用户名: 密码: 验证码:
基于核方法和流形学习的雷达目标距离像识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达目标识别是现代雷达发展的重要方向之一,具有广泛的军事和民用价值。高分辨距离像包含了较多的目标结构信息,从而为我们提供了一种可靠的目标识别手段。核方法是目前模式识别领域研究的一个焦点,它对于解决非线性问题具有许多独特优势;流形学习是近年来出现的一种新型的机器学习理论,其旨在发现高维数据集分布的内在规律性。
     本文对以上两种机器学习理论进行研究,针对已有算法的不足进行推广和改进,并应用于基于高分辨距离像的雷达目标识别。论文的主要工作和创新之处概括如下:
     1.在对核鉴别分析(Kernel Discriminant Analysis,KDA)及其变形算法进行深入研究的基础上,提出一种最优核鉴别分析(Optimal Kernel DiscriminantAnalysis,OKDA)算法用于雷达目标距离像特征提取。实验结果表明,OKDA具有较好的识别性能以及良好的类内聚合性。
     2.研究基于核不相关鉴别分析的雷达目标距离像特征提取。通过对统计不相关特性进一步分析并引入核函数,推导出核不相关Fisher准则,并提出两种核不相关鉴别分析算法——直接核不相关鉴别分析(Direct Kernel UncorrelatedDiscriminant Analysis,DKUDA)和基于广义奇异值分解的核不相关鉴别分析(Kernel Uncorrelated Discriminant Analysis Based on Generalized Singular ValueDecomposition,KUDA/GSVD),用于从雷达目标距离像中提取统计不相关的鉴别特征。与不相关鉴别分析(Uncorrelated Discriminant Analysis,UDA)和核不相关鉴别分析(Kernel Uncorrelated Discriminant Analysis,KUDA)相比,这两种算法大大减少了运算量,而且能有效解决奇异性问题。
     3.研究基于流形学习理论的雷达目标距离像特征提取。在对几种经典的流形学习算法进行分析总结的基础上,提出一种有监督的非线性流形学习算法——监督核近邻保持投影(Supervised Kernel Neighborhood Preserving Projections,SKNPP),用于对雷达目标距离像进行特征提取。SKNPP在近邻保持投影(Neighborhood Preserving Projections,NPP)的基础上引入样本的类别信息,并利用核函数将其推广到非线性形式而得到。该算法不但保留了高维空间中类内样本之间的几何结构,而且可以获得对数据流形的非线性逼近。
     4.提出了基于核不相关鉴别近邻嵌入(Kernel Uncorrelated DiscriminativeNeighborhood Embedding,KUDNE)和核不相关鉴别局部保持投影(KernelUncorrelated Discriminative Locality Preserving Projections,KUDLPP)的雷达目标距离像特征提取方法。KUDNE和KUDLPP是在统计不相关约束条件下,分别将监督核近邻保持投影(SKNPP)和监督核局部保持投影(Supervised Kernel LocalityPreserving Projections,SKLPP)与核鉴别分析(KDA)相结合而得到的。这两种算法在保留类内样本之间固有几何关系的同时,使投影后样本的类间散射最大,而且使生成的特征空间具有最小的冗余度。
     5.研究基于核非线性分类器的雷达目标识别方法。对支持向量机(SupportVector Machine,SVM)、KND(Kernel-Based Nonlinear Discriminator)以及KNR(Kernel-Based Nonlinear Representor)的分类原理及学习过程进行了深入研究和比较,并将其应用于雷达目标距离像分类。KND和KNR是两种新型的核非线性分类器,与SVM相比,它们不但能提高雷达目标识别速度,而且能得到满意的识别精度。
Radar target recognition plays an important role in modern radar, and finds its ways to wide military and civilian applications. High resolution range profiles contain more structural information of a target, and are easy to obtain and process, and thus provide us with a more reliable tool for target recognition. Currently, kernel method and manifold learning, among other methods, become two focuses in the field of pattern recognition and machine learning. Kernel method shows many advantages as to solve nonlinear problems, while manifold learning aims to discover the intrinsic characteristics of high-dimensional data.
     In this dissertation, the above two methods are studied, and in order to overcome the weakness of existing methods, several generalized and improved algorithms are proposed and applied to radar target recognition using range profiles. The main contents and innovations of this dissertation are summarized as follows.
     1. Kernel discriminant analysis and its variants are studied intensively, and an optimal kernel discriminant analysis (OKDA) is given and adopted to extract nonlinear discriminative features from range profiles. Experimental results show the good recognition performance of OKDA.
     2. Kernel uncorrelated discriminant analysis is studied for feature extraction from range profiles. By analyzing the statistically uncorrelated property further and introducing a kernel function, a kernel uncorrelated Fisher criterion is derived, and two equivalent algorithms, called direct kernel uncorrelated discriminant analysis (DKUDA) and kernel uncorrelated discriminant analysis based on generalized singular value decomposition (KUDA/GSVD), are proposed to extract statistically uncorrelated discriminative features from range profiles. As compared with uncorrelated discriminant analysis (UDA) and kernel uncorrelated discriminant analysis (KUDA), DKUDA and KUDA/GSVD can reduce large amount of computation. Moreover, the singularity problem is resolved effectively.
     3. Manifold learning is studied for feature extraction from range profiles. Based on the analysis of several classical manifold learning methods, a supervised nonlinear manifold learning algorithm, named supervised kernel neighborhood preserving projections (SKNPP), is proposed to extract nonlinear features from range profiles. SKNPP is obtained by modifying NPP with class label information and furtherextending it to nonlinear form by utilizing kernel function. It can not only preserve the within-class neighboring geometry in high-dimensional space, but also gain a perfect nonlinear approximation of data manifold.
     4. Two novel nonlinear manifold learning algorithms, called kernel uncorrelated discriminative neighborhood embedding (KUDNE) and kernel uncorrelated discriminative locality preserving projections (KUDLPP), are proposed to extract features from range profiles. They are obtained by combing supervised kernel neighborhood preserving projections (SKNPP) and supervised kernel locality preserving projections (SKLPP) with kernel discriminant analysis (KDA), respectively, under the statistically uncorrelated constraint. The two algorithms can not only preserve the within-class geometry, but also maximizing the between-class scatter of projected samples. Moreover, the extracted feature space contains minimum redundancy.
     5. Three kernel-based nonlinear classifiers, including support vector machine (SVM), kernel-based nonlinear discriminator (KND) and kernel-based nonlinear representor (KNR) are studied and compared in detail, and applied for radar target recognition with range profiles. Especially, KND and KNR are two novel kernel-based nonlinear classifiers, which can achieve satisfactory recognition performance, in terms of both recognition accuracy and recognition speed, as compared with SVM.
引文
[1]D R Wehner.High resolution radar.Norwood,MA:Arthech House,Inc.,1987
    [2]郭桂蓉,庄钊文,陈曾平.电磁特征提取与目标识别.长沙:国防出版社,1996
    [3]R D Strattan.Target identification from radar signatures.IEEE Conf.ASSP,1978:223-227
    [4]B Bhanu.Automatic target recognition:state of the art survey.IEEE Trans.AES,1986,22(4):364-379
    [5]C Castro.Automatic target recognition shows promise.Defense Electronics,1990,8:49-53
    [6]M N Cohen.A survey of radar-based target recognition techniques.Proc.SPIE,1991,1470:233-242
    [7]黄培康主编.雷达目标特征信号.北京:宇航出版社,1993
    [8]许小剑,黄培康.防空雷达中的目标识别技术.系统工程与电子技术,1996,5:48-62
    [9]C R Smith.Radar target identification.IEEE Trans.AP,1993,35(2):27-38
    [10]王晓丹,王积勤.雷达目标识别技术综述.现代雷达,2003,25(5):22-26
    [11]周代英.雷达目标一维距离像识别研究:[博士学位论文].成都:电子科技大学,2001
    [12]M R Bell,R A Grubbs.JEM modeling and measurement for radar target identification.IEEE Trans.AES,1993,29(1):73-87
    [13]H Hynes,R E Gardner.Doppler spectra of S band and X band signals.IEEE Trans.AES,1967,3(6):356-365
    [14]G G Fliss,D L Mensa.Instrumentation for RCS measurements of modulation spectra of Aircraft blades.IEEE Nat.Radar Conf.,1986:12-13
    [15]C E Baum.On the singularity expansion method for solution of electromagnetic interaction problems.Air Force Weapons Lab.Interaction Notes 88,1971
    [16]V K Jain,T K Sarkar,D D Weiner.Rational modeling by pencil-of-functions method.IEEE Trans.ASSP,1983,31(3):564-573.
    [17]庄钊文.雷达频率极化域目标识别的研究:[博士学位论文].北京:北京理工大学,1989
    [18]C W Chuang,D L Moffatt.Natural resonances of radar target via prony's method and target discrimination.IEEE Trans.AES,1976,12(5):583-589
    [10]K M Chen.Radar waveform synthesis method-a new radar detection scheme.IEEE Trans.AP,1981,29(4):553-565
    [20]E M Kennaugh.The K-pulse concept.IEEE Trans.AP,1981,29(2):327-331
    [21]K M Chen,D Westmorelund.Radar waveform synthesis for exciting single-mode backscatter from a splure and application for target discrimination.Radio Science,1982,17(3):574-588.
    [22]E J Rothwell,D P Nyqist,K M Chen.Radar target discrimination using the extinction-pulse technique.IEEE Trans.AP,1985,33(9):929-936
    [23]D Giuli.Polarization diversity in radars.Proc.IEEE,1986,74(2):245-269.
    [24]H A Zebker,J J Vanzyl.Imaging radar polafirnetry:a review.Proe.IEEE,1991,79(11):1583-1606
    [25]W Cameron.Feature motivated polarization scattering matrix decomposition.IEEE Int.Radar Conf.,1990:549-557
    [26]N F Chamberlain.Syntactic classification of radar targets using polarimetric signatures.IEEE Int.Conf.SE,1990:490-494
    [27]L M Novak,G J Owirka.Radar target identification using an eigen-image approach.IEEE Nat.Radar Conf.,Altanta,1994:129-131
    [28]L M Novak,G J Owirka,C M Netishen.Radar target identification using spatial matched filters.Pattern Recognition,1994,27(4):607-617
    [29]N H Farhat.Microwave diversity imaging and automated target identification based models of neural networks.Proc.IEEE,1989,77(5):670-680
    [30]H Osman,S D Blostein.SAR image processing using probabilistic winner-take-all learning and artificial neural networks.Proc.IEEE Int.Conf.IP,1996,2:613-616
    [31]L E Pierce,I Sarabandi,F T Ulaby,et al.Knowledge-based classification of SAR images.IEEE IGARSS,1993,4:1611-1613
    [32]N S Martin.SAR systems resolution reviewed for target classification in knowledge-based environment.Proc.IEEE Electronic Technology Directions to the Year 2000,1995,5:177-183
    [33]S Slomak,D Gibbins,D Gray,et al.Features for high resolution radar range profile based ship classification.5th Int.Symp.on Signal Processing and its Applications,1999:329-332
    [34]M R Inggs,A R Robinson.Neural approaches to ship target recognition.IEEE Int.Conf.Radar,1995:386-391
    [35]H Serretta,M R Inggs.Ship target recognition with the Mellin transform aided by neural network.Proc.COMSIG,1998:203-208
    [36]R Williams,J Westerkamp.Automatic target recognition of time critical moving targets using 1D high range resolution radar.IEEE Int.Conf.Radar,1999:54-59
    [37]H Li,S Yang.Using range profiles as feature vectors to identify aerospace object.IEEE Trans.AP,1993,41(3):261-280
    [38]S Hudos,Psalltis.Correlation filters for aircraft identification from range profiles.IEEE Trans.AES,1993,29(3):741-748
    [39]A Zyweck,R E Bogner.Radar target classification of commercial aircraft.IEEE Trans.A ES,1996,32(2):598-606
    [40]M P Hurst,R Mittra.Scattering center analysis via Prony's method.IEEE Trans.AP,1987,35:986-988
    [41]R Carriere,R L Moses.High resolution radar target modeling using a modified Prony estimator.IEEE Trans.AP,1992,40(1):13-18
    [42]J Li,P Stoica.Efficient mixed-spectrum estimation with application to target feature extraction.IEEE Trans.SP,1996,44(2):281-295
    [43]廖学军.基于高分辨距离像的雷达目标识别:[博士学位论文].西安:西安电子科技大学,1999
    [44]A Quinquis,E Radoi.Accurate estimation of the time delay in radar target range profile reconstruction using time-frequency and superresolution algorithms.Proc.ICECS,1999,3:1449-1452
    [45]姜卫东,陈曾平,庄钊文.雷达目标高分辨距离像的特征提取及识别方法.国防科技大学学报,1999,21(3):55-58
    [46]闫锦,黄培康.高距离分辨像雷达目标识别.航天电子对抗,2004,2:36-41
    [47]V Chandran,S L Elgar.Pattern recognition using invariants defined from higher order spectra-one dimensional input.IEEE Trans.SP,1993,41:205-212
    [48]J K Tugnait.Detection of non-Gaussian signals using integrated polyspectrum.IEEE Trans.SP,1994,42:3137-3149
    [49]X J Liao,Z Bao.Circularly integrated bispectra:novel shift invariant feature for high-resolution radar target recognition.Electronic Letters,1998,34:1879-1880
    [50]B N Pei,Z Bao,M D Xing.Radar target recognition by logarithm bispectrum-based method.Proc.CIE Int.Conf.Radar,2001:488-492
    [51]裴炳南.高分辨雷达自动目标识别方法研究:[博士学位论文].西安:西安电子科技大学,2002
    [52]X D Zhang,Y Shi,Z Bao.A new feature vector using selected bispectra for signal classification with application in radar target recognition.IEEE Trans.SP,2001,49:1875-1885
    [53]P E Zwiche,I.Kiss.A new implementation of the Mellin transform and its application to radar classification of ships.IEEE Trans.PAMI,1983,5(2):191-199
    [54]郭桂蓉,郁文贤,胡步法.一种有效的舰船目标识别.系统工程与电子技术,1990,6:1-6
    [55]肖顺平,郭桂蓉,庄钊文等.基于散射中心的目标建模与识别.系统工程与电子技术,1994,16(6):55-61
    [56]毛京红,许小剑.高分辨力雷达目标识别研究.系统工程与电子技术,1994,10:11-16
    [57]B Y Liu,W L Yang.Radar target identification using canonical transformation to extract features.Proc.SPIE,1998,3545:368-371
    [58]刘本永,杨万麟.基于正则变换的雷达目标成像识别.系统工程与电子技,1999,21(3):31-33
    [59]刘本永,杨万麟.噪声中目标距离剖面像识别的修正特征子空间.系统工程与电子技术,2000,22(3):30-32
    [60]刘本永,杨万麟.一种利用相位信息的雷达目标成像识别方法.电子科学学刊,2000,22(2):274-278
    [61]刘本永.子空间法雷达目标一维像识别研究.电子与信息学报,2004,26(7):1137-1143
    [62]李晓辉,黎湘,郭桂蓉.基于LDA算法的一维距离像特征提取.国防科技大学学报,2005,27(6):72-76
    [63]孟继成,杨万麟.基于核函数的雷达一维距离像目标识别.电子与信息学报,2005,27(3):462-466
    [64]孟继成.雷达目标距离像识别研究:[博士学位论文].成都:电子科技大学,2005
    [65]姜卫东,陈曾平,庄钊文.复杂目标的时频特征提取及识别方法研究.电子科学学刊。2000.22(3):353-358
    [66]F D Garber,N F Chamberlain,Q Snorrason.Time-domain and frequency-domain feature selection for reliable radar target identification.IEEE Radar Conf.,1988:79-84
    [67]N F Chamberlain,E K Walton,F D Garber.Radar target identification of aircraft using polarization-diverse features.IEEE Trans.AES,1991,27(1):58-67
    [68]W M Steedly,R L Moses.High resolution exponential modeling of fully polarized radar returns.IEEE Trans.AES,1991,27(5):459-469
    [69]陈曾平.雷达目标结构特征识别的理论与应用:[博士学位论文].长沙:国防科技大学,1994
    [70]H J Li,Y D Wang,L H Wang.Matching score properties between range profile of high-resolution radar targets.IEEE Trans.AP,1996,44(4):444-452
    [71]S P Jacobs.Automatic target recognition using high-resolution radar range-profiles:[Ph.D dissertation].Washington:Washington University,1999
    [72]S P Jacobs,J A O'sullivan.Automatic target recognition using sequences of high resolution radar range-profiles.IEEE.Trans.AES,2000,36(2):364-380
    [73]M R Dewitt.High range resolution radar target identification using the Prony model and hidden Markov model:[Master dissertation].US:Air university,1994
    [74]P Runkle,L Carin,L Nguyen.Multi-aspect target classification using hidden Markov models for data fusion.IEEE Int.Symp.GRS,Italy,2000.
    [75]周德全,刘国岁,王建新.基于隐Markov模型的雷达目标识别技术.南京理工大学学报,1998,22(3):224-227
    [76]D Q Zhou,G S Liu,J X Wang.Spatio-temporal target identification method of high-range resolution radar.Pattern Recognition,2000,33(1):1-4
    [77]郭桂蓉等.电磁特征抽取与目标识别.长沙:国防科技大学出版社,1995:147一14
    [78]X J Liao.Identification of ground target from sequential high-range-resolution radar signatures.IEEE Trans.AES,2002,38(2):1230-1242
    [79]S H He,W F Zhang,G R Guo.High range resolution MMW radar target recognition approaches with application.Proc.IEEE Nat.AE Conf.,1996,1:192-195
    [80]郭桂蓉.模糊模式识别.长沙:国防科技大学出版社,1992
    [81]郭桂蓉,郁文贤.雷达舰船目标的模糊智能识别.模糊系统与数学,1992,6(2):10-19
    [82]E C Botha.Feature based classification of aerospace radar targets using neural networks.Neural Networks,1996,9(1):129-142
    [83]谢希全.用多层前向网络设计雷达目标分类器.系统工程与电子技术,1998,20(5):28-32
    [84]黄德双,保铮.基于径向基函数网络的雷达目标一维像识别技术研究.电子科学学刊,1995,17(1):26-33
    [85]Q Zhao,Z Bao.Radar target recognition using a radial basis function neural network.Neural Networks,1996,9(4):423-430
    [86]杨华,任勇,李莹等.基于径向基函数神经网络的飞机目标识别法.清华大学学报(自然科学版),2001,41(7):36-38
    [87]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版,2004
    [88]肖怀铁,庄钊文,郭桂蓉.基于雷达距离像序列的循环神经网络飞机目标识别.电子科学学刊,1998,20(3):386-391
    [89]肖怀铁,付强,庄钊文等.宽带毫米波雷达目标时延神经网络识别新方法.红外与毫米波学报,2001,20(6):459-463
    [90]张莉,周伟达,焦李成.用于一维图像识别的支撑矢量机方法.红外与毫米波学报,2002,21(2):119-123
    [91]H W Liu,Z Bao.Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel.LNCS,2004,3174:531-536
    [92]X J Liao,Z Bao.Two new categories of shift-invariant features of high-resolution radar range profiles.Proc.ICSP,1998:1485-1488
    [93]J P Zwart,R van der Herden,S Gelsema,et al.Fast translation invariant classification of HRR range profiles in a zero phase representation.IEE Proc.Radar Sonar Navigation,2003,150(6):411-418
    [94]陈保辉.雷达目标反射特性.北京:国防工业出版社,1993
    [95]刘本永.子空间法雷达目标一维距离像识别:[博士学位论文].成都:电子科技大学,1999
    [96]R Duda,P Hart.Pattern classification and scene analysis.New York:Wiley,1973
    [97]K Fukunaga.Introduction to statistical pattern recognition.New York:Academic,1990
    [98]V N Vapnik.The nature of statistical learning theory.New York:Springer,1995:1-188
    [99]K R Miiller,S Mika,G Ratsch,et al.An introduction to kernel-based learning algorithms.IEEE Trans.Neural Networks,2001,12(2):181-201
    [100]A Ruiz,P E López-de-Teruel.Nonlinear kernel-based statistical pattern analysis.IEEE Trans.Neural Networks,2001,12(1):16-32
    [101]C Cortes,V N Vapnik.Support vector networks.Machine Learning,1995,20:273-297
    [102]B Scholkopf,A Smola,K R Muller.Nonlinear component analysis as a kernel eigenvalue problem.Neural Computation,1998,10(5):1299-1319.
    [103]S Mika,G Ratsch,J Weston,et al.Fisher discriminant analysis with kemels.Proc IEEE Int.Workshop on Neural Networks for Signal Processing.Madison:Wisconsin,1999:41-48.
    [104]V Roth,V Steinhage.Nonlinear discriminant analysis using kernel functions.Advances in Neural Information Processing System,2000,12:568-574.
    [105]G Baudat,F Anouar.Generalized discriminant analysis using a kernel approach.Neural Computation,2000,12(10):2385-2404.
    [106]J W Lu,K N Plataniotis,A N Venetsanopouts.Face recognition using kernel direct discriminant analysis algorithm.IEEE Trans.Neural Networks,2003,14(1):117-126.
    [107]C H Park,H Park.Nonlinear Discriminant Analysis Using Kernel Functions and the Generalized Singular Value Decomposition.SIAM J.Matrix Anal.& Appl.,2005,27:87-102
    [108]S T John,C Nello.Kernel methods for pattern analysis.北京:机械工业出版社,2005
    [109]边肇祺,张学工.模式识别(第二版).北京:清华大学出版社,2000
    [110]K Liu,Y Q Cheng,J Y Yang,et al.An efficient algorithm for foley-sammon optimal set of discriminant vectors by algebraic method.Int.J.Pattern recognition & Artificial Intelligence,1992,6:817-829
    [111]H Yu,J Yang,A direct lda algorithm for high-dimensional data with application to face recognition.Pattern recognition,2001,34:2067-2070
    [112]R Huang,Q S Liu,H Q Lu,et at.Solving the small sample size problem of LDA.Proc.16th Int.Conf.Pattern Recognition,2002,3:29-32
    [113]W M Zheng,L Zhao,C R Zou,Foley-sammon optimal discriminant vectors using kernel approach.IEEE Trans.Neural Networks,2005,16(1)
    [114]金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集.计算机学报,1999,22(10):1105-1108
    [115]Z Jin,J Y Yang,Z S Hu,et al.Face recognition based on the uncorrelated discriminant transformation.Pattern Recognition,2001,34(7):1405-1416.
    [116]Z Liang,P Shi.Uncorrelated discriminant vectors using a kernel method.Pattern Recognition,2005,38:307-310.
    [117]C C Paige,M A Saunders.Towards a Generalized Singular Value Decomposition.SIAM J.Numer.Anal.,1981,18:398-405
    [118]P Howland,M Jeon,H Park.Structure Preserving Dimension Reduction for Clustered Text Data Based on the Generalized Singular Value Decomposition.SIAM J.Matrix Anal.&Appl.,2003,25:165-179
    [119]徐蓉,姜峰,姚鸿勋.流形学习概述.智能系统学报,2006,1(1):44-51
    [120]J B Tenenbanm,V de Silva,J C Langford.A global geometric framework for nonlinear dimensionality reduction.Science,2000,290(5500):2319-2323
    [121]S T Roweis,L K Saul.Nonlinear dimensionality reduction by locally linear embedding.Science,2000,290(5500):2323-2326
    [122]M Belkin,P Niyogi.Laplacian Eigenmaps and spectral techniques for embedding and clustering.Advances in Neural Information Processing Systems,2002,14:585-591.
    [123]M Belkin,P Niyogi.Laplacian Eigenmaps for dimensionality reduction and data representation.Neural Computation,2003,5(6):1373-1396
    [124]Z Zhang,H Zha.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment.SIAM J.Scientific Computing,2004,26(1):313-338
    [125]X F He,P Niyogi.Locality preserving projections.Advances in Neural Information Processing Systems,2003,16:153-160
    [126]X F He,S C Yan,Y X Hu,et al.Learning locality preserving subspace for visual recognition.Proc.Ninth IEEE Int.Conf.Computer Vision,2003:385-392
    [127]X F He,S C Yan,Y X Hu,et al.Face recognition using Laplaeianfaces.IEEE Trans.Pattern Analysis & Machine Intelligence,2005,27(3):328-340
    [128]Y W Pang,L Zheng,Z K Liu,et al.Neighborhood preserving projections(NPP):a novel linear dimension reduction method.Proc.ICIC,2005:117-125
    [129]Y W Pang,N H Yu,H Q Li,et al.Face recognition using neighborhood preserving projections.Proc.PCM,2005:854-864.
    [130]X F He,D Cai,S C Yan,et al.Neighborhood preserving embedding.Proc.10th IEEE Int.Conf.Computer Vision,2005:1208-1213.
    [131]M Berger,B Gostiaux.Differential geometry:manifolds,curves and surfaces.Berlin:Springer-Verlag,1974
    [132]陈省身,陈维桓.微分几何讲义.北京:北京大学出版社,1983
    [133]罗四维,赵连伟,基于谱图理论的流形学习算法,2006,43(7):1173-1179
    [134]V de Silva,J B Tenenbaum.Global versus local methods in nonlinear dimensionality reduction.Advances in Neural Information Processing Systems,2002,15:705-712
    [135]M Balasubramanian,E L Schwartz.The isomap algorithm and topological stability.Science,2002,295(5552):7
    [136]X Geng,D C Zhan,Z H Zhou.Supervised nonlinear dimensionality reduction for visualization and classification.IEEE Trans.Systems,Man,and Cybemetics-Part B:Cybernetics,2005,35(6):1098-1107
    [137]H Choi,S Choi.Robust kernel Isomap.Pattern Recognition,2007,40:853-862
    [138]L K Saul,S T Roweis.Think globally,fit locally:unsupervised learning of low dimensional manifolds.J.Machine Learning Res.,2003,4:119-155
    [139]O Kouropteva,O Okun,M Pietikanien.Supervised locally linear embedding algorithm for pattern recognition.Lecture Notes in Computer Science,2003,2652:386-394
    [140]O Kouropteva,O Okun,M Pietikanien.Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine.Proc.11 th European Syrup.Artifical Neural Networks,Bruges,Belgium,2003:229-234
    [141]H Chang,D Y Yeung,Robust locally linear embedding.Pattern Recognition,2006,39(6):1053-1065
    [142]M Belkin,P Niyogi.Semi-supervised learning on Riemannian manifolds.Machine Learning,2004,56(1):209-239
    [143]M Belkin,P Niyogi.Toward a theoretical foundation for Laplacian-based manifold methods.Proc.18th Annual Conf.Learning Theory,LNCS 3559,2005:486-500
    [144]王靖.流形学习的理论与方法研究:[博士学位论文].杭州:浙江大学,2006
    [145]Y Bengio,J F Paiement,P Vincent,et al.Out-of-sample extensions for LLE,Isomap,MDS,Eigenmaps,and spectral clustering.Technical Report 1238,Canda,Université de Montréal
    [146]C Burges.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998,2(2):1-47
    [147]G Guo,S Z Li,K L Chan.Support vector machines for face recognition.Image and Vision Computing,2001,19:163-638
    [148]B Y Liu.A kernel-based nonlinear discriminator with closed-form solution.Proc.IEEE Int.Conf.Neural Network and Signal Processing,Nanjing,China,2003:41-44
    [149]B Y Liu.Adaptive training of a kernel-based nonlinear discriminator.Pattern Recognition,2005,38:2419-2425
    [150]J.Zhang,B Y Liu,H.Tan.A kernel-based nonlinear representor with application to eigenface classification.J.Electronic Science & Technology of China,2004,2(2):19-22
    [151]B Y Liu,J.Zhang.An adaptive trained kernel-based nonlinear representor for handwritten digit classification.J.Electronics(China),2006,23(3):379-383
    [152]Keerthi,E.Gilbert.Convergence of a generalized SMO algorithm for SVM classifier design.Machine Learning,2002,46(1-3):351-360
    [153]C Hsu,C Lin.A comparison of methods for multiclass support vector machines.IEEE Trans.Neural Networks,2002,13(2):415-425
    [154]李建民,张钹,林福宗.支持向量机的训练算法.清华大学学报(自然科学版),2003,43(1):120-124
    [155]B Y Liu,H Ogawa.An equivalent form of S-L projection learning.J.Electronic Science &Technology of China,2003,1(1):6-11
    [156]S Vijayakumar,H Ogawa.RKHS-based functional analysis for exact incremental learning.Neurocomputing,1999,29(1-3):85-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700