用户名: 密码: 验证码:
电子回旋共振放电的PIC/MCC模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子回旋共振(Electron Cyclotron Resonance,简写为ECR)等离子体源由于具有高密度、高电离度、低运行气压、大体积、均匀、无电极污染、设备简单、参数易于控制、可产生高密度高电荷态离子束等优点而十分引人注目,它被广泛地应用于微电子工业、原子物理、核物理、高能物理与工业应用中。由于ECR等离子体源的广泛应用,对其需求与日剧增,因此对ECR放电及其生成等离子体源特性的研究有着非常重要的意义。本论文围绕ECR放电的理论分析与计算机模拟展开研究工作,主要工作和创新之处在于:
     (1)对ECR放电及ECR等离子体源的理论、计算机模拟方法进行了综述
     对ECR放电及ECR等离子体的理论、计算机模拟方法进行了综述、总结与对比。特别指出了模拟ECR放电电离过程的重要意义以及粒子模拟与蒙特卡罗相结合(particle-in-cell plus Monte Carlo Collision,简写为PIC/MCC)方法在模拟研究ECR放电及ECR等离子体特性中的优势。
     (2)ECR放电电离过程准三维理论分析
     以通常的ECR放电系统为基础,建立了物理模型,对ECR放电进行了准三维的理论分析,其中包括电磁场的求解、等离子体集体运动、粒子间的碰撞以及带电粒子与边界的相互作用。考虑了电子与中性粒子的弹性、激发、电离碰撞;离子与中性粒子的弹性、电荷交换碰撞;碰撞截面均是能量的函数。总结和发展了适用于ECR放电(可扩展至气体放电)计算机模拟的二次电子发射模型,包括了电子到达边界后被边界吸收、反射、产生真二次电子的三种情形,且具体发生过程依赖于边界材料属性和电子的入射能量与入射角度。
     (3)ECR放电电离过程准三维模拟
     在ECR放电电离过程准三维理论分析基础之上进行了数值分析,并编制了ECR放电电离过程的PIC/MCC模拟程序。采用时域有限差分方法并结合总场/散射场体系激励源、吸收边界条件来求解微波场,模拟了微波在ECR放电系统中的传播过程。采用PIC方法中的电磁模型描述了带电粒子与微波自洽的相互作用,MCC方法描述了粒子之间的碰撞过程及带电粒子与边界的相互作用,从而将PIC方法与MCC方法相结合,使得PIC方法处理集体相互作用和MCC方法处理粒子碰撞的优势得以兼顾。
     (4)ECR放电电离过程的诊断分析
     通过对ECR放电的PIC/MCC模拟,得到了大量的从放电初期至放电稳态过程中的关于带电粒子运动与微波场的微观信息,展现了电离过程中带电粒子与微波随时间、空间的演化;对如上大量微观信息进行了统计平均,给出了ECR放电及其生成ECR等离子体的部分宏观特性;研究了不同中性气压、外加静磁场形态、微波功率对ECR放电及其生成等离子体特性的影响,可以实现对ECR等离子体源特性的优化。
Electron cyclotron resonance (ECR) microwave discharge plasma devices have received a great deal of attention as sources for micro-electronic fabrications, accelerators, atomic physics experiments, and industrial applications et al, due to their high reactive species density, high degree of ionization, low neutral pressure, big volume, uniform, electrodeless operation, and controllable. And the theoretical and computational simulation has been the important method to investigate the characteristics of ECR discharge or ECR plasma.
     A theoretical and computational model has been presented to study the ionization of the ECR discharge using a quasi-three-dimensional electromagnetic particle-in-cell plus Monte Carlo collision (PIC/MCC) method. The major achievements are listed as the following:
     (1)Particle, fluid, and hybrid models are focused on the theoretical and computer simulation of the ECR discharge and ECR plasma. In this paper, these three models are reviewed, summarized, and contrasted respectively. It is important to study the ionization of the ECR discharge. And the PIC/MCC method in particle model is preponderant in the simulation of the ECR discharge and ECR plasma.
     (2)A theoretical model has been proposed to study the ionized characteristics of the argon ECR discharge. The propagation of self-consistent microwave, plasma collective motion, collisions between particles, the interaction between the charged particles and the boundary are taken into account. Elastic, excitational, and ionizing electron-neutral collisions and elastic, charge exchange ion-neutral collisions are included. The cross sections are the functions of particle's energy. And the secondary electron emission model has been summarized and developed to simulate the behavior of the electron which comes to the boundary in the gas discharge. The secondary emission coefficient is dependent on the impact energy and angle of incidence of the primaries, as well as the material properties of the target.
     (3)A quasi-three-dimensional electromagnetic PIC/MCC method is used. The simulation code is the original work. The Finite-Difference Time-Domain (FDTD) method plus the source of total/scattering field system and the absorbing boundary condition are used to calculate the propagation of microwave. The interaction between the charged particles and microwave fields are described by particle-in-cell method. The collision processes and the behavior of charged particle which reach the boundary are treated with Monte Carlo method. And the advantages both PIC method to plasma collective and MCC method to collisions are obtained.
     (4)The detailed microscopic information about the distributions of charged particles and electromagnetic fields from the initial stage to the steady state of ECR discharge are obtained, and the spatio-temporal evolution of the movements of charged particles and the propagation of microwave are shown. The macroscopic features of ECR discharge and ECR plasma are also found by the statistical treatment of the above microscopic information. The effects of neutral pressure, the profiles of external static magnetic and microwave power on the characteristics of the ECR discharge and ECR plasma are investigated to make optimization of the ECR plasma.
引文
[1]徐学基.气体放电物理.上海:复旦大学出版社,1996,1-49
    [2]Ashtiani K A,Shohet J L,Hitchon W N G,et al.A two-dimensional particle-in-cell simulation of an electron-cyclotron-resonance etching tool.Journal of Applied Physics,1995,78(4):2270-2278
    [3]菅井秀郎.等离子体电子工程学(张海波,张丹翻译)北京:科学出版社2005,128-129
    [4]Lu Y F,Sun J,Yu D,et al.Electron cyclotron resonance plasma assisted pulsed laser deposition for compound host film synthesis and in situ doping.Journal of Vacuum Science &Technology A:Vacuum,Surfaces,and Films,2006,24(3):413-417
    [5]Maiolo L,Pecora A,Fortunato G,et al.Low-temperature electron cyclotron resonance plasma-enhanced chemical-vapor deposition silicon dioxide as gate insulator for polycrystalline silicon thin-film transistors.Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2006,24(2):280-285
    [6]Hsu C H,Huang Y F,Chen L C,et al.Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching.Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2006,24(1):308-311
    [7]Akazawa H,Shimada M.Factors driving c-axis orientation and disorientation of LiNbO~3 thin films deposited on TiN and indium tin oxide by electron cyclotron resonance plasma sputtering.Journal of Applied Physics,2006,99(12):124103 -8
    [8]Wu H-M,Graves D B,Kilgore M.Two-dimensional simulation of compact ECR plasma sources.Plasma Sources Science and Technology,1997,6(2):231-239
    [9]Kato Y,Furuki H,Asaji T,et al.Production of multicharged ions and behavior of microwave modes in an electron cyclotron resonance ion source directly excited in a circular cavity resonator.11th International Conference on Ion Sources,2006,03A336-4
    [10]Girard A,Hitz D,Melin G,et al.Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources:Physics and technology(invited).Review of Scientific Instruments,2004,75(5):1381-1388
    [11]Dougar-Jabon V D,Umnov A M,Diaz D S.Three-dimensional simulation of an ECR plasma in a minimum-B trap.Papers from the Ninth International Conference on Ion Sources,2002, 629-631
    [12]Hong J,Granier A,Leteinturier C,et al.Measurements of rf bias effect in a dual electron cyclotron resonance-rf methane plasma using the Langmuir probe method.Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2000,18(2):497-502
    [13]Yadav V K,Sathyanarayana K,Purohit D,et al.A tetrode based fast pulsed microwave source for electron cyclotron resonance breakdown experiments.Review of Scientific Instruments,2007,78(2):023503-4
    [14]Decker J,Ram A K.Relativistic description of electron Bernstein waves.Physics of Plasmas,2006,13(11):112503-14
    [15]Maekawa T,Kobayashi T,Yamaguchi S,et al.Doppler-Shifted Cyclotron Absorption of Electron Bernstein Waves via N_2 in a Tokamak Plasma.Physical Review Letters,2001,86(17):3783-3786
    [16]Tartari U,Grosso G,Granucci G,et al.Critical issues highlighted by collective Thomson scattering below electron cyclotron resonance in FTU.Nuclear Fusion,2006,46(11):928-940
    [17]Meo F,Bindslev H,Korsholm S B,et al.Design of the collective Thomson scattering diagnostic for International Thermonuclear Experimental Reactor at the 60 GHz frequency range.Review of Scientific Instruments,2004,75(10):3585-3588
    [18]Nakagawa T,Higurashi Y,Kidera M,et al.Effect of magnetic-field configuration on the beam intensity from electron cyclotron resonance ion source and RIKEN superconducting electron cyclotron resonance ion source,11th International Conference on Ion Sources,2006,03A304-4
    [19]Zalach J,Grulke O,Klinger T.ECR Heating in a Helicon Device.PLASMA 2005:Int.Conf.on Research and Applications of Plasmas;3rd German-Polish Conf.on Plasma Diagnostics for Fusion and Applications;5th French-Polish Seminar on Thermal Plasma in Space and Laboratory,2006,219-222
    [20]Shindo M,Ueda Y,Kawakami S,et al.Measurements of negative ion density in fluorocarbon ECR plasma.Vacuum,2000,59(2-3):708-715
    [21]Holber W M,Forster J.Ion energetics in electron cyclotron resonance discharges.Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1990,8(5):3720-3725
    [22]Gong Z S,Sun J,Xu N,et al.Spectroscopic study on the evolution of graphite ablation plume in ECR argon plasma during the deposition of diamond-like carbon films.Diamond and Related Materials,2007,16(1):124-130
    [23]Kim J S,Liu C,Edgell D H,et al.Monte Carlo beam capture and charge breeding simulation.11th International Conference on Ion Sources,2006,03B106-5
    [24]Edgell D H,Kim J S,Wong S K,et al.Monte Carlo model of charge-state distributions for electron cyclotron resonance ion source plasmas.1999,3(2):1890-1892
    [25]Kuo S C,Kuo S P.Monte Carlo simulation of electron behavior in an electron cyclotron resonance microwave discharge sustained by circular TM_(11) mode fields.Journal of Applied Physics,1996,80(4):2512-2514
    [26]Todd D S,Leitner D,Leitner M,et al.Comparison of particle-in-cell simulation with experiment for the transport system of the superconducting electron cyclotron resonance ion source VENUS.Review of Scientific Instruments,2006,77(3):03A338-4
    [27]Grote D P,Friedman A,Vay J-L,et al.The WARP Code:Modeling High Intensity Ion Beams.Electron Cyclotron Resonance Ion Sources:16th International Workshop on ECR Ion Sources ECRIS'04,2005,55-58
    [28]Dougar-Jabon V D,Umnov A M,Diaz D S.Properties of Plasma in an ECR Minimum-B Trap via Numerical Modeling.Physica Scripta,2004,70(1):38-42
    [29]Shiau J H,Hu Y,Lin T L,et al.Implement the PIC-MCC simulation of ECR plasma source on PC cluster with DRBL,an effective approach to integrate PC cluster.2005,311-314
    [30]Sou H,Takao Y,Noutsuka T,et al.A study of plasma propulsion system with RF heating.Vacuum,2000,59(1):73-79
    [31]Koh W H,Choi N H,Choi D I,et al.Electromagnetic particle simulation of electron cyclotron resonance microwave discharge.Journal of Applied Physics,1993,73(9):4205-4211
    [32]Liu M H,Hu X W,Yu G Y,et al.Two-dimensional simulation of an electron cyclotron resonance plasma source with power deposition and neutral gas depletion.Plasma Sources Science and Technology,2002,11(3):260-265
    [33]Liu M H,Hu X W,Wu H M,et al.Two-dimensional simulation of an electron cyclotron resonance plasma source with self-consistent power deposition.Surface and Coatings Technology,2000,131(1-3):29-33
    [34]Zhong X X,Wu J D,Sun J,et al.Numerical study of argon ions transported across the sheath in electron cyclotron resonance discharges.Journal of Applied Physics,1999,85(3):1351-1357
    [35]Ning Z Y,Guo S Y,Cheng S H.Numerical simulation of plasma flow downstream in an ECR plasma deposition apparatus.Vacuum,1999,52(3):219-223
    [36]Muta H,Itagaki N,Koga M,et al.Generation of a low-electron-temperature ECR plasma using mirror magnetic field.Surface and Coatings Technology,2003,174-175:152-156
    [37]Yasaka Y,Uda N.Practical scheme for three-dimensional simulation of electron cyclotron resonance plasma reactors.Journal of Applied Physics,2001,89(7):3594-3601
    [38]Niimura M,Lamoureux M,Goto A,et al.Dynamic simulations of the interchange instability,ion production,and electron heating processes in an electron cyclotron resonance ion source plasma.The 8th interntaional conference on ion sources,2000,846-849
    [39]Kawai Y,Itagaki N,Koga M,et al.Production of low electron temperature ECR plasma.Surface and Coatings Technology,2005,193(1-3):11-16
    [40]金晓林,杨中海.电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)--物理模型与理论方法.物理学报,2006,55(11):5930-5934
    [41]金晓林,杨中海.电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)--数值模拟与结果讨论.物理学报,2006,55(11):5935-5941
    [42]杨中海,金晓林.电子回旋共振放电的理论计算机模拟进展.电子科技大学学报,2006,35(4):661-669
    [43]Lampe M,Joyce G,Manheimer W M,et al.Quasi-neutral particle simulation of magnetized plasma discharges:general formalism and application to ECR discharges.Plasma Science,IEEE Transactions on,1998,26(6):1592-1609
    [44]Gong Y,Liu J Y,Song Y H,et al.Monte Carlo simulation of ion transport process in ECR microwave plasma with negative bias.Vacuum,2002,65(3-4):353-359
    [45]Nam S K,Shin C B,Economou D J.Two-dimensional plasma reactor simulation with self-consistent coupling of gas flow with plasma transport.Materials Science in Semiconductor Processing,1999,2(3):271-279
    [46]Gopinath V P,Grotjohn T A.Three-dimensional electromagnetic PIC model of a compact ECR plasma source.Plasma Science,IEEE Transactions on,1995,23(4):602-608
    [47]Kinder R L,Kushner M J.Consequences of mode structure on plasma properties in electron cyclotron resonance sources.Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1999,17(5):2421-2430
    [48]Birdsall C K.Particle-in-cell charged-particle simulations,plus Monte Carlo collisions with neutral atoms,PIC-MCC.Plasma Science,IEEE Transactions on,1991,19(2):65-85
    [49]Vahedi V,Surendra M.A Monte Carlo collision model for the particle-in-cell method:applications to argon and oxygen discharges.Computer Physics Communications,1995, 87(1-2):179-198
    [50]王德真,马腾才,宫野.等离子体源离子注入球形靶的蒙特.卡罗模拟.物理学报,1995,44(6):877-884
    [51]Shirkov G,Alexandrov V,Preisendorf V,et al.Particle-in-cell code library for numerical simulation of the ECR source plasma.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,205:215-219
    [52]Shirkov G,Alexandrov V,Preisendorf V,ctal.Particle-in-cell code library for numerical simulation of the ECR source plasma.Papers from the Ninth International Conference on Ion Sources,2002,644-646
    [53]Itagaki N,Yoshizawa T,Ueda Y,et al.Investigation of ECR plasma uniformity from the point of view of production and confinement.Thin Solid Films,2001,386(2):152-159
    [54]Shalashov A G,Suvorov E V.On cyclotron emission from toroidal plasmas near the ECR heating frequency.Plasma Physics and Controlled Fusion,2003,45(9):1779-1789
    [55]Kaneko T,Hatakeyama R,Sato N,et al.Plasma confining potential self-consistently formed by local electron cyclotron resonance in a well-shaped magnetic field.Physics of Plasmas,2002,9(4):1271-1276
    [56]Krimke R,Urbassek H M.Self-consistent simulation of a planar electron-cyclotron -wave-resonance discharge.Journal of Applied Physics,1997,81(11):7163-7169
    [57]Grotjohn T A.Modeling the electron heating in a compact electron cyclotron resonance ion source.Proceedings of the 6th international conference on ion sources,1996,921-923
    [58]马燕云,常文蔚,银燕等.激光等离子体相互作用的2(1/2)维粒子模拟程序.计算物理,2002,19(4):311-316
    [59]Muta H,Itagaki N,Kawai Y.Numerical investigation of the production mechanism of a low-temperature electron cyclotron resonance plasma.Vacuum,2002,66(3-4):209-214
    [60]Yasaka Y,Nishimura K.Comparative study of silane radical composition in continuous and pulsed electron cyclotron resonance discharges.Plasma Sources Science and Technology,1998,7(3):323-329
    [61]Yasaka Y,Fukuyama A,Hatta A,et al.Two-dimensional modeling of electron cyclotron resonance plasma production.Journal of Applied Physics,1992,72(7):2652-2658
    [62]Yoon S,Nak-Heon C,Hyoung-Bin P,et al.One-dimensional fluid model of ECR discharge with inhomogeneity effects of external magnetic field.Plasma Science,IEEE Transactions on,1995,23(4):609-616
    [63]Edgell D H,Kim J S,Wong S K,et al.A one-dimensional axial electron cyclotron resonance source model.The 8th interntaional conference on ion sources,2000,666-668
    [64]Edgell D H,Kim J-S,Bogatu I N,et al.Electron cyclotron resonance ion source one-dimensional fluid modeling.Papers from the Ninth International Conference on Ion Sources,2002,641-643
    [65]Cronrath W,Bowden M D,Uchino K,et al.Spatial distributions of electron temperature and density in electron cyclotron resonance discharges.Journal of Applied Physics,1997,81(5):2105-2113
    [66]Shin C B,Hur J S,Oh S G.A two-dimensional simulation of electron cyclotron resonance plasma and comparison with experimental data.Thin Solid Films,1999,341(1-2):18-21
    [67]Wang D,Ma T,Deng X.Energy and angle distributions of ions striking a spherical target in plasma source ion implantation.Journal of Applied Physics,1994,75(3):1335-1339
    [68]Phelps A V.Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrals in N[sub 2]and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to 10 keV.Journal of Physical and Chemical Reference Data,1991,20(3):557-573
    [69]Braun C G,Kune J A.Collisiunal-radiative coefficients from a three-level atomic model in nonequilibrium argon plasmas.Physics of Fluids,1987,30(2):499-509
    [70]VAUGHAN J R M.A new formula for secondary emission yield.Plasma Science,IEEE Transactions on,1989,36(9):1963-1967
    [71]Surendra M,Graves D B.Particle simulations of radio-frequency glow discharges.Plasma Science,IEEE Transactions on,1991,19(2):144-157
    [72]Valfells A,Singh A,Kolander M J,et al.Advancements in Codes for Computer Aided Design of Depressed Collectors and Tracing of Backscattered Electrons-Part Ⅱ:Improvements in Modeling of the Physics of Secondary Electron Emission and Backscattering.Plasma Science,IEEE Transactions on,2002,30(3):1271-1276
    [73]Reimer L.Scanning electron microscopy,physics of image formation and microanalysis.New York:Springer-Verlag,1985,135-169
    [74]Werner U,Bethge H,Heydenreich J.An analytic model of electron backscattering for the energy range of 10-100 keV.Ultramicroscopy,1982,8(4):417-427
    [75]Kuo S C,Kunhardt E E,Kuo S P.Monte Carlo simulation of electron behavior in an electron cyclotron resonance discharge.Journal of Applied Physics,1993,73(9):4197-4204
    [76]Liu M,Hu X,Yu G,et al.Two-dimensional simulation of an electron cyclotron resonance plasma source with power deposition and neutral gas depletion.Plasma Sources Science and Technology,2002,11(3):260-265
    [77]Matsuoka M,Ono K i.Magnetic field gradient effects on ion energy for electron cyclotron resonance microwave plasma stream.Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1988,6(1):25-29
    [78]McKillop J S,Forster J C,Holber W M.Doppler profile measurement of Ar and Ar[sup +]translational energies in a divergent magnetic field electron cyclotron resonance source.Applied Physics Letters,1989,55(1):30-32
    [79]Sadeghi N,Nakano T,Trevor D J,et al.Ion transport in an electron cyclotron resonance plasma.Journal of Applied Physics,1991,70(5):2552-2569
    [80]Junck K L,Getty W D.Comparison of Ar electron-cyclotron-resonance plasmas in three magnetic field configurations.I.Electron temperature and plasma density.Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1994,12(5):2767-2774
    [81]Junck K L,Getty W D.Comparison of argon electron-cyclotron-resonance plasmas in three magnetic field configurations.Ⅱ.Energy distribution of argon ions.Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1994,12(3):760-768
    [82]Nihei H,Morikawa J,Nagahara D,et al.Performance characteristics of a microwave plasma source using an axial mirror and multipole magnetic fields.Review of Scientific Instruments,1992,63(3):1932-1938

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700