用户名: 密码: 验证码:
鸡B细胞cDNA T7噬菌体表达文库的构建及传染性法氏囊病毒B细胞受体的筛选、克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传染性法氏囊病毒(infectious bursal disease virus,IBDV)是引起鸡传染性法氏囊病(infectious bursal disease,IBD)的致病病原体,主要侵害幼龄雏鸡中枢免疫器官-法氏囊,损伤B淋巴细胞,引起严重的免疫抑制。雏鸡易感染其它传染病和疫苗接种失败,对养鸡业造成重大损失。病毒受体是公认的引发病毒感染宿主细胞的主要决定因素。吸附是启动病毒感染的第一步,也是决定病毒感染能否成功的关键环节,细胞受体在病毒吸附及感染过程中扮演了极其重要的角色,是感染发生的关键因子。为了揭示IBDV B细胞受体的特性及其功能,本论文采用T7噬菌体展示技术构建高质量的呈现在T7噬菌体的鸡B细胞cDNA表达文库,通过生物淘选过程筛选与IBDV高度亲和的受体蛋白,利用基因重组技术实现了备选受体分子在非易感细胞COS7细胞膜的定位表达。病毒结合试验和竞争/抑制试验证实膜定位表达鸡Igλ轻链的COS7细胞与病毒特异性结合。研究结果表明鸡Igλ轻链是病毒位于B细胞上重要的结合受体。为从分子水平深刻理解病毒与宿主细胞的相互关系以及病毒吸附和感染易感B淋巴细胞的机制提供了重要理论依据。
     1构建鸡B淋巴细胞cDNA T7噬菌体表达文库并对文库质量进行鉴定
     利用oligo(dT)-纤维素亲和层析从SPF雏鸡法氏囊细胞制备mRNA,合成的双链cDNA定向克隆于T7 EcoRⅠ/HindⅢ载体臂,包装并构建cDNA表达文库。对文库进行滴度测定和重组子测定。扩增文库并进行PCR鉴定插入序列的长度及分布。结果显示文库初始滴度为5×10~7pfu/mL,扩增后滴度达到1.88x10~(10)pfu/mL。插入片段平均长度1.44kb,主要分布在0.75-2kb之间。表明所构建的鸡B淋巴细胞cDNA T7噬菌体表达文库的质量能充分满足从文库筛选受体基因的需要。
     2传染性法氏囊病毒对鸡B细胞T7噬菌体表达文库的亲和筛选
     以纯化的IBDV病毒为筛选配体,对构建的鸡B细胞cDNA噬菌体表达文库共进行了4轮亲和筛选。每轮筛选后对洗脱的噬菌体进行噬斑计数计算噬菌体滴度,并将各轮投入/产出比进行比较,分析富集效果。投入/产出比分析表明,每一轮淘选均有较好的富集率。四轮的噬菌体滴度分别为:3.8×10~2pfu/mL、2.4×10~4pfu/mL、2.7×10~6pfu/mL、3.2×10~6pfu/mL:回收率分别为2.6×10~(-6)、4.2×10~(-4)、3.7×10~(-2)、3.1×10~(-2);对筛选的噬菌体运用噬菌斑印迹(plaque lift)和phage-ELISA试验鉴定其与病毒结合的特异性,获得与病毒高度特异性结合的噬菌体克隆。随机挑选80个阳性噬菌体克隆进行DNA测序和序列分析,显示有70%的噬菌体插入序列与鸡Igλ轻链有高度同源性,核苷酸和氨基酸序列同源性分别达到96%和92%。3鸡Igλ轻链跨膜嵌合分子真核表达载体构建及在COS7细胞表达
     将扩增的鸡Igλ轻链基因与牛IgGFc受体γRⅡ跨膜区(R2T)通过融合PCR技术形成嵌合跨膜分子λR2T,定向克隆于真核表达载体pcDNA3,利用γRⅡ跨膜区对细胞膜的锚定功能以及鸡Igλ轻链信号肽序列的引导作用实现重组Igλ轻链在COS7细胞膜的定位表达,在IBDV非易感细胞-COS7上完成备选受体蛋白的重建。为了确定嵌合跨膜分子在细胞膜上的成功表达,巧妙运用一种“特洛伊木马”策略将鸡Igλ轻链信号肽序列插入到增强型绿色荧光蛋白真核表达载体pEGFP-C1的EGFP编码序列的起始密码子后,构建带信号肽的中间载体pEGFP-C1-SP,将嵌合跨膜分子λR2T克隆于中间载体的多克隆位点,转染COS7细胞,荧光显微镜观察到重组鸡Igλ/GFP融合跨膜蛋白在COS7细胞膜的表达。将鸡Igλ轻链基因分别克隆于pcDNA3载体和pEGFP-C1-SP中间载体,构建分泌表达的重组载体并实现重组Igλ在COS7细胞的分泌表达。
     4鸡Igλ轻链作为病毒B细胞受体的生物学功能鉴定
     COS7细胞分泌表达的鸡重组Igλ蛋白经Ni-NTA spin column亲合柱层析纯化,VOPBA试验结果证明分泌表达的鸡重组Igk蛋白能与法氏囊病毒特异性结合。表面表达有鸡Igλ轻链的COS7细胞与病毒进行结合试验,流式细胞术分析结果显示其阳性细胞比例(结合了病毒的细胞)为83%,细胞平均荧光强度(mean fluorescence intensity,M.F.I)远远高于空质粒转染的COS7细胞。重组鸡Igλ轻链或是抗Igλ单抗均能够显著抑制病毒与COS7细胞和B细胞的结合,其抑制作用呈现剂量依赖性特征。感染试验结果则显示鸡Igλ轻链不能介导病毒对细胞的感染。
     研究结果证实鸡Igλ轻链是病毒重要的结合受体,病毒借助与鸡Igλ轻链的结合从而特异性吸附于B细胞表面,使病毒集聚于细胞,为侵入细胞和引起感染迈出了关键的一步。
Infectious bursal disease(IBD)is a viral disease of young chickens characterized by necrosis and depletion of lymphoid tissues,especially the bursa of Fabricius.The causative agent of this disease,IBD virus(IBDV)is a member of the genus Avibirnavirus of the family Birnaviridae which consists of double-stranded RNA genome and responsible for severe immunosuppressive disease that causes significant losses to the poultry industry.
     As with all viruses,IBDV needs to penetrate target cells to cause infection by a communication of the receptor binding.The attachment of the virus to a specific receptor on the surface of susceptible host cells is the first step in virus infection and has attracted attention as targets for infection prevention.It is of importance to study the virus infection at the molecular level of virus binding for understanding the virus-host cell interaction and pathogenesis of IBD.However,the investigation on the complex biochemical processes involving virus binding to host cell surface molecules is hindered by the lack of knowledge on the identities of the virus receptor of IBDV.To identify the receptor which may determine the susceptible B lymphocyte binding and viral infection,a chicken B cell cDNA expression library displayed on phage T7 was constructed via phage display technique.Chicken Igλlight chain was identified after the library secreening and DNA sequencing.Virus binding and inhibition assay confirmed that the IBDV-nonpermissive COS7 cells bound viruses specifically once the candidate receptor was expressed on the cell membrane of COS7.Data suggest that chicken Igλlight chain is a binding receptor for IBDV on B cells and facilitate virus binding to B cells.
     1 Construction and quality identification of chicken B cell cDNA expression library displayed on Phage T7
     To construct the chicken B cell cDNA expression library displayed on phage T7 and to identify its quality,mRNA was prepared from bursa of Fabricius in a SPF chicken by oligo(dT)-cellulose affinity chromatography and reverse transcripted into cDNA.A chicken B cell cDNA expression library was constructed after cloning cDNA into T7 EcoRI/HindⅢvector arms and in Vitro packaging.Titer and recombinant rate of the prime library were determined.The size of the inserts was identified by PCR after a round of library amplification.The titer of the prime constructed library and amplified library was 5×10~7 pfu/mL and 1.88×10~(10)pfu/mL.The inserts size largely ranged from 0.75 to 2kb with the average length of 1.44kb.The chicken B cell cDNA expression library displayed on phage T7 has high quality.
     2 Screening the T7 expression library for phage clones with high affinity for IBDV
     Purified IBDV was used as the bait in a biopanning procedure.Immobilized IBDV was probed to bind T7 phages that were expressed proteins from a chicken B cell cDNA library.The phage recovery percentage was assessed by output/input phages as a measure of enrichment and determined rounds of biopanning.After four rounds of biopanning,the bound phages were isolated and their affinity and specificity for IBDV was detected by plaque lift and phage ELISA.80 candidate clones were sequenced and analyzed.Most sequences of the clones containing that may be involved in IBDV binding to B cells were chicken Ig lambda light chain sequences from open reading frame of the protein.The sequences show high identities to chicken Ig lambda light chain in GeneBank.
     3 Expression of recombinant chicken Igλlight chain in virus nonpermissive COS7 cells
     Recombinant DNA ecoding chimeric protein incorporating transmembrane region of bovine IgG Fc receptorγRⅡ(bFcRγRⅡ)and chicken Igλlight chain was generated by fusion PCR.pEGFP-C1-SP,the vector with signal sequence was then created by fusing signal peptide of chicken Igλto GFP N terminus.The chimeric full length sequence was respectively cloned into modified pEGFP-C1-SP and pcDNA3 plasmid using double restriction sites.Mammalian expression vector pEGFP-C1-SP-λR2T and pcDNA-λR2T ware successfuLly constructed.The chimeric transmembrane protein was located principally on the plasma membrane in COS7 cells transfected with vector pEGFP-C1-SP-λR2T under fluorescent microscope or with vector pcDNA-λR2T by flow cytometric analysis.The secretable expression of chicken Igλwas observed under fluorescent microscope and in Western blotting by inserting the chicken Igλgene into eukaryotic expression plasmid pEGFP-C1-SP and pcDNA3 and then transfecting the recombinant vector into COS7 cells via lipofectamin.
     4 Biological function of chicken Igλlight chain as a cellular receptor for IBDV recombinant vector into COS7 cells via lipofectamin.
     4 Biological function of chicken Igλlight chain as a cellular receptor for IBDV
     To examine whether the recombinant chicken Igλcould interact with IBDV,VOPBA was performed.The purified IBDV bound to recombinant chicken Igλwas detected with MAb against IBDV nucleocapsid protein,while no band was observed in negative control
     To determine function of chicken Igλlight chain as a IBDV receptor that can facilitate IBDV binding to nonpermissive cells,COS7 were transfected with plasmid constructs coding for chimeric transmembrane protein and exposed to virus on ice to allow virus binding.COS7 cells transfected with chimeric construct showed high levels of virus binding in comparison to nontransfected COS7 cells.The binding of IBDV occurred in a dosed-dependent manner.
     COS7 cells without expression of chicken Ig lambda light chain and lymphocytes from the bursa of Fabricius of 4-week-old chicken were exposed to virus,based either on immunofluorescence microscopy or flow cytometry using a anti-IBDV antibody.BF lymphocytes showed high levels of virus binding,in contrast,very little binding was observed with COS7 cell control.
     For competition of IBDV binding the viruses were incubated with recombinant chicken Igλlight chain or antiserum specific for IBDV before incubating with cells. Inhibition of virus binding was obtained by incubation of cells with mAb against chicken Igλlight chain before being tested for the ability to bind viruses.Detection of bound viruses was performed by flow cytometry.The inhibition effects on virus binding were much more obvious than that in control.These results demonstrated that chicken Igλlight chain may act as a cellular receptor facilitating IBDV binding to chicken B lymphocytes. The findings in this study provide a basis for further exploration of molecular mechanism by which IBDV infects chicken B lymphocytes.
引文
1. Lasher, H.N. and S.M. Shane, 1994. Infectious bursal disease.World's Poultry Sci. J., 50:133-166.
    
    2. Van den Berg, T.P., 2000. Acute infectious bursal disease in poultry; a review. Avian Pathol., 29:175-190.
    
    3. Cosgrove AS. An apparently new disease of chickens-avian nephrosis.Avian Dis,1962,6:385-89
    
    4. Hitchner SB.Infectivity of infectious bursal disease virus for embryonating eggs. Poult Sci.1970 ,49(2):511-6.
    
    5. Allan WH,Faragher JT, Cullen GA.Immunosuppression by the infectious bursal agent in chickens immunized against Newcastle disease.Vet Rec,1972,90: 511-2
    
    6. Rosenberger JK,Cloud SS. Isolation and characterization of variant infectious bursal disease virus.J.Am.Vet.Med.Assoc.1986,189:367-394
    
    7. Rosenberger JK, Cloud SS, Gelb JJ, et al. Sentinel bird survey of Delmarva broiler flocks,in the 20~(th) National Meeting on Poultry Health and Condemnation
    
    8. Chettle N, Stuart JC, Wyeth PJ. Outbreak of virulent infectious bursal disease in East Anglia.Vet Rec. 1989,125(10):271-2.
    
    9. Wang XN, Zhang GP, Zhou JY,et al. Identification of neutralizing epitopes on the VP2 protein of infectious bursal disease virus by phage-displayed heptapeptide library screening and synthetic peptide mapping. Viral Immunol. 2005; 18(3):549-57
    
    10. Yu L, Li JR, Huang YW, et al. Molecular characteristics of full-length genomic segment A of three infectious bursal disease viruses in China: two attenuated strains and one virulent field strain.Avian Dis.2001 , 45(4):862-74.
    
    11. Cao YC, Yeung WS, Law M, et al. Molecular characterization of seven Chinese isolates of infectious bursal disease virus: classical, very virulent, and variant strains. Avian Dis. 199842(2):340-51
    
    12. Chen HY, Zhou Q, Zhang MF, et al. Sequence analysis of the VP2 hypervariable region of nine infectious bursal disease virus isolates from mainland China. Avian Dis. 1998,42(4):762-9
    
    13. Bottcher B, Kiselev NA, Stel'Mashchuk VY,et al. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol. 1997 71(1):325-30.
    
    14. Dobos P, Hill BJ, Hallett R,et,al. Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol. 1979,32(2):593-605
    15. Muller H, Scholtissek C, Becht H. The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J Virol. 1979 Sep;31(3):584-9
    
    16. Galloux M, Chevalier C, Henry C,et al. Peptides resulting from the pVP2 C-terminal processing are present in infectious pancreatic necrosis virus particles. J Gen Virol. 2004 85:2231-6
    
    17. Da Costa B, Chevalier C, Henry C, et al. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2.J Virol. 2002,76(5):2393-402
    
    18. Chevalier C, Galloux M, Pous J, et al. Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation.J Virol. 2005,79(19): 12253-63.
    
    19. Da Costa B, Soignier S, Chevalier C, et al. Blotched snakehead virus is a new aquatic birnavirus that is slightly more related to avibirnavirus than to aquabimavirus.J Virol. 2003,77(1):719-25.
    
    20. Mundt E, Beyer J, Muller H. Identification of a novel viral protein in infectious bursal disease virus-infected cells. J Gen Virol. 1995 Feb;76 (Pt 2):437-43
    
    21. Heppell J, Tarrab E, Berthiaume L, Characterization of the small open reading frame on genome segment A of infectious pancreatic necrosis virus.J Gen Virol. 1995 ,76:2091-6.
    
    22. Magyar G, Dobos P. Evidence for the detection of the infectious pancreatic necrosis virus polyprotein and the 17-kDa polypeptide in infected cells and of the NS protease in purified virus.Virology. 1994,204(2):580-9.
    
    23. Calvert JG, Nagy E, Soler M,et al. Characterization of the VPg-dsRNA linkage of infectious pancreatic necrosis virus. J Gen Virol. 1991,72:2563-7
    
    24. Birghan C, Mundt E, Gorbalenya AE. A non-canonical Ion proteinase lacking the ATPase domain employs the ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. EMBO J. 2000, 19(1):114-23
    
    25. Lejal N, Da Costa B, Huet JC, Delmas B,et al. Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites.J Gen Virol. 2000,81:983-92.
    
    26. Sanchez AB, Rodriguez JF. Proteolytic processing in infectious bursal disease virus:identification of the polyprotein cleavage sites by site-directed mutagenesis. Virology. 1999,262(1): 190-9.
    
    27. Muller H, Becht H. Biosynthesis of virus-specific proteins in cells infected with infectious bursal disease virus and their significance as structural elements for infectious virus and incomplete particles. J Virol. 1982,44(1):384-92
    
    28. Schnitzler D,Bernstein F,Muller H.The genetic basis for the antigenicity of the VP2 protein of the infectious bursal disease virus.J Gen Virol. 1993,74:1563-71.
    
    29. Vakharia VN,He J,Ahamed B.et al. Molecular basis of antigenic variation in infectious bursal disease virus. Virus Res. 1994,31(2):265-73.
    30. Mundt E.Kollner B,Kretzschmar D.VP5 of infectious bursai disease virus is not essential for viral replication in cell culture. J Virol. 1997,71(7):5647-51
    
    31. Kibenge FS, Dhama V. Evidence that virion-associated VP1 of avibirnaviruses contains viral RNA sequences.Arch Virol. 1997; 142(6): 1227-36.
    
    32. Kibenge FS, Nagarajan MM, Qian B. Determination of the 5' and 3' terminal noncoding sequences of the bi-segmented genome of the avibirnavirus infectious bursai disease virus.Arch Virol. 1996;141(6): 1133-41.
    
    33. Morgan MM, Macreadie 1G, Harley VR, et al. Sequence of the small double-stranded RNA genomic segment of infectious bursai disease virus and its deduced 90-kDa product. Virology.1988,163(1):240-2.
    
    34. Spies U,Muller H, Becht H. Properties of RNA polymerase activity associated with infectious bursai disease virus and characterization of its reaction products. Virus Res. 1987,8(2): 127-40
    
    35. Villanueva RA, Guacucano M, Pizarro J, et al. Inhibition of virion-associated IPNV RNA polymerase, VP1, by radiolabeled nucleotide analogs.Virus Res. 2005,112(1-2): 132-5.
    
    36. Macreadie IG, Azad AA. Expression and RNA dependent RNA polymerase activity of birnavirus VP1 protein in bacteria and yeast.Biochem Mol Biol Int. 1993,30(6): 1169-78.
    
    37. Spies U, Muller H. Demonstration of enzyme activities required for cap structure formation in infectious bursai disease virus, a member of the birnavirus group.J Gen Virol. 1990,71:977-81.
    
    38. Magyar G, Chung HK, Dobos P. Conversion of VP1 to VPg in cells infected by infectious pancreatic necrosis virus.Virology. 1998,245(1): 142-50.
    
    39. Dalziel RG, Hopkins J, Watt NJ. et al. Identification of a putative cellular receptor for t he lentivirus visna virus. J. Gen. Virol. 1991. 72 (8): 1905—1991
    
    40. Rajcani J. Molecular mechanisms of virus spread and virion components as tools of virulence. Acta Microbiol Immunol Hung, 2003, 50 (4): 407-443
    
    41. Norkin LC. Virus receptors: implications for pathogenesis and the design of antiviral agents.Clin Microbiol Rev. 1995 April; 8(2): 293-315.
    
    42. Agrez MV, Shafren DR, Gu X et al. Integrin αvβ6 enhances coxsackievirus B1 lytic infection of human colon cancer cells. Virology 1997,239: 71-77
    
    43. Bergelson JM, Cunningham JA, Droguett G. et al.). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5.Science 1997,275:1320-1323
    
    44. Berger E A, Murphy P M, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annual Review of Immunology 1999,17:657-700
    
    45. Bewley M C, Springer K, Zhang YB et al. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR.Science 1999, 286:1579-1583
    46. Schneider-Schaulies J. Cellular receptors for viruses: links to tropism and pat hogenesis. J Gen Virol ,2000, 81 : 1413-1429
    
    47. Geijtenbeek TB, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells.Cell. 2000,100(5):587-97.
    
    48. Shukla D, Spear PG. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest. 2001,108(4):503-10
    
    49. Dimitrov DS. Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol.2004,2(2): 109-22
    
    50. Mettenleiter TC. Brief overview on cellular virus receptors. Virus Res. 2002 Jan 30;82(1-2):3-8.
    
    51. Shimojima M, Miyazawa T, Ikeda Y, et al.Use of CD134 as a primary receptor by the feline immunodeficiency virus.Science. 2004,303(5661):1192-5.
    
    52. Cattaneo R.Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens' magnet. J Virol. 2004,78(9):4385-8.
    
    53. Maurer K, Krey T, Moennig V, et al.CD46 is a cellular receptor for bovine viral diarrhea virusJ Virol. 2004 Feb;78(4):1792-9
    
    54. Masciopinto F, Campagnoli S, Abrignani S, et al.The small extracellular loop of CD81 is necessary for optimal surface expression of the large loop, a putative HCV receptor.Virus Res.2001 ,80(1-2): 1-10.
    
    55. Arias CF, Isa P, Guerrero CA,et al. Molecular biology of rotavirus cell entry.Arch Med Res.2002,33(4):356-61.
    
    56. Jackson T, King AM, Stuart DI, et al.Structure and receptor binding. Virus Res. 2003,91 (1):33-46.
    
    57. Naniche D, Varior-Krishnan G, Cervoni F, et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 1993,67:6025-6032.
    
    58. Nussbaum O, Broder CC, Moss B, et al. Functional and structural interactions between measles virus hemagglutinin and CD46. J. Virol. 1995,69:3341-3349.
    
    59. Lee JH, Engler JA, Collawn JF, et al. Receptor mediated uptake of peptides that bind the human transferrin receptor Eur. J. Biochem. 2001,268:2004-2012
    
    60. Susan R. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc Natl Acad Sci U S A. 2002,99(19): 12386-12390
    
    61. Ponka P, Lok CN. The transferrin receptor: role in health and disease Int. J. Biochem. Cell Biol.1999,31: 1111-1137
    
    62. Negrete OA. Two Key Residues in EphrinB3 Are Critical for Its Use as an Alternative Receptor for Nipah Virus. PLoS Pathog. 2006,10:2
    
    63. Cocchi F, Menotti L, Mirandola P, et al. The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J. Virol. 1998. 72:9992-10002.
    
    64. Geraghty RJ, Krummenacher C, Cohen GH, et al. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 1998, 280:1618-1620.
    
    65. Montgomery RI, Warner MS, Lum BJ. et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 1996, 87:427-436
    
    66. Zhou G, Roizman B. Characterization of a recombinant herpes simplex virus 1 designed to enter cells via the IL13Ralpha2 receptor of malignant glioma cells. J Virol. 2005,79(9):5272-7. Choe H, Farzan M, Sun Y, Sullivan N, et al.The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary H1V-1 isolates. Cell 1996, 85:1135-1148.
    
    67. Deng H, Liu R, Ellmeier W,et al. Identification of a major co-receptor for primary isolates of HI V-1. Nature 1996,381:661-666.
    
    68. Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996,272:872-877.
    
    69. Chan DC, Kim PS. HIV entry and its inhibition. Cell 1998, 93:681-684.
    
    70. Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu. Rev.Biochem.2001,70:777-810.
    
    71. Connor RJ, Kawaoka Y, Webster RG. et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 1994,205(1):: 17-23.
    
    72. Matrosovich M, Tuzikov A, Bovin N, et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J.Virol. 2000 74(18):8502-8512.
    
    73. Matrosovich M, Zhou N, Kawaoka Y. et al. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol.1999,73:1146-1155.
    
    74. Mounts AW, Kwong H, Izurieta HS,et al. Case-control study of risk factors for avian influenza A (H5N1) disease, Hong Kong, 1997. J. Infect. Dis. 1999, 180:505-508..
    
    75. Ito T, Couceiro JN, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 1998,72, 7367-7373.
    
    76. Roelvink PW, Lizonova A, Lee JGM, et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J. Virol. 1998, 72:7909-7915. Gaggar A, Shayakhmetov DM., Lieber A.. CD46 is a cellular receptor for group B adenoviruses. Nat. Med. 2003,9:1408-1412.
    
    77. Meier O, Greber UF. Adenovirus endocytosis. J. Gene Med. 2003,5:451-462.
    78. Nemerow GR., Stewart PL. Role of alpha(v) integrins in adenovirus cell entry and gene delivery.Microbiol. Mol. Biol. Rev. 1999, 63:725-734.
    
    79. Ashbourne Excoffon, K.J., Moninger T, Zabner J. The coxsackie B virus and adenovirus receptor resides in a distinct membrane microdomain. J. Virol. 2003,77:2559-2567.
    
    80. Bergelson JM, Cunningham JA, Droguett G, et al.Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science. 1997,275:1320-1323.
    
    81. Bergelson JM, Krithivas A, Celi L, et al.The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol. 1998,72:415-419.]
    
    82. Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA.1997,94:3352-3356.
    
    83. Huang S, Endo Rl, Nemerow GR. Upregulation of integrins av|33 and αvβ5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol. 1995,69:2257-2263.
    
    84. Mathias P, Wickham T, Moore M, et al.Multiple adenovirus serotypes use av-integrins for infection. J Virol. 1994;68:6811-6814.
    
    85. Nemerow GR, Stewart PL. Role of α_v integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev. 1999;63:725-734.
    
    86. Hirai K, Calnek BW.In vitro replication of infectious bursal disease virus in established lymphoid cell lines and chicken B lymphocytes. Infect Immun. 1979, 25(3):964-70
    
    87. Ogawa M, Yamaguchi T, Setiyono A, et al. Some characteristics of a cellular receptor for virulent infectious bursal disease virus by using flow cytometry. Arch Virol. 1998;143(12):2327-41.
    
    88. Pink JR, Rijnbeek AM. Monoclonal antibodies against chicken lymphocyte surface antigens.Hybridoma. 1983;2(3):287-96.
    
    89. Veromaa T, Vainio 0, Eerola E, et al. Monoclonal antibodies against chicken Bu-la and Bu-1b alloantigens.Hybridoma. 1988 Feb;7(1):41-8.
    
    90. Nieper H, Muller H. Susceptibility of chicken lymphoid cells to infectious bursal disease virus does not correlate with the presence of specific binding sites. J Gen Virol. 1996, 77 :1229-37
    
    91. Tallet B, Astier-Gin T, Londos-Gagliardi D, et al. Expression, purification and biological properties of the carboxyl half part of the HTLV-1 surface envelope glycoprotein.J Chromatogr B Biomed Sci Appl. 2000,737(1-2):85-95.
    
    92. Dalziel RG, Hopkins J, Watt NJ, et al. Identification of a putative cellular receptor for the lentivirus visna virus . J Gen Virol, 1991, 72: 1905-1911.
    
    93. Dalgleish AG, Beverley PCL, Clapham P R, et al. The CD4 antigen is an essential component of the receptor for the AIDS retrovirus Nature, 1984, 312: 763-766.
    94. Maurer K, Krey T, Moennig V, et al. CD46 is a cellular receptor for bovine viral diarrhea virus.J Virol, 2004, 78(4): 1792-1799.
    
    95. Dorig R E, Marcil A, Chopra A, et al. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell, 1993, 75 (2):295-305.
    
    96. Kim JK, Fahad AM, Shanmukhappa K, et al. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10.J Virol.2006,80(2):689-96.
    
    97. Maisner A, Schneider-Schanlies J, Liszewski M K. et al. Binding of measles virus to membrane (CD46): Importance of disulfide bonds and N-glycans for t he receptor function. J. Virol.1994.68 (10):6299-6304
    
    98. Craig RB, Rase LB, Stuart K. et al. Herpes simplex virus glycoprotein D acquires mannose 6 -phosphate residues and binds to mannose 6 - phosphate receptors. J. Bio. Chem. 1994.269 :17067-17074
    
    99. Anthony HCC, Ralph WP, Patrick WKL, et al. Reovirus binds to multiple plasma membrane proteins of mouse L fibroblasts. Vi rology, 1990,178 :316-320
    
    100. Chen YP, Terry M., Ronald E. et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Medicine, 1997, 3:866—871
    
    101. Gastka M, Horvath J, Lentz TL. Rabies virus binding to the microtinic acetylcholine receptor alpha subunit demonst rated by virus overlay protein binding assay. J. Gen. Virol. 1996,77(10):2437-2440
    
    102. Fields BN. et al. Fundamental Virology. 2nd ed, New York :Raven Press, 1990,87—95
    
    103. Li W H, Moore M J, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for SARS coronavirus. Nature, 2003,426 (6965): 450-454.
    
    104. Triantafilou K, Fradelizi D, Wilson K, et al. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol. 2002,76(2):633-43
    
    105. White M A. The yeast two-hybrid system: forward and reverse . Proc Natl Acad Sci USA, 1996;93(19): 10001-10003.
    
    106. Melegarim M, Scaglionip P, and Wands JR. Cloning and characterization of a novel hepatitis B virus X binding protein t hat inhibit s viral replication. J . Virol. 1998,72 :1 737—1 743
    
    107. Li LY, Liu X, Zhang P, (李凌云,刘 鑫,张 鹏) et al. Cloning and functional identification of measles virus receptor on marmoset cells . Chin Sci Bull (科学通报), 2002, 47 (16): 1217-1225.
    
    108. Schweneker M, Bachmann AS, Moelling K.The HIV-1 co-receptor CCR5 binds to alpha-catenin,a component of the cellular cytoskeleton. Biochem Biophys Res Commun.2004,17;325(3):751-7.
    109. Abrol, S., Sampat h , A. ,Arora, K, et al. Const ruction and characterization of MB bacteriophages displaying gp120 binding domains ofhuman CD4 Indian. J. Biochem Biophys 1994,31 (4) :302-309
    
    110. Hong S S, Karayan L, Tournier J, et al. Adenovirus type 5 fiber knob binds to MHC class I a2 domain at the surface of human epithelial and B lymphoblastoid cells [J]. EMBO J, 1997,16(9):2294-2306.
    
    111. Sirena D, Lilienfeld B, Eisenhut M, et al. The human membrane cofactor CD46 is a receptor for the species B adenovirus serotype3. J Virol, 2004, 78(9): 4454-4462.
    
    112. Montgomery R 1, Warner M S, Lum B J, et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family . Cell, 1996, 87 (3): 427-36.
    
    113. Edery 1, Chu LL , Sonenberg N , Pelletier J. An efficient strategy to isolate full-length cDNAs based on an mRNA cap retention procedure (CAPture). Mol Cell Biol, 1995 , 15 (6): 3363-3371.
    
    114. Suzuki Y,Sugano S. Construction of a full-length enriched and a 5'2end enriched cDNA library using the oligo-capping method. Methods Mol Biol, 2003 ,221 (1): 73-91.
    
    115. Zhu Y Y, Machleder EM, Chenchik A , Li R, Siebert P D. Reverse transcriptase template switching : a SMART approach for full-length cDNA library construction. Biotechniques, 2001 ,30(4) :892-897.
    
    116. Carninci P , Kvam C , Kitamura A. et al.High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics.1996 , 37 (3): 327-336.
    
    117. Jeffrey RF, Khan A A, Kendall RG, et al. Quantitative reticulocyte analysis may be of benefit in monitoring erythropoietin treatment in dialysis patients. Artif Organs. 1995,19(8):821-6.
    
    118. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991, 251 (4998): 1211-7.
    
    119. Ryu C J, Cho D Y, Gripon P, et al. An 80-kilodalton protein that binds to the Pre-S1 domain of hepatitis B virus. J Virol, 2000,74 (1): 110-116.
    
    120. Thepparit C , Smith DR. Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol, 2004 Nov ;78 (22): 12647-56.
    
    121. Jindadamrongwech S , Thepparit C , Smith DR. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol, 2004 ,149 (5) :915-27
    
    122. Trauger SA , Wu E, Bark SJ. et al. The identification of an adenovirus receptor by using affinity capture and mass spectrometry. Chembiochem. 2004 ,5(8): 1095-9.
    123. Gaggar A, Shayakhmetov D M, Lieber A. CD46 is a cellular receptor for group B adenoviruses.Nat Med,2003, 9(11): 1408-1412.
    
    124. Tio P H, Jong W W, Cardosa M J. Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1,2 and 3. Virology, 2005, 2 (1): 25-36.
    
    125. Reyes-Del Valle J, Chavez-Salinas S, Medina F, et al. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol, 2005, 79(8):4557-4567.
    
    126. Prezzi C, Maurizio N, Annalisa M, et al. Selection of antigenic and immunogenic mimics of hepatitis C virus using sera from patients. J Immunol, 1996,156: 4504-4513
    
    127. Smith GP, Petrenko VA. Phage display. Chem Rev, 1997,97(2): 391-410
    
    128. Zozulya S, Lioubin M, Hill RJ, et al. Mapping signal transduction pathways by phage display. Nat Biotech, 1999,17: 1193-1198
    
    129. Sidhu SS, Fairbrother WJ, Deshayes K. Exploring protein-protein interactions with phage display.Chem Biochem ,2003,4: 14-25
    
    130. Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science, 1990,249:386-390
    
    131. Haas BJ, Volfovsky N, Town CD, et al. Full-length messenger RNA sequences greatly improve genome annotation.Genome Biol. 2002;3(6):RESEARCH0029.
    
    132. Vocero-Akbani AM, Heyden NV, Lissy NA. et al. Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein.Nat Med. 1999 ,5(1):29-33.
    
    133. Chen QR, Kumar D, Stass SA, et al. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res. 1999 , 59(14):3308-12.
    
    134. Wang S, Hazelrigg T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature. 1994, 369(6479):400-03
    
    135. Cole NB, Smith CL, Sciaky N,et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science. 1996, 273(5276):797-801
    
    136. Presley JF, Cole NB, Schroer TA, et al. ER-to-Golgi transport visualized in living cells. Nature.1997,389(6646):81-5.
    
    137. Olson KR, Mclntosh JR, Olmsted JB. Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras. J Cell Biol. 1995,130(3):639-50
    
    138. Wacker I, Kaether C, Kromer A, Migala A, et al. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J Cell Sci. 1997,110:1453-63.
    
    139. Lee MS, Henry M, Silver PA. A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes Dev. 1996,10( 10): 1233-46.
    140. Finger FP, Hughes TE, Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast.Cell. 1998,92(4):559-71.
    
    141. Day RN.Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy.Mol Endocrinol. 1998,12(9): 1410-9.
    
    142. Wouters FS, Bastiaens PI. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells.Curr Biol. 1999,9(19):1127-30.
    
    143. Boyd GW, Doward Al, Kirkness EF, et al. Cell surface expression of 5-hydroxytryptamine type 3 receptors is controlled by an endoplasmic reticulum retention signal. J Biol Chem. 2003 278(30):27681-27687.
    
    144. Brock SC, Heck JM, McGraw PA, et al. The transmembrane domain of the respiratory syncytial virus F protein is an orientation-independent apical plasma membrane sorting sequence. J Virol.2005 79(19):12528-12535
    
    145. Karsten U, Rudolph M. Monoclonal antibodies against tumour-associated antigens: mycoplasma as a major technical obstacle and its possible circumvention by azaserine selection medium[J].Arch Geschwulstforsch, 1985, 55(5):305-310.
    
    146. Hansbrough J F, Gadd M A. Temporal analysis of murine lymphocyte subpopulations by monoclonal antibodies and dual-color flow cytometry after burn and nonburn injury[J]. Surgery,1989, 106(1):69-80.
    
    147. Lane RD, Crissman RS, and Ginn S. High efficiency fusion procedure for producing monoclonal antibodies against weak immunogens. Methods Enzymol, 1986, 121: 183-192.
    
    148. McMaster W R, Williams A F. Identification of la glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol, 1979, 9:426-433.
    
    149. [澳]Heddy Zola 著.周宗安等译.单克隆抗体手册.南京:南京大学出版社, 1991 年第一版,pp48-63.
    
    150. Shatzman AR, Rosenberg M. Efficient expression of heterologous genes in Escherichia coli. The pAS vector system and its applications. Ann N Y Acad Sci, 1986, 478: 233-248.
    
    151. Houvet D, Clerc M. Localization by paper blotting technique of electrophoretic fractions on starch gel[J]. Application to alpha 1 - antitrypsin. Med Trop (Mars), 1979, 39(1): 107-109.
    
    152. Erlich H, Levinson J, Cohen S, et al. Filter affinity transfer. A new technique for the in situ identification of proteins in gels. J Biol Chem, 1979, 254:12240-12247.
    
    153. Renart J, Reiser J, Stark G. Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci USA, 1979, 76:3116-3120.
    
    154. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979,76(9):4350-4354.
    
    155. Towbin H, Girdon J. Immunoblotting and dot immunobinding-current status and outlook. J Immunol Methods, 1984, 72:313-340.
    
    156. Beisiegel U P. Electrophoresis. 1986:1-18.
    
    157. Tovey ER, Baldo BA. Enhanced immunodetection of blotted house dust mite protein allergens on nitrocellulose following blocking with Tween 20. Electrophoresis. 1987, 8:452-463.
    
    158. Borrow P, Oldstone MB. Characterization of lymphocytic choriomeningitis virus-binding protein(s): a candidate cellular receptor for the virus.J Virol. 1992,66( 12):7270-81.
    
    159. Boyle JF, Weismiller DG, Holmes KV. Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues.J Virol. 1987,61(1): 185-9.
    
    160. Karger A, Mettenleiter TC. Identification of cell surface molecules that interact with pseudorabies virus.J Virol. 1996,70(4):2138-45.
    
    161. Ohtsuka N, Yamada YK, Taguchi F. Difference in virus-binding activity of two distinct receptor proteins for mouse hepatitis virus. J Gen Virol. 1996,77:1683-92
    
    162. Ramos-Castaneda J, Imbert JL, Barron BL. et al. A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. J Neurovirol.1997,3(6):435-40.
    
    163. Uwatoko K, Kano R, Sunairi M. et al. Canine parvovirus binds to multiple cellular membrane proteins from both permissive and nonpermissive cell lines. Vet Microbiol. 1996,51(3-4):267-73.
    
    164. Inghirami G, Nakamura M, Balow JE, et al. Model for studying virus attachment: identification and quantitation of Epstein-Barr virus-binding cells by using biotinylated virus in flow cytometry.J Virol. 1988 Jul;62(7):2453-63
    
    165. Flint M, Maidens C, Loomis-Price LD, et al. Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81.J.Virol.1999,73(8):6235-44.
    
    166. Chu VC, Whittaker GR. Influenza virus entry and infection require host cell N-linked glycoprotein.Proc Natl Acad Sci U S A. 2004 Dec 28; 101 (52): 18153-8.
    
    167. Saunier B, Triyatni M, ULianich L, et al. Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J. Virol. 2003,77(1):546-59.
    
    168. Nakai T, Hirai K. In vitro infection of fractionated chicken lymphocytes by infectious bursal disease virus. Avian Dis. 1981 Oct-Dec;25(4):831-8
    
    169. Toole JJ, Knopf JL, Wozney JM et al. Molecular cloning of a cDNA encoding human antihaemophilic factor. 1984.Biotechnology. 1992;24:310-5.
    170. Wood WI, Capon DJ, Simonsen CC, et al. Expression of active human factor VIII from recombinant DNA clones.Nature. 1984 ,312(5992):330-7.
    
    171. Herz J, Hamann U, Rogne S, et al. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 1988,7(13):4119-27
    
    172. Hunziker W, Spiess M, Semenza G et al. The sucrase-isomaltase complex: primary structure,membrane-orientation, and evolution of a stalked, intrinsic brush border protein.Cell. 1986,46(2):227-34.
    
    173. Beckmann C, Brittnacher M, Ernst R, et al. Use of phage display to identify potential Pseudomonas aeruginosa gene products relevant to early cystic fibrosis airway infections. Infect lmmun.2005 Jan;73(1):444-52.
    
    174. Tsui P, Sweet RW, Sathe G et al. An efficient phage plaque screen for the random mutational analysis of the interaction of HIV-1 gpl20 with human CD4.J Biol Chem. 1992,267(13):9361-7.
    
    175. Pohl HE, Hock J, Muller-Esterl W. Plaque-lift testing of expression vector lambda gtl 1 with gold-labeled immunoglobulins.Anal Biochem. 1988,175(2):414-21.
    
    176. Rio DC, Clark SG, Tjian R. A mammalian host-vector system that regulates expression and amplification of transfected genes by temperature induction.Science. 1985,227(4682):23-8.
    
    177. Ren Y, Barnwell LF, Alexander JC et al. Regulation of surface localization of the small conductance Ca2+-activated potassium channel, Sk2, through direct phosphorylation by cAMP-dependent protein kinase.J Biol Chem. 2006 ,281(17): 11769-79.
    
    178. Bouschet T, Martin S, Henley JM. Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane.J Cell Sci.2005,118(20):4709-20.
    
    179. Vandenberghe W, Nicoll RA, Bredt DS. Interaction with the unfolded protein response reveals a role for stargazin in biosynthetic AMPA receptor transport.J Neurosci. 2005 Feb 2;25(5):1095-102.
    
    180. Mitsiou DJ, Stunnenberg HG p300 is involved in formation of the TBP-TFIIA-containing basal transcription complex, TAC.EMBO J. 2003,22(17):4501-l 1.
    
    181. Root CN, Wills EG, McNair LL, et al. Entry of influenza viruses into cells is inhibited by a highly specific protein kinase C inhibitor. J Gen Virol. 2000,81:2697-705
    
    182. Tiwari V, Clement C, Xu D et al. Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol. 2006,80(18):8970-80.
    183. Warner MS, Geraghty RJ, Martinez WM et al. A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1,herpes simplex virus type 2, and pseudorabies virus. Virology. 1998,246(1): 179-89.
    
    184. Shukla D, Liu J, Blaiklock P et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell. 1999,99(1): 13-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700