of 127~103Ma with 24Ma emplacement period. These intrusions are aluminous and silicon-saturation, a set of transitional magmatic rocks from metaluminous to peraluminous characterized by rich in alkali, potassium. Early and middle-early period intrusions are rich in LILE and LREE, depleted in HREE, and no or positive Eu anomaly, belonging to a set of adakite-like monzonitic granite, in contrast, late and middle-late A-type granites characterized by rich in LILE, and showing negative Ba, Sr, Eu anomalies and lower REE with more weakly fractional degree of LREE/HREE. The earlier adakite should represent the beginning of the lithosphere extensive movement, however the later A-type granites indicate the intensive period of the lithosphere extensive movement. Chaohu intrusions magmas also derived from ancient NNC, particularly ancient lower crust of the NCC. Earlier magmas contained few enriched mantle endmember components, later magmas came from shallower crust source. Geochemical characteristics indicate these intrusions did not suffer from the middle-upper crustal contamination during magma ascent, while the mother magma area experienced different degree partial melting, and fractional crystallization of different rock forming minerals and accessory minerals, such as zircon, apatite and allanite. With different magma emplacement age, residues of magma source are obviously different. Namely, from early to late, residue of magma source are transition from garnet to plagioclase, then to hornblende, accompanying with shallower and shallower magma source. The evolutive disciplines imply deep dynamic process of magmatic activities: continual thinning of lithosphere from NNC bottom led to constantly uplifting of the asthenosphere surface and persistently ascending of isotherm plane within the lithosphere, chemical action became gradually strong, thus appeared the partial melting of the lower crustal source at different depth. Compared with inner craton, the Tan-Lu fault zone show more intensive lithosphere extensive degree, shallower magma source, stronger evolution, higher partial melting extent, more permanent magmatic activities and complicated history. A series of evidences demonstrated the Tan-Lu fault zone is an extensive thinning zone during lithosphere thinning.
     Lujiang volcanic rocks lies on the most southeastern segment of the Tan-Lu fault zone. The eruption ages ranged from 125Ma to 93Ma, which belong to the middle-late stage of the early Cretaceous to early stage of the late Cretaceous, indicating a 32Ma history of this volcanism. These rocks are rich in alkali and potassium, and relatively depleted in MgO, TiO_2, with enriched Sr-Nd-Pb compositions, belong to cal-alkaline to alkaline series, which having a characteristics of bimodal volcanism. Samples of basalts and trachytes show enriched in LILE, LREE, depleted in HFSE, no negative Eu anomaly. In contrast, rhyolites display negative Ba, Sr, P and Ti anomalies, and obviously negative Eu anomaly. Geochemical data indicate that magma come from four different types of magma source. Earlier basic rocks (125Ma) represent primary nature of NNC lithospheric mantle source accompanying with crustal source. Rhyolites (120Ma) of them come from the middle-lower crust of North China, in addition, trachytes (100Ma) is a mixing of lower crust North China and lithospheric mantle source. Later basic rocks (93Ma) show NNC lithospheric mantle source accompanying with the lower crustal source and asthenospheric component. Geochemic investigations can not support lithospheric mantle and lower crustal detachment model, the magma evolution should be ascribed to the increasing of lithospheric heat flow followed sustaining thinning of its lower part, the asthenosphere upwelling and lithosphere extension also play a key factors for the magmatism. In addition, Some geological, geochemical and geophysical features suggest a more intensive extensive setting, which indicate a more intensive lithospheric thinning beneath this fault zone, the lithospheric thinning may be trigged by the activity of the fault zone, according to results of Chuzhou volcanic rocks and Chaohu intrusions.
     Investigations demonstrate that although the late Mesozoic magamatic rocks show different rock-type and geochemical characteristics, their magma sources belong to the NNC with a mixing nature of the crust and mantle. Combined with previous data, different segment magmatic activities in the Tan-Lu fault zone have a relatively long duration and a later terminal time, and indicate an intensively extensional tectonic setting. Obvious magmatic evolvement feature represents incessant changes of magma source component and temperature-pressure environment. All evidences may explain lithosphere gradually thinning from the top down, though they could not support whole lithosphere delamination model. A series of evidences demonstrate that the Tan-Lu fault zone is an intensive thinning zone, its occurrence and activities provides an inducing and promoting role during the lithosphere thinning according to geophysical phenomena nowadays, and plays an important role in the destruction of the NCC.
引文
Ames L, Tilton GR, Zhou G. 1993. Timing of the Sino-Korean and Yangtze craton: U-Pb dating of coesite-bearing eclogite. Geology. 21(4): 339 — 342.
    An MJ and Shi YL. 2006. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 159: 257-266.
    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59-79.
    Arndt NT and Christensen U. 1992. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints. Journal of Geophysics Research, 97: 10967 — 10981.
    Aulbach S, Griffin WL, Pearson NJ, et al. 2004. Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology, 208: 61-88.
    Beck SL and Zandt G. 2002. The nature of orogenic crust in central Andes. J. Geophys. Res., 107: 1029/2000JB000124.
    Bedard J. 1990. Enclaves from the A-type granite of the Meganic Complex, White Mountain magma series: clues to granite mag-magenesis. J. Geophys. Res., 95(B11): 17797-17819.
    Bedini RM, Bodinier JL, Dautria JM, et al. 1997. Evolution of LILE enriched small melt fractions in the lithospheric mantle :a case study from the East Africa Rift. Earth Planet. Sci. Lett., 153: 67—831.
    Belousova EA, Griffin WL, O'Reilly SY, et al. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contribution to Mineralogy Petrology, 143: 602—622.
    Bird P and Baumgardner J. 1981. Steady propagation of delamination events. J. Geophys. Res., 86: 4891 —4903.
    
    Bird P. 1979. Continental delamination and the Colorado Plateau. J. Geophys. Res., 84: 7561—7571.
    Boyd OS, Jones CH and Sheehan AF. 2006. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA. Science, 305: 660-662.
    Brown RW, Gallagher K, Griffin WL, et al. 1999. Kimberlites, accelerated erosion and evolution of the lithospheric mantle beneath the Kaapvaal craton during the mid-Cretaceous, Ext. Abst. 7th Int. Kimb. Conf.: 105-107.
    Burov E, Jaupart C, Mareschal JC. 1998. Large-scale crustal heterogeneities and lithospheric strength in cratons. Earth and Planetary Science Letters, 164: 205 — 219.
    Carlson RW, Irving AJ, Hearn Jr BC. 1999. Chemical and isotopic systematics of peridotite xenoliths from the Williams kimberlite, Montana: clues to processes of lithosphere formation, modification and destruction. In: Gurney JL, Pascoe M. D, Richardson SH, eds. Proceedingsof the 7th International Kimberlite Conference. Cape Town, South Africa, 90—98.
    Carlson RW, Pearson DG and James DE. 2005. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys., 43: 2004RG000156.
    Chang EZ. 1996. Collision orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences, 13(3-5): 267—277.
    Chen B, Jahn BM, Arakawa Y, et al. 2004. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang orogen, north China Craton: elemental and Sr-Nd-Pb isotopic constraints. Contrib. Mineral. Petrol., 148:489-501.
    Chen FK, Hegner E and Todt W. 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany-evidence for a Cambrian magmatic arc. International Journal of Earth Sciences, 88: 791-802.
    Chen FK, Siebel W, Satir M, et al. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences, 91: 469-481.
    Chen JF, Yan J, Xie Z, et al. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: Constraints on sources. Physics and Chemistry of the Earth, 26(9—10): 719 —731.
    Collins WJ, Beams SD, White AJR, et al. 1982. Nature and origin of A type granites with paticular reference to Southeastern Australia. Contrib. Miner. Petro., 80: 189-200.
    
    Condie KC. 1982. Plate Tectonics and Crustal Evolution. New York: Pergarnon Press, 1—310.
    Condie KC. 2005. TTGs and adakites: are they both slab melts? Lithos, 80: 33-44.
    Creaser RA, Price RC, Wormald RJ. 1991. A-type granites revisited: Assessment of a residual source model. Geology, 19: 163-166.
    Davies JH and von Blanckenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129: 85—102.
    Davis GA. 2003. 华北燕山带: 构造、埃达克质岩浆活动与地壳演化.地学前缘, 10(4): 373-384.
    Defant M and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665.
    Deng JF, Su SG, Niu YL, et al. 2007. A possible model for the lithospheric thinning of North China Craton:Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos, 96: 22—35.
    DePaolo DJ, Daley EE. 2000. Neodymium isotopes in basalts of the Southwest Basin and range and lithospheric thinning during extension. Chem. Geol., 169: 157—185.
    DePaolo DJ. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett., 53: 189-202.
    DePaolo DJ. 1988. Neodymium isotope geochemistry. In: An introduction: Minerals and rocks. Berlin Heidelberg New York: Springer, 20: 1-187.
    Downes H. 1990. Shear zones in the upper mantle-Relation between geochemical enrichment and deformation in mantle peridotite. Geology, 18: 374—377.
    Drummond MS and Defant MJ. 1990. A model for trondhjenite-tonalite-dactite genesis and Crustal growth via slab melting: Archean to modern composition. J.Geo. Res., 95: 503 — 521.
    Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20: 641-644.
    England P and Houseman G. 1989. Extension during continental convergence, with application to the Tibetan plateau. J. Geophys. Res., 94: 17561-17579.
    Fan QC and Hooper PR. 1989. The mineral chemistry of ultramafic xenoliths of eastern China: Implications for upper mantle composition and the paleogeotherms. J. Petrol. , 30: 1117—1158.
    Fan WM, Guo F, Wang YJ, et al. 2001. Post-Orogenic Bimodal Volcanism Along the Sulu Orogenic Belt in Eastern China. Phys. Chem. Earth (A), 26(9-10): 133-146.
    Fan WM, Guo F, Wang YJ, et al. 2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: Partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen?. Chemical Geology, 209: 27-48.
    Fan WM, Zhang HF, Baker J, et al. 2000. On and off the North China Craton: where is the Archean keel? J. Petrol., 41: 933-950.
    Fowler MB, Henney PJ, Darbyshire DPF, et al. 2001. Petrogenesis of high Ba-Sr granites: The Rogart pluton, Sutherland. J. Geol. Soc. (London), 158: 521-534.
    French WJ. 1981. Calculation of the temperature of crystallization of silication from basalt melts. Miner. Mag., 44: 19-26.
    Gao S, Luo TC, Zhang BR, et al. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959—1975.
    Gao S, Qiu Y, Ling W, et al. 2001. SHRIM single zircon U-Pb dating of the Kongling high-grade metamorphic terrain: Evidence for 3.2 Ga old continental crust in the Yangtze craton. Science in China(Series D), 44: 326-335.
    Gao S, Roberta LR, Richard WC, et al. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198: 307-322.
    GaoS, RudnickRL, Xu WL, et al. 2006. Lithospheric evolution of the North China Craton: Evidence from high-Mg adakitic rocks and their entrained xenoliths (Abstract for Goldschmidt Conference). Geochim. Cosmochim. Acta, 70(18): Suppl. 1, A193.
    Gao S, Rudnick RL, Yuan HL, et al. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892-897.
    Gilder SA, Leloup PH, Courtillot V, et al. 1999. Tectonic evolution of the Tancheng-Lujiang(Tan-Lu) fault via middle Triassic to Early Cenozoic paleomagnetic data. Journal of Geophysical Research, 104(B7): 15365 -15390.
    Green N and Powell J. 2006. Amphibole-controlled Differentiation of High-Mg Andesite Magmas in a 'hot' Subduction Environment. American Geophysical Union, Fall Meeting, abstract: V23C—0637.
    Griffin WL, O'Reilly SY and Ryan CG. 1992. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: proton microprobe studies. International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and its Environs, Beijing, 1 —20.
    Griffin WL, Zhang AD, O'Reilly SY, et al. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In Flower M F, Chung SL, Lo C H, et al. Mantle dynamics and plate interactions in East Asia. AGU Geodynamics Series 27: 155—165.
    Guo F, Fan WM, Wang YJ, et al. 2001. Late mesozoic mafic intrusive complexes in north China block: constraints on the nature of subcontinental lithospheric mantle. Physics and Chemistry of the Earth(A), 26(9-10): 759-771.
    Guo F, Fan WM, Wang YJ, et al. 2003. Geochemistry of late Mesozoic mafic magmatism in west Shandong Province , Eastern China: Characterizing the lost lithospheric mantle beneath the North China Block. Geochemical Journal, 37: 63 — 77.
    Hacker BR, Ratschbacher L, Webb L, et al. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth Planet. Sci. Lett, 161: 215 — 230.
    Henk A. 2006. Stress and strain during fault-controlled lithospheric extension—insights from numerical experiments. Tectonophysics, 415(1-4): 39—55.
    Hill RA, Campbell IH, DaviesGF. et al. 1992. Mantle plumes and continental tectonics. Science, 256: 186 -193.
    Hoernle K and Schmincke HU. 1993. The Role of Partial Melting in the 15-Ma Geochemical Evolution of Gran Canada: A Blob Model for the Canary Hotspot. Journal of Petrology, 34 (3): 599—626.
    Houseman G, McKenzie D and Molnar P. 1981. Convective instability of a thickening boundary layer and its relevance for the thermal evolution of continental convergence belts. J. Geophys. Res., 86: 6115—6132.
    Hsu KJ, Li J, Chen I, et al. 1987. Tectonic evolution of Qinling Mountains, China. Eclogae. Geol. Helve, 80: 735-752.
    Huang F, Li SG, Dong F, Li QL, et al. 2007. Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos, 96: 151 — 169.
    Huerta AD and Harry DL. The transition from diffuse to focused extension: Modeled evolution of the West Antarctic Rift system, Earth and Planetary Science Letters, 255(1-2): 133 — 147.
    Irvine TS and Baragar WBA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 532 — 548.
    Jahn BM, Wu FY, LoCH, et al. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrasions of the Northern Dabie complex, central China. Chemical Geology, 157: 119—146.
    Jiang N, Liu YS, Zhou W. 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochimica et Cosmochimica Acta, 71: 2591—2608.
    
    Kay RW and Kay SM. 2002. Andean adakites: three ways to make them. Acta Petrol Sinica, 18: 303—311.
    Keay S, Steele D and Compston W. 1999. Identifing granite sources by SHRIMP U-Pb zircon geochronology: an application to the Lachlan foldbelt. Contribution to Mineralogy and Petrology, 137: 323—341.
    King PL, White AJR, Chappell BW, et al. 1997. Characterization and origin of aluminous A_type granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrology, 38: 371-391.
    Le Bas MJ, Le Maitre RW, Streckeisen A, et al. 1986. A chemical classification of volcanic rocks based total alkali-silica diagram. Journal of Petrology, 27: 745 — 750.
    Le Maitre RW, Bateman P and Dudek A. 1989. A classification of igneous rocks and glossary ot terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics Igneous Rocks. Oxford: U K, Blackwell Scientific Publications. .
    Le Maitre RW. 1976. Some problems of the projections of chemical data into mineralogical classifications. Contr. Miner. Petro., 56: 181-189.
    Leat PT, Jackson SE, Thorpe RS, et al. 1986. Geochemistry of bimodal basalt-subalkaline/peralkaline rhyolite provinces within the Southern British Caledonides. J. Geol. Soc., London, 143: 259—273.
    Lee CT, Yin QZ and Rudnick RL. 2001. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature, 41: 69 — 73.
    
    Lee JKW, Willians LS, Ellis DJ. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390: 159-161.
    Leech ML. 2001. Arrested orogenic development: eclogitization, delamination, and tectonic collapse. Earth and Planetary Science Letters, 185: 149-159.
    Li S, Jagoutz E, Chen YZ, et al. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6): 1077—1093.
    Li S, Xiao Y, Liu D, et al. 1993. Collision of the North China and Yangtze Blocks and formation of coesitebearing eclogites: timing and processes. Chemical Geology, 109: 89—111.
    Li XH. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18: 293-305.
    Li ZX, Li XH and Kinny PD. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, 173: 171-181.
    Li ZX. 1994. Collision between the North and South China Blocks: A Crustal-detachment model for the suturing in the region east of the Tanlu fault. Geology, 22: 739-742.
    
    Liang C, Song X, Huang J. 2004. Tomographic inversion of Pn travel times in China. J. Geophys. Res., 109.
    Liegeois JP and Black R. 1987. Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas(Mali) Fitton JG, Upton BGJ, eds. Alkaline igneous rocks, Geol. Soc. London, Spec. Publ., 30: 381-401.
    Liew TC and Hofmann AW. 1998. Precambrian crustal components, plutonic associations, plate environment of the Hercynian foldbelt of central Europe: indications from a Nd and Sr isotopic study. Contribution to Mineralogy and Petrology, 98: 129-138.
    Lin G, Zhang Y, Guo F, et al. 2005. Numerical modelling of lithosphere evolution in the North China Block: Thermal versus tectonic thinning. Journal of Geodynamics, 40: 92—103.
    Lin JL and Fuller M. 1990. Paleomagnetism. North and South China collision, and the Tan-Lu fault. Phil. Trans. Roy. Soc. Lond., A331: 589-598.
    Liu M. 2001. Cenozoic extension and magmatism in the North American Cordillera: the role of gravitational collapse. Tectonophysics, 342: 407—433.
    Loisell MC and Wones DK. 1979. Characteristics and origin of anorogenic granite. Geol. Am. Abstract Program, 11: 468.
    Ludwig KR. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 1—70.
    Ma CQ, Li ZC, Ehlers C, et al. 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos, 45: 431-456.
    
    Ma X and Bai J. 1998. Precambrian crustal evolution of China. Beijing: Glogical Publication House, 1—331.
    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 615-643.
    
    MarjorieW. 1993. Magmalic differentilization. J. Geol. Soc. London, 150(4): 611-624.
    Martin H, Smithies RH, Rapp R, et al. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79: 1—24.
    Martin H. 1999. Adakitic magmas: modern analogues of Archean grani-toids. Lithos, 46: 411—419.
    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120: 223-253.
    Mckenzie DP and Bickle MJ. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29: 625—679.
    Meissner R and Mooney W. 1998. Weakness of the lower continental crust: a condition for delamination, uplift, and escape. Tectonophysics, 296: 47—60.
    Meissner R and Tanner B. 1993. From collision to collapse: phases of lithospheric evolution as monitored by seismic records. Phys. Earth Planet. Inter., 79: 75—86.
    Meng QR. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics, 369: 155-174.
    Menzies M, Xu YG, Zhang HF, et al. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96: 1 — 21.
    Menzies MA and Xu YG. 1998. Geodynamics of the North China Craton. In Mantle Dynamics and Plate Interactions in East Asia. Flower MFJ, Chung SL, Lo CH, Lee TY, eds. Am. Geophy. Union, Washington D. C., Geodyn. Ser., 27: 155-165.
    Menzies MA, Fan WM and Zhang M. 1993. Paleozoic and Cenozoic lithoprobes and the los of > 120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris NBW, Neary CR, eds. Magmatic Processes and Plate Tectonics. Geological Society, London, 76: 71—81.
    Mezger K and Krogstad EJ. 1997. Interpretation of discordant U-Pb zircon ages: An evaluation. J. Metamorphic Geol., 15: 127-140.
    
    Middlemost EAK. 1994. Naming materials in magma/igneous rock system. Earth Sci. Rev., 37: 215—224.
    Miller CF, McDowell SM and Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31: 529—532.
    Morency C, Doin MP and Dumoulin C. 2002. Convective destabilization of a thickened continental lithosphere. Earth and Planetary Science Letters, 202: 303-320.
    Muir RJ, Weaver SD, Bradshaw JD, et al. 1995. The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J. Geolo. Sici. London, 152: 689—701..
    Nash WP and Crecraft HR. 1985. Partition coefficients for trace elements in silicic magmas. Geochim. Cosmochim. Acta, 49: 2309-2322.
    
    Nathan HD and Van Kirk CK. 1978. A model of magmatic crystallization. Journal of Petrology, 19: 66—91.
    O'Hara MJ. 1980. Nonlinear nature of the unavoidable long-lived isotopic, trace and major element contamination of a developing magma chamber. Philosophical Transactions of the Royal Society of London, A297: 215-227.
    Patino Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25: 743-746.
    Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contribution to Mineralogy and Petrology, 58: 68—81.
    Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. Petrol., 37: 1497-1521.
    Poitrasson F, Duthou JL and Pin C. 1995. The relationship between petrology and Nd isotopes as evidences for contrasting anorogenic granite genesis: example of theCorsican Province (SE France). J. Petrol., 36: 1251 -1274.
    Pourhiet L, Gurnis M and Saleeby J. 2006. Mantle instability beneath the Sierra Nevada Mountains in California and Death Valley extension. Earth Planet. Sci. Lett., 251: 104-119.
    Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32 kbar: implications for continental growth and crust-mantle recycing. Journal of Petrology, 36: 891—931.
    Rapp RP, Shimizu N, Norman MD, et al. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 Gpa. Chemical Geology, 160: 335—356.
    Rapp RP, Shimizu N, Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605-609.
    Rapp RP, 肖龙 and Shimizu N. 2002. 中国东部富钾埃达克岩成因的实验约束. 岩石学报, 18(3): 293-302.
    Ratschbacher L, Hacker BR, Webb LE, et al. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research, 105: 13303-13338.
    Ren JY, Tamaki K, LiS T, et al. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3-4): 175—205.
    Rey P, Vanderhaeghe O, Teyssier C. 2001. Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics, 342: 435—449.
    Richards MA, Duncan RA and Courtillots RA. 1989. Flood basalts and hot-spot tracks: plume heads and trails. Science, 246: 103-107.
    Rollinson HR. 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Publishing Group, 1—352.
    Rowley DB, Xue F, Tucker RD, et al. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth Planet. Sci. Lett., 151: 191 -203.
    Schott Band Schmeling H. 1998. Delamination and detachment of a lithospheric root. Tectonophysics, 296: 225-247 .
    Schott B, Yuen D and Schmeling H. 2000. The significance of shear heating in continental delamination. Physics of the Earth and Planetary Interiors, 118: 273-290.
    Sears JW, George GM and Winne JC. 2005. Continental rift systems and anorogenic magmatism. Lithos, 80: 147-154.
    Seber D, Barazangi M, Ibenbrahim A, et al. 1996. Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif-Betic mountains. Nature, 379: 785 — 790.
    Sempere T, Carlier G, Soler P, et al. 2002. Late Permian-Middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean-age tectonics. Tectonophysics, 345: 153—181.
    Sonder LJ and Jones CH. 1999. Western United States extension: How the West was widened. Annu. Rev. Earth Planet. Sci., 27: 417-462.
    Song TRA and Helmberger DV. 2007. A depleted, destabilized continental lithosphere near the Rio Grande rift. Earth Planet. Sci. Lett., 262: 175-184.
    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, et al. Magmatism in the Oceanic Basins. Special Publication of Geological Society of London, 42: 313—346.
    Sun WD, Ding X, Hu YH, et al. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet. Sci. Lett, 262: 533-542.
    Tang YJ, Zhang HF, Ying JF, et al. 2007. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, in press. .
    Tarney J and Jones CE. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth. J. Geol. Soci. London, 151: 855-868.
    Taylor SR and McLennan SM. 1985. The continental crust: its composition and evolution. Blackwell: Oxford Press, 1-312.
    Thompson RN, Leat PT, Morrison MA, et al. 1990. Strongly potassic mafic magmas from lithosphere mantle sources during continental extension and heating: evidence from Miocene minettes of northwest Colorado, U. S. A. Earth and Planetary Science Letters, 98: 139-153.
    Turner SP, Foden J D and Morrison RS. 1992. Derivation of some A - type magmas by fractionation of basaltic magama: an example from the Padthaway Ridge, South Austalia. Lithos, 28: 151 — 179.
    Van der Wal D and Bodinier JL. 1996. Origin of the recrystallisation front in the Ronda peridotite by km2scale pervasive porous melts flow. Contrib. Mineral. Petrol., 122: 387—4051.
    Wang K, Plank T, Walker JD, et al. 2002. A mantle melting profile across the Basin and Range, SW USA. J. Geophys. Res., 107: 2001JB000209.
    Wang Q, Derek AW, Xu JF, et al. 2006a. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89: 424—446.
    Wang Q, Wyman DA, Xu JF, et al. 2007a. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71: 2609-2636.
    Wang YJ, Fan WM, Peng TP, et al. 2005. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: Evidence from ~(40)Ar/~(39)Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks. Chemical Geology, 220: 165—189.
    Wang YJ, Fan WM, Zhang HF, et al. 2006b. Early Cretaceous gabbroic rocks from the Taihang Mountains: Implications for a paleosubduction - related lithospheric mantle beneath the central North China Craton. Lithos, 86: 281-302.
    Wang ZH, Zhao Y, Zou HB, et al. 2007. Petrogenesis of the Early Jurassic Nandaling flood basalts in the Yanshan belt, North China Craton: A correlation between magmatic underplating and lithospheric thinning. Lithos, 96: 543 — 566.
    Weaver BL. 1991. The origin of ocean island basalt end member compositions: Trace element and isotopic constrations. Earth and Planet Science Letters, 104: 381—397.
    Wernicke B, Clayton R, Ducea M, et al. 1996. Origin of high mountains in the continents: The southern Sierra Nevada. Science, 271: 190-193.
    Whalen JB, Currie K.L and Chappell BW. 1987. A-type granites: geochemical characteristics, discriminatuon and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407—419.
    Wiedenbeck M, Alle P, Corfu F, et al. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandard Newsletters, 19: 1—23.
    Wilde SA, Zhou XH, Nemchin AA, et al. 2003. Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 31: 817—820.
    Wilson W. 1989. Igneous petrogenesis. Unwin Hyman, London, 327—373.
    Wu FY, Lin JQ, Wilde SA, et al. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233: 103 —119.
    Wu FY, Sun DY, Li HM. et al. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis: Chemical Geology, 187: 143 — 173.
    Wu FY, Walker RJ, Yang YH, et al. 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim. Cosmochim. Acta, 70: 5013-5034. .
    Xu JF, Shinjo R, Defant MC, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30: 1111 — 1114.
    Xu JW and Zhu G. 1994. Tetonic model of the Tan-Lu fault zone, eastern China. International Geology Review, 36: 771-784.
    Xu JW, Zhu G, Tong WX, et al. 1987. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northern of the Pacific Ocean. Tectonophysics, 134: 273 —310.
    Xu WL, Gao S, Wang QH, et al. 2006a. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 34: 721—724.
    Xu WL, Hergt JM, Gao S, et al. 2008. Gao Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth and Planetary Science Letters, 265: 123-137.
    XuWL, Wang QH, Wang DY, et al. 2006b. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust. Journal of Asian Earth Sciences, 27: 230-240.
    Xu XS, Griffin WL, O'Reilly SY, et al. 2007. Re-Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle. Lithos. in press. .
    Xu XS, O'Reilly SY, Griffin WL. et al. 2000. Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. Journal of Petrology, 41(1): 111-148.
    Xu YG, Huang XL, Ma JL, et al. 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contribution to Mineralogy and Petrology, 147: 750—767.
    Xu YG, Menzies MA, Mattey D, et al. 1996. The nature of the lithospheric mantle near the Tancheng-Lujiang fault, China: an integration of texture, chemistry and isotopes. Chem. Geol., 134, 67 — 81.
    Xu YG, Menzies MA, Thirlwall MF, et al. 2003. "reactice" harzburgites from Huinan, NE China: products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochimica et Cosmochimica Acta, 67(3): 487-505.
    Xu YG, Menzies MA, Vroon P, et al. 1998. Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. J. Petro., 39(3): 469—493.
    Xu YG, Ross JV, Mercier JCC. 1993. The upper mantle beneath the continental rift of Tanlu, Eastern China: Evidence for the intralithospheric shear zones. Tectonophysics, 225: 337 — 360.
    Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean in China: evidence, timing and mechanism. Phys. Chem. Earth, 26(9—10): 747 — 757.
    Xu YG. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling-Taihangshan gravity lineament. Lithos, 96: 281—298.
    Yamasaki T . 2004 . Localized rheological weakening by grain-size reduction during litospheric extension. Tectonophysics, 386: 117—145.
    Yang JH, Chung SL, Wilde SA, et al. 2005b. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronology, geochemical and Nd-Sr isotopic evidence. Chem. Geol., 214: 99—125.
    Yang JH, Wu FY, Chung SL, et al. 2005a. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology, 222: 200-231.
    Yin A and Nie SY. 1993. An indendation model for the North and South China collision and the development of the Tan-Lu and Honam fault system, eastern Asia. Tectonics, 12(4): 801—813. .
    Ying JF, Zhang HF, Kita N, et al. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong Province, China. Earth and Planetary Science Letters, 244: 622—638.
    Yuan HL, Gao S, Liu XM, et al. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry. Geostand. Geoanaly. Res., 28: 353 — 370.
    Zhai MG, Fan QC, Zhang HF, et al. 2007. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination. Lithos, 96: 36 — 54.
    Zhang HF, Gao S, Zhong ZQ, et al. 2002b. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, 186: 281—299.
    Zhang HF,Nakamura E,Sun M,et al.2007b.Transformation of subcontinental lithospheric mantle through peridotite-melt reaction:evidence from a highly fertile mantle xenolith from the North China Craton.Inter.Geol.Rev.,49:658-679.
    Zhang HF,Sun M,Zhou MF,et al.2004.Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton:evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks.Geological Magazine,141:55-62.
    Zhang HF,Sun M,Zhou XH,et al.2002a.Mesozoic lithosphere destruction beneath the North China Craton:evidence from major-,trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts.Contribution to Mineralogy and Petrology,144:241-253.
    Zhang HF,Sun M,Zhou XH,et al.2003a.Secular evolution of the lithosphere beneath the eastern North China Craton:Evidence from Mesozoic basalts and high-Mg andesites.Geochimica et Cosmochimica Acta,67(22):4373-4387.
    Zhang HF,Sun M,Zhou XH,et al.2005.Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications.Lithos,81:297-317.
    Zhang HF,Ying JF,Shimoda G,et al.2007a.Importance of melt circulation and crust-mantle interaction in the lithospheric evolution beneath the North China Craton:Evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths.Lithos,96:67-89.
    Zhang RY,Liou JG,Yang JS,et al.2003b.Ultrahigh-pressure metamorphism in the forbidden zone:the Xugou garnet peridotite,Sulu terrane,eastern China.J.Metamorph.Geol.,21:539-550.
    Zhang YQ,Dong SW,Shi W.2003c.Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province,eastern China.Tectonophysics,363:243-258.
    Zhao GC,Wilde SA,Cawood PA,et al.2001.Archean blocks and their boundaries in the North China Craton:lithological,geochemical,structural and P-T path constraints.Precambrian Res.,107:45-73.
    Zhao ZF,Zheng YF,Wei CS,et al.2004.Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China.Geophy.Res.Lett.,31:2004GL021061.
    Zheng JP,Griffin WL,O'Reilly SY,et al.2006.Mineral chemistry of peridotites from Paleozoic,Mesozoic and Cenozoic lithosphere:constraints on mantle evolution beneath Eastern China.J.Petrol.,47:2233-2256.
    Zheng JP,Griffin WL,O'Reilly SY,et al.2007.Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis.Geochim.Cosmochim.Acta,71:5203-5225.
    Zheng JP,O Reilly SY,Grifin WL,et al.2001.Relict refractory mantle beneath the eastern North China block:sign ificance for lithosphere evolution.Lithos,57:43-66.
    Zhou XH,Sun M,Zhang GH,et al.2002.Continental crust and lithospheric mantle interaction beneath North China:isotopic evidence from granulite xenoliths in Hannuoba,Sino-Korean craton.Lithos,62:111-124.
    Zhou XM and Li WX.2000.Origin of late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magma.Tectonophysics,326:269-287.
    Zhu BQ.1995.The mapping of geochemical provinces in China based on Pb isotopes.J.Geochem.Exploration,55:171-181.
    Zinlder A and Hart SR.1986.Chemical Geodynamics.Annual review of earth and planetary sciences,14:493-571.
    安徽省地质矿产局.1986.安徽省区域地质志.北京:地质出版社..
    安徽省地质矿产局区域地质调查队.1988.安徽地层志(侏罗系分册).安徽科学技术出版社1-146.
    陈道公.1992.郯庐断裂带中南段新生代玄武岩地球化学.见:刘若新主编,中国新生代火山岩年代学与地球化学.北京:地震出版社,171-209.
    陈沪生,周雪清,李道琪,等.1993.中国东部灵璧-奉贤(HQ-13)地学断面.北京:地质出版社..
    池际尚,路风香,赵磊,等.1996.华北地台金伯利岩及古生代岩石圈地幔特征.北京:科学出版社..
    池际尚,主编.1988.中国东部新生代玄武岩及上地幔研亢.武汉:中国地质大学出版社..
    邓晋福,赵国春,赵海玲,等.2000.中国东部燕山期火成岩构造组合与造山-深部过程.地质论评,46(1):41-48.
    邓晋福.1987.岩石相平衡与岩石成因.武汉:武汉地质学院出版社,58-67.
    董波.2005.合肥盆地东缘郯庐断裂带的电性特征与成因解释.安徽地质,15(1):44-47.
    鄂莫岚,赵大升主编.1987.中国东部新生代玄武岩及深源岩石包体.北京:科学出版社..
    郭敬辉,陈福坤,张晓曼,等.2005.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学.岩石学报,21(4):1281-1301.
    韩宝福,加加美宽雄,李惠民.2004.河北光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义.岩石学报,20(6):1375-1388.
    何丽娟,胡圣标,汪集旸,2001.中国东部大陆地区岩石圈热结构特征.自然科学进展,11:966-969.
    洪大卫,郭文岐,李戈晶,等.1987.福建沿海晶洞花岗岩带的岩石学和成因演化.北京:北京科技出版社,1-132.
    胡芳芳,范宏瑞,杨进辉,等.2005.胶东文登长山南花岗闪长岩体的岩浆混合成因:闪长质包体及寄主岩石的地球化学、Sr-Nd同位素和锆石Hf同位素证据.岩石学报,21(3):569-586.
    黄洁,郑永飞,吴元保,等.2005.苏鲁造山带五莲地区岩浆岩元素和同位素地球化学研究.岩石学报,21(3):545-568.
    靳克,许文良,王清海,等.2003.蚌埠淮光“混合花岗闪长岩”的形成时代及源区:锆石SHRIMP U-Pb 地质年代学证据.地球学报,24(4):331-335.
    李超文,郭锋,李晓勇.2004.溧水盆地晚中生代基性火山岩成因与深部动力学过程探讨.地球化学,33(04):361-371.
    李全忠,谢智,陈江峰,等.2007.济南和邹平辉长岩的Pb-Sr-Nd同位素特征和岩浆源区中下地壳物质贡献.高校地质学报,13(2):297-310.
    李曙光,Jagoutz E,肖益林,等.1996.大别山-苏鲁地体超高压变质年代学-I.Sm-Nd同位素体系.中国科学(D辑),26(3):249-257.
    李曙光,黄方,李晖.2001.大别-苏鲁造山带碰撞后的岩石圈拆离.科学通报,46(17):1487-1491.
    李曙光,黄方,杨蔚.2005.下地壳对华北克拉通及大别造山带中生代镁铁质岩浆岩地幔源区的贡献.论文摘要(2005年全国岩石学与地球动力学研讨会):33-34.
    李曙光,杨蔚.2002.大别造山带深部地缝合线与地表地缝合线的解耦及大陆碰撞岩石圈楔入模型:中生代幔源岩浆Sr-Nd-Pb同位素证据.科学通报,47(24):1898-1905.
    李伍平,路凤香.1999.钙碱性火山岩构造背景的研究进展.地质科技情报,18(2):15-18.
    李学明,李彬贤,张巽.1985.安徽管店岩体的同位素地质年龄和郯庐断裂带的动力学变质作用.中国科学技术大学学报,(增刊):254-261.
    林中洋,蔡文伯,陈学波,等.1992.青海门源至福建宁德地学断面.北京:地震出版社..
    凌文黎,谢先军,柳小明,等.2006.鲁东中生代标准剖面青山群火山岩锆石U-Pb年龄及其构造意义.中国科学(D辑),36(5):401-411.
    刘福来,许志琴.2004.南苏鲁超高压岩石含柯石英锆石中的流体包裹体.科学通报,49(2):181-189.
    刘国生,宋传中,王道轩,等.2002.郯庐断裂(K2-E)的伸展活动及其对合肥盆地的控制.合肥工业大学学报,25(5):672-677.
    刘洪,邱检生,罗清华,等.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学,31(2):129-140.
    刘燊,胡瑞忠,赵军红,等.2003.鲁西青山组火山岩形成的构造背景及其成因探讨:主元素和微量元素证据.地球化学,32(4):306-316.
    卢造勋,夏怀宽.1992.内蒙古东乌珠穆沁旗至辽宁东沟地学断面.北京:地震出版社..
    路凤香,韩柱国,郑建平,等.1991.辽宁复县地区古生代岩石圈地幔特征.地质科技情报,10(增刊):2-20.
    路凤香,郑建平,李伍平,等.2000.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型.地学前缘,7(1):97-107.
    路凤香,郑建平,邵济安,等.2006.华北东部中生代晚期-新生代软流圈上涌与岩石圈减薄.地学前缘,13(2):86-92.
    马昌前,杨坤光,明厚利,等.2003.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学(D辑),33(9):817-827.
    马杏垣,刘昌铨,刘国栋.1991.江苏响水至内蒙古满都拉地学断面.北京:地质出版社..
    牛漫兰,朱光,刘国生.2002.郯庐断裂带中-南段中生代岩浆活动的构造背景与深部过程.地质科学,37(4):393-404.
    牛漫兰,朱光,刘国生.2005.郯庐断裂带中-南段新生代火山活动与深部过程.地质科学,40(3):390-403.
    牛漫兰,朱光,宋传中,等.2000.郯庐断裂带火山活动与深部地质过程的新认识.地质科技情报,19(3):21-26.
    牛漫兰.2006.张八岭地区中生代岩体中黑云母的~(40)Ar-~(39)Ar年龄及其地质意义.地质科学,41(2):217-225.
    牛耀龄.2005.玄武岩浆起源和演化的一些基本概念以及对中国东部中-新生代基性火山岩成因的新思路.高校地质学报,11:9-46.
    潘国强,陆现彩,于航波.2001.北淮阳中生代adakite岩石地球化学特征及成因讨论.岩石学报,17(4):541-550.
    裴福萍,许文良,王清海,等.2004.鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学:对岩石圈地幔性质的制约.高校地质学报,10(1):88-97.
    齐进英.1982.安徽滁县中生代火山岩岩石化学及斜长石特征.地质科学,2:152-161.
    邱检生,胡建,蒋少涌.2005.鲁西中、新生代镁铁质岩浆作用与地幔化学演化.地球科学,30(6):646-658.
    邱检生,蒋少涌,张晓琳,等.2004.大别-苏鲁造山带南北两侧晚中生代富钾火山岩的成因:微量元素及Sr-Nd-Pb同位素制约.地球学报,25(2):255-262.
    邱检生,王德滋,曾家湖,等.1997.鲁西中生代富钾火山岩及煌斑岩微最元素和Nd-Sr同位素地球化学.高校地质学报,3(4):385-396.
    邱检生,王德滋,刘洪,等.2002.大别造山带北缘后碰撞富钾火山岩:地球化学与岩石成因.岩石学报,18(3):319-330.
    邱检生,王德滋,罗清华,等.2001a.鲁东胶莱盆地青山组火山岩的~(40)Ar-~(39)Ar定年--五莲分岭山火山机构为例.高校地质学报,7(3):351-355.
    邱检生,王德滋,周金城,等.1996.山东中生代橄榄安粗岩系火山岩的地质、地球化学特征及岩石成因.地球科学,21(5):46-552.
    邱检生,徐夕生,罗清华.2001b.鲁西富钾火山岩和煌斑岩的~(40)Ar-~(39)Ar定年及源区示踪.科学通报,46(18):1500-1508.
    邵济安,刘福田,陈辉,等.2001.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系.地质学报,75(1):56-63.
    孙武城,徐杰,杨主恩,等.1992.上海奉贤至内蒙古阿拉善左旗地学断面.北京:地震出版社..
    万天丰,朱鸿.1996.郯庐断裂带的最大左行走滑断距及其形成时期.高校地质学报,2(1):14-27.
    王德滋,任启江,邱检生,等.1996.中国东部橄榄安粗岩省的火山岩特征及其成矿作用.地质学报,70(1):23-34.
    王德滋,沈渭洲.2003.中国东南部花岗岩成因与地壳演化.地学前缘,10(3):209-220.
    王德滋,赵广涛,邱检生.1995.中国东部晚中生代A型花岗岩的构造制约.高校地质学报,1(2):13-21.
    王强,赵振华,熊小林,等.2001.底侵玄武质下地壳的熔融:来自沙溪adakite质富钠石英闪长玢岩的证据.地球化学,30(4):353-362.
    王小凤,李中坚,陈柏林,等.1998.郯庐走滑断裂系的形成演化及其地质意义.见:郑亚东等主编.第30届国际地质大会论文集.北京:地质出版社.14:176-196.
    王晓蕊,高山,柳小明,等.2005.辽西四合屯早白垩世义县组高镁安山岩的地球化学:对下地壳拆沉作用和Sr/Y变化的指示.中国科学(D辑),35(8):700-709.
    王勇生,朱光,宋传中,等.2006.大别山东端郯庐断裂带由走滑向伸展运动转换的~(40)Ar/~(39)Ar年代学记录.地质科学,41(2):242-255.
    王元龙,王焰,张旗,等.2004.铜陵地区中生代中酸性侵入岩的地球化学特征及其成矿-地球动力学意义.岩石学报,20(2):325-338.
    王元龙,张旗,王焰.2001.宁芜火山岩的地球化学特征及其意义.岩石学报,17(4):565-575.
    王岳军,范蔚茗,郭锋,等.2003.北大别晚中生代火山岩的地球化学特征及对北大别构造属性的启示.地学前缘,10(4):529-538.
    王岳军,范蔚茗,郭锋.2002.北淮阳晚中生代火山岩定年及火山砾石地球化学:对大别灰色片麻岩隆升和中生代地层格架的约束.科学通报,47(20):1528-1534.
    吴福元,葛文春,孙德有,等.2003.中国东部岩石圈减薄研究中的几个问题.地学前缘,10(3):51-60.
    吴福元,孙德有.1999.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报,29:313-318.
    吴福元,徐义刚,高山,等.2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩石学报,待发表.
    谢智,陈江峰,张巽,等.2003.北淮阳晓天盆地早白垩世玄武岩地球化学:富集地幔的证据.矿物岩石地球化学通报,26(1):26-31.
    谢智,李全忠,陈江峰,等.2007.庐枞早白垩世火山岩的地球化学特征及其源区意义.高校地质学报,13(2):235-249.
    徐嘉炜.1984.郯城-庐江平移断裂系统.构造地质论丛,(3):18-32.
    徐义刚,林传勇,史兰斌,等.1995.中国东部上地幔古地温及其地质意义.中国科学,25:874-881.
    徐义刚.1999.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄.矿物岩石地球化学通报,18:1-5.
    徐义刚.2004.华北岩石圈减薄的时空不均一特征.高校地质学报,10(3):324-331.
    徐义刚.2006a.用玄武岩组成反演化中-新生代华北岩石圈的演化.地学前缘,13(2):93-104.
    徐义刚.2006b.太行山重力梯度带的形成与华北岩石圈减薄的时空差异性有关.地球科学,31(1):14-22.
    许文良,王冬艳,王清海,等.2004a.华北地块中东部中生代侵入杂岩中角闪石和黑云母的~(40)Ar/~(39)Ar定年:对岩石圈减薄时间的制约.地球化学,33(3):221-231.
    许文良,王清海,王冬艳,等.2004b.华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源捕虏体证据.地学前缘,11(3):309-317.
    许文良,杨承海,杨德彬,等.2006.华北克拉通东部中生代高Mg闪长岩-对岩石圈减薄机制的制约.地学前缘,13:120-129.
    续海金,马昌前.2003.实验岩石学对埃达克岩成因的限定-兼论中国东部富钾高Sr/Y比值花岗岩类.地学前缘,10(4):417-427.
    薛怀民,董树文,刘晓春.2002a.大别山东部花岗片麻岩的锆石U-Pb年龄.地质科学,37(2):165-173.
    薛怀民,董树文,刘晓春.2002b.北大别东部白垩纪埃达克质火山岩及其锆石U-Pb年代学.地球化学,31(5):455-463.
    闫峻,陈江峰,谢智,等.2003a.鲁东晚白垩世玄武岩中的幔源捕虏体:对中国东部岩石圈减薄时间制约的新证据.科学通报,48(14):1570-1574.
    闫峻,陈江峰,谢智,等.2005.长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约.地球化学,34(5):455-469.
    闫峻,陈江峰,喻钢,等.2003b.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据.高校地质学报,9(2):195-206.
    闫峻,陈江峰.2005.华北地块东部晚中生代至新生代岩石圈不均一减薄与改造模式.地质论评,15(1):16-26.
    杨承海,许文良,杨德彬,等.2005.鲁西济南辉长岩的形成时代:锆石LA-ICP-MS U-Pb定年证据.地球学报,26(4):321-325.
    杨承海,许文良,杨德彬,等.2006.鲁西中生代高Mg闪长岩的成因:年代学与岩石地球化学证据.地球科学,31(1):81-92.
    杨德彬,许文良,裴福萍,等.2005.蚌埠隆起区花岗岩形成时代及岩浆源区性质:锆石LA-ICPMS U-Pb 定年与示踪.地球化学,34(5):443-454.
    杨进辉,朱美妃,刘伟胶,等.2003.东地区郭家岭花岗闪长岩的地球化学特征及成因.岩石学报,19(4):692-700.
    杨文采,余长青.2001.根据地球物理资料分析大别-苏鲁超高压变质带演化的运动学与动力学.地球物理学报,44(3):346-359.
    杨祝良,沈加林,沈渭洲,等.1999a.北淮阳中生代火山-侵入岩同位素年代学研究.地质论评,(增刊):674-680.
    杨祝良,沈加林,沈渭洲,等.2002.大别山北缘中生代火山-侵入岩锶-钕同位素组成特征及其物质来源.岩石矿物学杂志,21(3):223-230.
    杨祝良,沈渭洲,谢芳贵,等.1999b.大别山北缘中生代火山-侵入岩铅同位素组成特征及其地质意义.高校地质学报,5(4):384-389.
    袁洪林,柳小明,刘勇胜,等.2005.北京西山晚中生代火山岩U-Pb锆石年代学及地球化学研究.中国科学(D辑),35(9):821-836.
    翟明国,樊祺诚,张宏福,等.2005.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用.21(0):1509-1526.
    翟明国,孟庆任,刘建明,等.2004.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨.地学前缘,11(3):285-297.
    张宏福,英基丰,徐平,等.2004.华北中生代玄武岩中地幔橄榄石捕虏晶;对岩石圈地幔置换过程的启示.科学通报,49:784-789.
    张宏福,周新华,范蔚茗,等.2005.华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理.岩石学报,21(4):1271-1280.
    张宏福.2006.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式.地学前缘,13(2):65-75.
    张华锋,翟明国,彭澎.2006a.华北克拉通桑干地区高压麻粒岩的锆石SHRIMP U-Pb年龄及其地质含义.地学前缘,13(3):190-199.
    张华锋,翟明国,童英,等.2006b.胶东半岛三佛山高Ba-Sr花岗岩成因.地质论评,52(1):43-53.
    张理刚.1995.东亚岩石圈块体地质.北京:科学出版社..
    张旗,金惟俊,王元龙,等.2006.大陆下地壳拆沉模式初探.岩石学报,22:265-276.
    张旗,金惟俊,王元龙,等.2007.晚中生代中国东部高原北界探讨.岩石学报,23(4):689-700.
    张旗,王焰,刘红涛,等.2003.中国埃达克岩的时空分布及其形成背景:附国内关于埃达克岩的争论.地学前缘,10(4):385-400.
    张旗,王焰,钱青,等.2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,17(2):236-244.
    张青,朱光,刘国生,等.2008.郯庐断裂带张八岭隆起北段的左旋走滑挤压变形及其~(40)Ar/~(39)Ar定年.地学前缘,15(3):234-249.
    张贻侠,孙运生,张兴洲,等.1998.中国满洲里-绥芬河地学断面.北京:地质出版社..
    张岳桥,赵越,董树文,等.2004.中国东部及邻区早白垩世裂陷盆地构造演化阶段.地学前缘,11(3):123-133.
    郑建平,路风香,O'Reilly,等.1999.华北地台东部古生代与新生代岩石圈地幔特征及其演化.地质学报,73:47-56.
    郑建平,路凤香,Griffin W L,等.2006.华北东部橄榄岩与岩石圈减薄中的地幔伸展和侵蚀置换作用.地学前缘,13(2):76-85.
    郑建平,路凤香,O'Reilly SY,等.2000.华北东部地幔改造作用和置换作用:单斜辉石激光探针分析.中国科学D辑,30(4):373-382.
    郑建平,路凤香.1999.胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性.岩石学报,15:65-74.
    郑建平.1999.中国东部地幔置换作用与中新生代岩石圈减薄.武汉:中国地质大学出版社..
    郑建平.2005.捕虏体麻粒岩锆石U-Pb年龄和铪同位素:华北地块下地壳的形成与再造.矿物岩石地球化学通报,21(1):7-16.
    郑永飞,陈福坤,龚冰,等.2003.大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据.科学通报,48(2):110-119.
    周建波,郑永飞,吴元保.2002.苏鲁造山带西北缘五莲花岗岩中锆石U-Pb年龄及其地质意义.科学通报,47(22):1745-1750.
    周建波,郑永飞,赵子福.2003.山东五莲中生代岩浆岩的锆石U-Pb年龄.高校地质学报,9(2):185-194.
    周泰禧,陈江峰,彭子成,等.1992.安徽中生代中酸性火山岩的时代归属.矿物学岩石学论,(8):58-64.
    周泰禧,陈江峰,张巽,等.1995.北淮阳花岗岩-正长岩带地球化学特征及其大地构造意义.地质论评,41(2):144-151.
    周新华,张宏福,英基丰,等.2005.大陆深俯冲后效作用的地球化学记录--华北中生代岩石圈地幔源区特征变异的讨论.岩石学报,21(4):1255-1263.
    周新华.2006.中国东部中、新生代岩石圈转型与减薄研究若干问题.地学前缘,13(2),50-64.
    朱炳泉.1998.地球科学中同位素体系理论与应用.北京:科学出版社,1-321.
    朱炳泉.1999.地球的块体化学不均一性与地球动力学.科学出版社..
    朱炳泉.2001.地球化学省与地球化学急变带.北京:科学出版社..
    朱光,刘国生,Dunlap WJ,et al.2004a.郯庐断裂带同造山走滑运动的~(40)Ar/~(39)Ar年代学证据.科学通报,49(2):190-198.
    朱光,牛漫兰,刘国生,等.2002b.郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件.地质学报,76(3):323-334.
    朱光,牛漫兰,刘国生,等.2005b.郯庐断裂带肥东段走滑运动的~(40)Ar/~(39)Ar法定年.地质学报,79(3):303-316.
    朱光,牛漫兰,宋传中,等.2001a.郯庐断裂带新生代的上地幔剪切作用与火山活动.安徽地质,11(2):106-112.
    朱光,宋传中,牛漫兰,等.2002a.郯庐断裂带的岩石圈结构及其成因分析.高校地质学报,8(3):248-256.
    朱光,宋传中,王道轩,等.2001b.郯庐断裂带走滑时代的~(40)Ar/~(39)Ar年代学研究及其构造意义.中国科学D辑,31(3):250-256.
    朱光,王道轩,刘国生,等.2001c.郯庐断裂带的伸展活动及其动力学背景.地质科学,36(3):269-278.
    朱光,王勇生,牛漫兰,等.2004b.郯庐断裂带的同造山运动.地学前缘,11(3):169-182.
    朱光,谢成龙,王勇生,等.2005a.郯庐高压走滑韧性剪切带特征及其~(40)Ar/~(39)Ar定年.岩石学报,21(6):1687-1702.
    朱光,徐佑德,刘国生,等.2006.郯庐断裂带中-南段走滑构造特征与变形规律.地质科学,41(2):226-241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700