用户名: 密码: 验证码:
多孔介质内超绝热燃烧及硫化氢高温裂解制氢的试验研究和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济社会的快速发展,能源与环境问题日益凸现。与传统的预混燃烧相比,多孔介质内预混燃烧由于多孔介质大的比表面积、良好的蓄热性能,能够提高燃烧热效率、燃烧低热值燃料废气、扩展可燃极限、降低污染物排放,是比较先进的燃烧方式。本文在国家自然科学基金(20307007)的资助下采用试验研究和数值模拟的方法,对多孔介质内预混燃烧特性进行了研究,利用多孔介质能够实现超绝热燃烧的优点来处理硫化氢这种强污染性气体同时获得氢气和硫磺,实现资源综合利用。
     首先,利用自行设计建造的多孔燃烧反应器对多孔介质内的火焰传播特性进行了详细的试验研究,发现预混气体能够在多孔介质形成稳定传播的燃烧波,较高的化学当量比和较大的孔隙率条件下的燃烧波传播速度也较快,燃烧波的传播速度为10~(-3)cm/s的数量级。多孔介质内的超绝热燃烧只可能在燃烧波传播方向和气流方向一致时发生,否则只能发生亚绝热燃烧。贫燃条件下发生超绝热燃烧的化学当量比的下限和上限分别为0.4和0.7,富燃条件下发生超绝热燃烧的下限为1.5。超绝热燃烧时NOx排放量很低,基本保持在10ppm的量级。
     其次,采用了计算流体力学与详细化学反应机理相结合的方法模拟了多孔介质内的甲烷超绝热燃烧,并在甲烷富余的情况下裂解制取氢气。通过大量的数值试验,获得了直径为3mmAl_2O_3小球堆积而成的多孔介质有效导热系数。模拟结果与试验结果对比吻合良好,在Φ=1.5时没能发生超绝热燃烧,模拟温度比绝热燃烧温度低140K左右,而其他三个工况中的模拟温度超过了绝热燃烧温度,在Φ=2.0时超过绝热燃烧温度100K,在Φ=2.2时竟然超过绝热燃烧温度有360K之多,形成了超绝热燃烧。H_2和CO的总摩尔浓度可达23%,试验测量结果与数值模拟结果相比偏低。
     论文通过试验和动力学研究,研究了硫化氢在不同停留时间、不同反应温度下的裂解转化率。研究发现,硫化氢的热分解需要很高的温度环境,在温度低于850℃时,硫化氢几乎不发生热分解。温度越高、停留时间越长和初始硫化氢的体积浓度越低,硫化氢能够获得转化率就越高。此外,通过硫化氢超绝热部分氧化制氢热力学模拟,发现在一定的化学当量比下,低浓度的硫化氢/空气的混和气组合,比高浓度的硫化氢/氧气的混和气组合更容易达到超绝热燃烧,氧化剂中氧气的含量对其最终分解平衡极限没有影响,氢气的产出率随着氧气浓度的提高其变化也并不是很明显,选用氧化剂时空气的效果比氧气更好。在化学当量比特别是在Φ>6时,可以得到较多的H_2和较低的SO_2排放。
     最后,论文试验和数值模拟研究了利用多孔介质内超绝热燃烧,实现硫化氢高温裂解制取氢气。研究发现,氢气的产量在化学当量比为2.5时最大,为2.08%。多孔介质超绝热燃烧能够为硫化氢高温裂解提供高温环境。数值模拟利用CFD所得的稳定温度场作为初始温度输入,采用CHEMKIN的PREMIX软件包并且考虑了管内H_2S燃烧和裂解的复杂化学反应机理,来模拟硫化氢的裂解制氢,模拟结果和试验比较吻合良好。为进一步实现多孔介质超绝热燃烧的应用打下了很好的基础。
With the rapid development of Chinese economics, the problem of Energy and environment come up to surface. Premixed combustion in porous media has been proved to be an advanced combustion technology over conventional premixed combustion in which the premixed fuel and air burn as a free flame. Premixed combustion in porous media has many advantages such as reduced emissions of pollutants, wider domain of flammability, much higher thermal efficiency and radiant heat outputs, saving energy because of its highly developed inner solid surface and excellent property of heat transfer and heat accumulation. With the support of the National Nature Science Foundation of China (20307007), the characteristics of premixed combustion in porous media were investigated by the methods of experiment and numerical simulation. Hydrogen can be produced from sulfide hydrogen based on advantages of super-adiabatic combustion.
     First, detailed experimental investigation has been done with wave propagation in porous media of a porous combustion reactor. The Experimental results show that self-propagation reactions of premixed mixture of methane/air combustion are possible at a very low velocity, and the wave velocity is determined by equivalence ratio and size of pores of porous media, larger equivalence ratio has a larger combustion wave velocity, porous media which consist of 6mm diameter spheres have larger combustion wave velocity than which consist of 3mm diameter spheres. Downstream propagation of combustion wave can produce super-adiabatic combustion; otherwise under-adiabatic combustion happens. The emissions of NOx are less than 10ppm under super-adiabatic combustion.
     Computational fluid dynamics (CFD) combined with detailed chemical kinetics was employed to model the filtration combustion of methane/air in a packed bed of uniform 3 mm diameter alumina spherical particles. The standard k-εturbulence model and a methane oxidation mechanism with 23 species and 39 elemental reactions were used. Various equivalence ratios (1.5, 2.0, 2.2, and 2.5) were studied. The numerical results showed good agreement with the experimental data. For ultra-rich mixtures, the combustion temperature exceeds the adiabatic value by hundreds of centigrade degrees. Syn-gas (hydrogen and carbon monoxide) can be obtained up to a mole fraction of 23%. The numerical results also showed that the combination of CFD with detailed chemical kinetics gives good performance for modeling the pseudo-homogeneous flames of methane in porous media.
     The experimental study and kinetics investigation on the thermal decomposition of hydrogen sulfide was carried out. The decomposition efficiency of hydrogen sulfide under various temperature and residual time was studied and verified by the experimental data. The simulating results show that the reacting mechanism developed in this work can express the thermal decomposition of hydrogen sulfide accurately. The thermal decomposition of hydrogen sulfide relies on the reacting temperature, only the high temperature conditions lead to the high hydrogen generating efficiency. When the temperature is low, the residual time is the key factor influencing the thermal decomposition. The initial hydrogen sulfide concentration has great influence on the thermal decomposition efficiency, lower hydrogen sulfide concentration results in higher thermal decomposition efficiency. A thermodynamic model was used to study numerically by varying H_2S and oxidizer feed compositions. The results show that the adiabatic temperature is lower in low equivalence ratio, the increase of hydrogen sulfide and oxygen concentrations shifts the super-adiabatic partial oxidation combustion zone to high equivalence ratio; The thermal decomposition of hydrogen sulfide greatly relies on the super-adiabatic combustion temperature, and under higher super-adiabatic combustion temperature the higher hydrogen generating efficiency can be achieved. The results of thermodynamic simulation also suggest that the rage of optimal operation of a super-adiabatic partial oxidation unit is above an equivalence ratio of 6, where the hydrogen output is maximized and SO_2 generation is minimized. Under the same combustion temperature lower hydrogen sulfide concentration results in higher thermal decomposition efficiency.
     Finally, investigation of hydrogen producing based on super-adiabatic combustion has been done through experiments and numerical simulation. The results show that super-adiabatic combustion could offer the high-temperature environment for the decomposition of hydrogen sulfide to produce hydrogen and sulfur and hydrogen concentration was 2.08% atΦ=2.5. The combination of computational fluid dynamics and chemical kinetics investigation was employed to model the filtration combustion of hydrogen sulfide a 17-species, 57-elemental reaction mechanism. The results of the simulation show good agreement with experimental data.
引文
[1]张静.天然气与中国能源发展前景[J].中国石油和化工经济分析,2007,(12):20-24.
    [2]唐炼.世界能源供需现状与发展趋势[J].国际石油经济,2005,13(1):30-33.
    [3]朱燕群,刘克俭;.石油加工行业中硫化氢的危害性及安全对策分析[J].职业与健康,2006,22:1248-1250.
    [4]孙少光.油田企业生产过程硫化氢危害及预防[J].安全、健康和环境,2005,5(6).
    [5]赵毅,李守信.有害气体控制工程[J].化学工业出版社,2001.8.
    [6]刘琦,蒋建勋,刘淼.高含硫气藏中硫及其化合物危害性研究[J].西部探矿工程,2006,(08).
    [7]戴金星.中国含硫化氢的天然气分布特征、分类及其成因探讨[J].沉积学报,1985,3(4):109-120.
    [8]杜志敏.国外高含硫气藏开发经验与启示[J].天然气工业,2006,(12).
    [9]朱光有,张水昌,梁英波等.四川盆地高含H_2s天然气的分布与Tsr成因证据[J].地质学报,2006,(08).
    [10]朱光有,张水昌,李剑等.中国高含硫化氢天然气的形成及其分布[J].石油勘探与开发,2004.6,31:18-21.
    [11]喻凯.硫化氢中毒的机制及其防治[J].四川环境,1991,(04).
    [12]韩志英,金复生.硫化氢中毒研究进展[J].工业卫生与职业病,2006,32(2):118-121.
    [13]V.KALOIDAS,N.PAPAYANNAKOS.Kinetics of thermal,non-catalytic decomposition of hydrogen sulfide[J].Chemical Engineering Science,1989,44:2493-2500.
    [14]ZAMAN J,CHAKMA A.Production of hydrogen and sulfur from hydrogen sulfide[J]. Fuel Processing Technology, 1995,41: 159-198.
    [15] BINGUE J P, SAVELIEV A V, FRIDMAN A A, et al. Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide[J]. International Journal of Hydrogen Energy, 2002,27: 643-649.
    
    [16] Rachid B.SIimane, Francis S.Lau, Remon J.Dihu, et al. Production of hydrogen by superadiabatic decomposition of hydrogen sulfide[C] // Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405. [s. n.], 2002
    
    [17] SUGIOKA M, AOMURA K. A possible mechanism for catalytic decomposition of hydrogen sulfide molybdenum disulfide[J]. International Journal of Hydrogen Energy, 1984,9:891-894.
    
    [18] HOWELL J R, HALL M J, ELLZEY J L. Combustion of hydrocarbon fuels within porous inert media[J]. Progress in Energy and Combustion Science, 1996, 22(2): 121-145.
    
    [19] VK Pantangi, SC Mishra. COMBUSTION OF GASEOUS HYDROCARBON FUELS WITHIN POROUS MEDIA - A REVIEW[J]. Advances in Energy Research, 2006:455-461.
    
    [20] Durst F., Trimis D. Combustion by free flames versus combustion reactors[J]. Clean Air, 2002,3:1-20.
    [21] WEINBERG F. Heat -recalculating burners: principles and some recent development[J]. Combustion Science and Technology, 1996,121(1): 3-22.
    [22] BARRA A J, ELLZEY J L. Heat recirculation and heat transfer in porous burners[J]. Combustion and Flame, 2004,137(1-2): 230-241.
    [23] Hanamura K, Echigo R. An analysis of flame stabilization mechanisms in radiation burners.[J]. Wa¨rme Stoffu¨bertrag, 1991,26: 377-383.
    [24] HSU P, EVANS W, HOWELL J. Experimental and Numerical Study of Premixed Combustion within Nonhomogeneous Porous Ceramics[J]. Combustion science and technology, 1993, 90: 149-172.
    [25] HSU P, HOWELL J, MATTHEWS R. A numerical investigation of premixed combustion within porous inert media[J]. ASME Journal of heat transfer 1993, 93: 457-466.
    [26] KHANNA V, GOEL R, ELLZEY J L. Measurements of Emissions and Radiation for Methane Combustion within a Porous Medium Burner[J]. 1994, 99(1): 133 - 142.
    [27] Kulkarni MR, Peck RE. Analysis of a bilayered porous radiant burner[J]. Numer Heat Trans A—Appl 1996, 30: 219-232.
    [28] Mathis Jr WM, Ellzey JL. Flame stabilization, operating range, and emissions for a methane/air porous burner.[J]. Combust Sci Technol, 2003, 175: 825-839.
    [29] Vogel BJ, Ellzey JL. Subadiabatic and superadiabatic performance of a two-section porous burner. [J]. Combust Sci Technol, 2005,177: 1323-1338.
    [30] WEINBERG F J. Combustion Temperatures: The Future?[J]. Nature, 1971, 233(5317): 239-241.
    [31] Viskanta R, Gore JP. Overview of cellular ceramics based porous radiant burners for supporting combustion[J]. Clean Air, 2000, 1: 167-203.
    [32] LUCKE C. Design of Surface Combustion Appliances[J]. Industrial & Engineering Chemistry, 1913, 5(10): 801-824.
    [33] KORZHAVIN A A, BUNEV V A, ABDULLIN R K, et al. Flame zone in gas combustion in an inert porous medium [J]. Combustion, Explosion, and Shock Waves, 1982,18:628-631.
    [34] SOETE G D. Stability and Propagation of Combustion Waves in Inert Porous Media[J]. Eleventh Symposium (International) on Combustion.The Combustion Institute, 1966-1967: 959-966
    [35] BABKIN V S, KORZHAVIN A A, BUNEV V A. Propagation of premixed gaseous explosion flames in porous media[J]. Combustion and Flame, 1991, 87(2): 182.
    [36] BUBNOVICH V I, ZHDANOK S A, DOBREGO K V. Analytical study of the combustion waves propagation under filtration of methane-air mixture in a packed bed[J]. International Journal of Heat and Mass Transfer, 2006,49(15-16): 2578-2586.
    [37] THRING M. The Science of Flames and Furnaces[J]. 1962.
    [38] AR JONES, SA Lloyd, FJ WEINBERG Combustion in heat exchangers [J]. Proceedings of the Royal Society of London, 1978: 97-115.
    [39] M Shinoda, R Maihara, N Kobayashi, N Arai, The characteristics of a heat-recirculating ceramic burner[J]. Chemical Engineering Journal, 1998, 71: 207-212.
    [40] R Tanaka, M Shinoda, N Arai. Combustion characteristics of a heat-recirculating ceramic burner using a low-calorific-fuel [J]. Energy Conversion and Management, 2001,42(15-17): 1897-1907.
    [41] SA Lloyd,FJ Weinberg. A burner for mixtures of very low heat content [J]. Nature, 1974,251:47-49.
    [42] SA Lloyd, FJ Weinberg. Limits to energy release and utilisation from chemical fuels [J]. Nature, 1975, 257: 367 - 370.
    [43] DR Hardesty, FJ Weinberg. Converter Efficiency in Burner Systems Producing Large Excess Enthalpies [J]. Combustion Science and Technology, 1976,12: 153-157.
    [44] SA LLOYD F W. A Recirculating Fluidized Bed Combustor for Extended Flow Ranges[J]. Combustion and Flame, 1976,27: 391.
    [45] WEINBERG F. The First Half-Million Years of Combustion Research and Today's Burning Problems[J]. Progress in Energy and Combustion Science, 1975, Pittsburgh: 1-17.
    [46] DR Hardesty, FJ Weinberg. Burners Producing Large Excess Enthalpies[J]. Combustion Science and Technology, 1973, 8: 201-214
    [47] Sathe SB, Peck RE, Tong TW. A numerical analysis of heat transfer and combustion in porous radiant burners.[J]. Int J Heat Mass Trans 1990,33: 1331-1338.
    [48] Afsharvahid S, Dally BB, Christo FC. On the stabilisation of ultra-lean methane and propane flames in porous media[C] // Proceedings of the fourth Asia-Pacific conference on combustion, [s. n.], 2003
    [49] Kotani Y, Behbahani HF, Takeno T. An excess enthalpy flame combustor for extended flow ranges[J]. Proceedings of the twentieth symposium (international) on combustion. The Combustion Institute, 1984: 2025-2033.
    [50] DAEKI MIN, HD SHIN. Laminar premixed flame stabilized inside a honeycom ceramic[J]. International journal of heat and mass transfer, 1991, 34(22): 341-356.
    [51] Mital R, Gore JP, Viskanta R. A study of the structure of submerged reaction zone in porous ceramic radiant burners[J]. Combust Flame, 1997, 111: 175-184.
    [52] Sathe SB, Kulkarni MR, Peck RE, Tong TW. An experimental and theoretical study of porous radiant burner performance. [C] // Proceedings of the twenty-third symposium (international) on combustion, [s. n.], 1990.1011-1018.
    [53] Smucker MT, Ellzey JL. Computational and experimental study of a two-section porous burner.[J]. Combust Sci Technol, 2004,176: 1171-1189.
    [54] T Takeno, K Sato. An Excess Enthalpy Flame Theory[J]. Combustion Science and Technology, 1979, 20: 73-84
    [55] TAKENO T, SATO K, HASE K. Theoretical study on an excess enthalpy flame[C] //. United States: [s. n.], 1981.Pages: 465-472.
    [56] BUCKMASTER J, TAKENO T. Blow-Off and Flashback of an Excess Enthalpy Flame[J]. Taylor & Francis, 1981,25(3): 153 -158.
    [57] Kotani Y, Takeno T. An experimental study on stability and combustion characteristics of an excess enthalpy flame[J]. Symposium on combustion. 19 , INCONNU, 1982: 1503-1509
    [58] TAKENO T, HASE K. Effects of solid length and heat loss on an excess enthalpy flame[J]. Combustion science and technology, 1983, 31: 207-215.
    [59] K SATO, T TAKENO, K HASE. A further experimental study on the excess enthalpy flame[J]. Japan Society for Aeronautical and Space Sciences,, 1983, 26(72): 65-79.
    [60] YOSHIZAWA Y, SASAKI K, ECHIGO R. Analytical study of the structure of radiation controlled flame[C] //. United States: [s. n.], 1987.Pages: 8.
    [61] BABKIN. Filtrational combustion of gases. Present state of affairs and prospects[J]. Pure Appl. Chem,, 1993, 65(2): 335-344.
    [62] ZHDANOK S, KENNEDY L A, KOESTER G. Superadiabatic combustion of methane air mixtures under filtration in a packed bed[J]. Combustion and Flame, 1995, 100(1-2): 221-231.
    [63] ZHDANOK ,S A, DOBREGO K V, FUTKO S I. Flame localization inside axis-symmetric cylindrical and spherical porous media burners[J]. International Journal of Heat and Mass Transfer, 1998,41(22): 3647-3655.
    [64]HTTP://MIEDEPT.ME.UIC.EDU/LAB/KENNEDY/FILTRATION_CHANGED_2.HT M.
    [65]LA KENNEDY A F,AV SAVELIEV Superadiabatic combustion in porous media:wave propagation,instabilities,new type of chemical reactor.[J].Int.J.Fluid Mech.Res,,1995,22:1-27.
    [66]SS Minaev,SI Potytnyakov,VS Babkin.Combustion wave instability in the filtration combustion of gases[J].Combustion,Explosion,and Shock Waves,1994,30:306-310.
    [67]KV DOBREGO,SA Zhdanok.Physics of Filtration Combustion of Gases[J].ITMO NAN Belarusi,Minsk,2002.
    [68]DOBREGO K V,ZHDANOK S A,KHANEVICH E I.Analytical and experimental investigation of the transition from low-velocity to high-velocity regime of filtration combustion[J].Experimental Thermal and Fluid Science,2000,21(1-3):9-16.
    [69]KV DOBREGO,SA Zhdanok.Thermo-hydrodynamic instability at filtration combustion of gases[J].Heat and Mass Transfer Institute,Preprint,1998.
    [70]KV DOBREGO,SA Zhdanok,AV KRAUKLIS,EI KHANEVICH.Investigation of the filtration combustion stability in cylinder porous body radiative burner[J].J.Eng.Phys.Thermophys,1999,72:599-605.
    [71]SA ZHDANOK K D.Theory of thermohydrodynamic instability of the front of filtration combustion of gases[J].Combust.Explosion Shock Waves,1999,35:476-482.
    [72]DOBREGO K V,ZHDANOK S A,ZARUBA A I.Experimental and analytical investigation of the gas filtration combustion inclination instability[J].International Journal of Heat and Mass Transfer,2001,44(11):2127-2136.
    [73]DOBREGO K V,KOZLOV I M,BUBNOVICH V I,et al.Dynamics of filtration combustion front perturbation in the tubular porous media burner[J].International Journal of Heat and Mass Transfer,2003,46(17):3279-3289.
    [74]LA KENNEDY,JP Bingue,AV SAVELIEV,AA FRIDMAN.Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions.[J].Proceedings of the Combustion Institute,2000:1431-1438
    [75]KENNEDY L A,SAVELIEV A V,BINGUE J P,et al.Filtration combustion of a methane wave in air for oxygen-enriched and oxygen-depleted environments[J].Proceedings of the Combustion Institute,2002,29(1):835-841.
    [76]BINGUE J P,SAVELIEV A V,KENNEDY L A.Optimization of hydrogen production by filtration combustion of methane by oxygen enrichment and depletion[J].International Journal of Hydrogen Energy,2004,29:1365-1370.
    [77]BINGUE J P.Filtration combustion of methane and hydrogen sulfide in inert porous media:theory and experiments[D].Chicago,Illinois:University of Illinois at Chicago,2003.
    [78]BINGUE J P,SAVELIEV A V,FRIDMAN A A,et al.Hydrogen sulfide filtration combustion:comparison of theory and experiment[J].Experimental Thermal and Fluid Science,2002,26(2-4):409-415
    [79]TIANG-YU X.Experimental study of ultra-low emission radiant porous burner[A].[J].Presented at AFRC 1991 Spring Members Only Meeting[C].Hartford:Connecticut,,1991:18-19.
    [80]KHANNA V,GOEL R,ELLZEY J.Measurements of emissions and radiation for methane combustion within a porous medium bumer[J].Combustion science and technology,1994,99:133-142.
    [81]GOECKNER B.A.,HELMICH D.R.,MCCARTHY T.A.,.Radiative heat transfer augmentation of natural gas flames in radiant tube bumers with porous ceramic inserts[J].Experimental thermal and fluid science 1992,5:848-860
    [82]PEARD T E,PETERS J E,BREWSTER M Q,et al.RADIATIVE HEAT TRANSFER AUGMENTATION IN GAS-FIRED RADIANT TUBE BURNERS BY POROUS INSERTS:EFFECT OF INSERT GEOMETRY[J].1993,6(3):273-286.
    [83]F CHRISTO,BB Dally,PV LABSPEARY,S AFSHARVAHID.Development of porous burner technology for ultra-lean combustion systems[J].Final Technical Report prepared for South Australian State,Australia,2002.
    [84]吕兆华,MATT.R.多孔泡沫陶瓷中预混火焰燃烧速率的试验研究[J].燃 烧科学与技术,1995,1(2):129-134
    [85]吕兆华,王志武.多孔陶瓷燃烧器火焰温度的测定[J].发电设备,1997,8:35-38,40
    [86]吕兆华,Matthews R D.分段多孔介质燃烧器二次进气燃烧排放研究[J].燃烧科学与技术,2000,6:124-128.
    [87]吕兆华,Mat thews R D,J HOWELL.多孔陶瓷材料中的预混火焰[J].华东工学院学报,1989,3:25-29.
    [88]吕兆华,孙思诚.多孔介质中预混火焰燃烧速率的预示[J].燃烧科学与技术,1998,4(3):242-246
    [89]刘宪秋,卢国楷 马.多孔介质对贫燃料燃烧极限的影响[J].北京化工学院学报,1994,21(2):54-57.
    [90]李艳红,程惠尔,胡国新等.多孔陶瓷板预混燃烧NOx的排放特性[J].上海交通大学学报,2002,36(2):226-229.
    [91]李艳红,程惠尔,胡国新等.多孔陶瓷板燃气预混燃烧的试验研究[J].上海交通大学学报(自然科学版),2001,35(8):1220-1223.
    [92]潘宏亮.多孔介质有效导热系数的计算方法[J].航空计算技术,2002,2:12-14.
    [93]潘宏亮,O Pickenacker.孔隙率对Al2O3高孔隙率多孔介质EHC的影响[J].西北工业大学学报,2002,20(2):242-246.
    [94]张根烜,陈义良,刘明候等.堆积床内甲烷/空气预混燃烧的理论分析[J].工程热物理学报,2006,26:245-248.
    [95]张根烜,刘明侯,陈义良,赵平辉.惰性多孔介质内过滤燃烧特性分析[J].工程热物理学报,2007,28(1):157-160.
    [96]G ZHANG X C,M LIU,B LIN,Y CHEN,L WANG.Characteristic analysis of low-velocity gas filtration combustion in an inert packed bed[J].Combustion Theory and Modelling,2006.
    [97]张根烜,陈义良,刘明侯等.堆积床内非驻定过滤燃烧的一维研究[J]. 计算物理,2006,23(2):217-223.
    [98]张根烜,刘明侯,朱旻明等.堆积床内过滤燃烧的瞬态研究[J].燃烧科学与技术,2006,12(2):180-185.
    [99]王恩宇,程乐鸣,骆仲泱等.天然气在渐变型多孔介质中的预混燃烧[J].燃烧科学与技术,2004,10:1-6.
    [100]王恩宇,程乐鸣,吴学成等.渐变型多孔介质中预混燃烧试验研究[J].浙江大学学报:工学版,2002,36:685-689.
    [101]王恩宇.气体燃料在渐变型多孔介质中的预混燃烧机理研究[D].杭州:浙江大学,2004.
    [102]王恩宇,程乐鸣,褚金华等.渐变型多孔介质中燃气燃烧特性试验研究[J].渐变型多孔介质中燃气燃烧特性试验研究,2005,26:1037-1040
    [103]王恩宇,程乐鸣.渐变型多孔介质中预混燃烧温度分布试验[J].热科学与技术,2003,2:64-69.
    [104]解茂昭,杜礼明,孙文策.多孔介质中往复流动下超绝热燃烧技术的进展与前景[J].燃烧科学与技术,2002,8:520-524.
    [105]杜礼明,解茂昭,邓洋波.惰性多孔介质中预混合燃烧的研究进展[J].热能动力工程,2002,17:221-226.
    [106]解茂昭,杜礼明.预混合燃烧系统中多孔介质作用数值研究[J].大连理工大学学报,2004,44:70-75.
    [107]马世虎,解茂昭,邓洋波.多孔介质往复流动燃烧的一维数值模拟[J].热能动力工程,2004,19:384-388.
    [108]邓洋波,解茂昭.多孔介质内预混合超绝热燃烧的排放特性[J].大连理工大学学报,2004,44:392-397.
    [109]邓洋波,解茂昭,刘宏升等.多孔介质内往复流动下超绝热燃烧的实验研究[J].燃烧科学与技术,2004,10:82-87.
    [110]邓洋波,解茂昭.多孔介质内往复流动下超绝热燃烧系统温度场的理论分析[J].能源工程,2005,6:1-6.
    [111]杜礼明,解茂昭.预混气体在多孔介质中往复流动下超绝热燃烧的理论探讨[J].能源工程,2003,5.
    [112]杜礼明,解茂昭.预混气体在多孔介质中往复式超绝热燃烧的数值研究[J].燃烧科学与技术,2005,11:230-235.
    [113]M BAUER S.,PICKEN CKER O.,PICKEN CKER K.,et al.Application of the porous burner technology in energy andheat-engineering[J],the Fifth International Conference on Technologies and Combustion for a Clean Environment(Clean Air V),Lisbon,Portugal,1999,I(Lecture 20,2):519-523.
    [114]PEREIRA F.A.,OLIVEIRA A.A.Analysis of the combustion with excess enthalpy in porous media[J].Proceedings of the European Combustion Meeting,2004,1:36.
    [115]HAYASHI T.C.,MALICO I.,PEREIRAJ.C.F.Three-dimensional modeling of two-layer porous burner for household applications[J].Computers &Structures,2004,82(4):1543-1550.
    [116]DURST F.,WECLAS M.A new type of internal combustion engine based on the porous medium combustion technique[J].Proceedings of the Institute Mechanical Engineers,Part D,Journal of Automobile Engineering.2001,215(1):63-81.
    [117]HSU P-F,EVANS W.D.,HOWELL J.R..Experimental and numerical study of premixed combustion within No homogeneous porous ceramics[J].Combustion Science and Technology,1993,90(2):149-172.
    [118]WANG E-Y,CHENG L-M,LUO Z-Y,et al.Stability of flames in the gradually-varied porous media[J].Proceedings of the International Conference on Energy and the Environment,2003:977-982.
    [119]TSENG C-J,LI C-H.Thermally-enhanced combustion in a porous medium burner[J].Transactions of the Chinese Institute of Engineers,Series C,2001,22(3):217-224.
    [120]吕兆华,MATT R D.多孔泡沫陶瓷中预混火焰燃烧速率的试验研究[J].燃烧科学与技术,1995,1(2):129-134.
    [121]BRENNER G,PICKEN CKER K,PICKEN CKER O,et al.Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media[J].Combustion and Flame,2000,123(1):201-213.
    [122]HOWELL J R,HALL M J,ELLZEY J L.Combustion of Hydrocarbon Fuels Within Porous Inert Media[J].Progress of Energy Combustion Science,,1996,22(2):121-145.
    [123]TRIMIS D.,DURST F.Combustion in a porous media -advances and applications[J].Combustion Science and Technology,1996,121(1-6):153-168.
    [124]MITAL R.,J.P.G,VISKANTA.A study of the structure of submerged reaction zone in porous ceramic radiant burners[J].Combustion and Flame,1997,111(2):175-184.
    [125]MALICO I.,ZHOU X.Y.,PEREIRA J.C.F.Two-demensional numerical study of combustion and pollutants formation in porous burner[J].Combustion Science and Technology,2000,152(13):57-79.
    [126]褚金华,程乐鸣,王恩宇等.预混天然气在多孔介质燃烧器中的燃烧与传热[J].燃料化学学报,2005,33(2):166-170.
    [127]PICKEN(A|¨)CKER O;PICKEN(A|¨)CKER K;WAWRZ.INEK K.;TRIMIS D..Innovative ceramic materials for porous-medium burners[J].Interceram:International Ceramic Review,1999,48(66):326-30.
    [128]BOWEN H.Basic research needs on high temperature ceramics for energy applications[J].Materials Science and Engineering,1980,44:1-56.
    [129]TRIMIS D,DURST F.Combustion in a Porous Medium-Advances and Applications[J].1996,121(1):153-168.
    [130]XIONG T-Y,KHINKIS M J,FISH F F.Experimental study of a high-efficiency,low emission porous matrix combustor—heater[J].Fuel,1995,74(11):1641-1647.
    [131]Al-Hamamre Z,Diezinger S,Talukdar P,von Issendorff F,Trimis D.Combustion of low calorific value gases from landfills and waste pyrolysis using porous medium burner technology[J].Process Saf Environ 2006,84:297-308.
    [132]DELALIC N,MULAHASANOVIC D,GANIC E N.Porous media compact heat exchanger unit—experiment and analysis[J].Experimental Thermal and Fluid Science,2004,28(2-3):185-192.
    [133] BRENNER G, PICKENACKER K, PICKENACKER O, et al. Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media[J]. Combustion and Flame, 2000, 123(1-2): 201-213.
    [134] MM KAMAL, MM Mohamad. Development of a cylindrical porous medium burner[J]. J. Porous Media, 2006, 9: 469-81.
    [135] O PICKENACKER D T. Experimental study of a staged methane/air burner based on combustion in a porous inert medium[J]. J. Porous Media, 2001,4: 197-213.
    [136] M BAUER S, PICKEN CKER O, PICKEN CKER K, et al. Application of the Porous Burner Technology in Energy-and Heat-Engineering[J]. Fifth International Conference on Technologies and Combustion for a Clean Environment (Clean Air V),lisbon, [C]., 1999: 519-523.
    [137] Alavandi SK, Agrawal AK. Experimental study of combustion of hydrogen-syngas/methane fuel mixtures in a porous burner. [J]. Int J Hydrogen Energy, 2008, 33: 1407-1415.
    [138] KAPLAN M H M. Combustion of liquid fuels within a porous media radiant bumer[J]. Exp Therm Fluid Sci, 1995,11: 13-20.
    [139] AFSHARVAHID S A P, DALLY BB. . Investigation of NO_x conversion characteristics in a porous medium.[J]. Combust Flame, 2008,152: 604-615.
    [140] KAMAL M M, MOHAMAD A A. Enhanced radiation output from foam burners operating with a nonpremixed flame[J]. Combustion and Flame, 2005, 140(3): 233-248.
    [141] ZAMAN J, CHAKMA A. Production of hydrogen and sulfur from hydrogen sulfide[J]. Fuel Processing Technology, 1995,41(2): 159-198.
    [142] DOWLING N I, HYNE J B, BROWN D M. Kinetics of the Reaction between Hydrogen and Sulfur under High-Temperature Clause Furnace Conditions[J]. Industrial & Engineering Chemistry Research, 1990,29: 2327-2332.
    [143] WOIKI D, ROTH P. Kinetics of the High-Temperature H2S Decomposition[J]. J. Phys. Chem., 1994,98: 12958-12963.
    [144] K.A.HAWBOLDT, W.D.MONNERY, W.Y.SVCEK. New experimental data and kinetic rate expression for H2S pyrolysis and re-association[J]. Chemical Engineering Science,2000,55:957-966.
    [145]BINOIST M,LAB GORGE B,MONNET F,et al.Kinetic study of the pyrolysis of H2S[J].Industrial & Engineering Chemistry Research,2003,42(17):3943-3951.
    [146]ADESINA A A,MEEYOO V,FOULDS G.Thermolysis of hydrogen sulphide in an open tubular reactor[J].1995,20:777-783.
    [147]FRENKLACH M,LEE J H,WHITE J N,et al.Oxidation of hydrogen sulfide[J].Combustion and flame,1981,41:1-16.
    [148]ZAMAN J,CHAKMA A.A simulation study on the thermal decomposition of hydrogen sulfide in a membrane reactor[J].1995,20:21-28.
    [149]FARAJI F,SAFARIK I,STRAUSZ O P,et al.The direct conversion of hydrogen sulfide to hydrogen and sulfur[J].International Journal of Hydrogen Energy,1998,23:451-456.
    [150]SLIMANE R B,LAU F S,ABBASIAN J.Hydrogen prduction by superadiabatic combustion of hydrogen sulfide[J].Proceedings of the 2000 hydrogen program review NREL/CP-570-28890,2000.
    [151]SLIMANE R B,LAU F S,KHINKIS M,et al.Conversion of hydrogen sulfide to hydrogen by superadiabatic partial oxidation:thermodynamic consideration[J].International Journal of Hydrogen Energy,2004,29(14):1471-1477.
    [152]BINGUE J P,SAVELIEV A V,FRIDMAN A A,et al.Hydrogen sulfide filtration combustion:comparison of theory and experiment[J].Experimental Thermal and Fluid Science,2002,26(2-4):409.
    [153]杜礼明,王树东.超绝热燃烧技术在硫化氢分解制氢上的应用[J].化工进展,2005,24:231-235.
    [154]钱欣平,凌忠钱,周昊,岑可法.硫化氢热分解制氢过程的化学动力学研究[J].燃料化学学报,2005,23(6):722-725.
    [155]凌忠钱,周昊,钱欣平,李国能,王子兴,岑可法多孔介质内H2S贫氧燃烧制氢数值模拟[J].环境科学学报2006,26(1):22-25.
    [156]ELLZEY J,GOEL R.Emissions of CO and NO from a two stage porous media burner[J].Combustion science and technology,1995,107:81-91.
    [157]HOFFMANN J G,ECHIGO R,YOSHIDA H,et al.Experimental study on combustion in porous media with a reciprocating flow system[J].Combustion and Flame,1997,111(1-2):32-46.
    [158]TRIMIS D,WAWRZINEK K.Flame stabilization of highly diffusive gas mixtures in porous inert media[J].Journal of Computational and Applied Mechanics,2004,5(2):367-381.
    [159]越后亮三.多孔介质内的超绝热燃烧[J].国外内燃机,1997,12(6):55-57.
    [160]HSU P-F,MATTHEWS R.The necessity of using detailed kinetics in models for premixed combustion within porous media[J].Combustion and flame 1993,93:457-466.
    [161]HACKERT C L,ELLZEY J L,EZEKOYE O A.Combustion and heat transfer in model two-dimensional porous burners[J].Combustion and Flame,1999,116(1-2):177-191.
    [162]ECHIGO R.Effective energy conversion method between gas enthalpy and thermal radiation and application to industrial furnaces[J].Proc.7~(th) Int.Heat transfer conf.,Munich,1982,VI:361-366.
    [163]ECHIGO R,Y.YOSHIZAWA,HANAMURA K,et al.Analytical and experimental studies on radiative propagation in porous media with internal heat generation[J].Proc.8~(th) Int.Heat transfer conf.,San Francisco,CA,1986,Vol Ⅱ:827-832.
    [164]PEDERSEN-MJAANES H,CHAN L,MASTORAKOS E.Hydrogen production from rich combustion in porous media[J].International Journal of Hydrogen Energy,2005,30(6):579-592.
    [165]HTTP://WWW.ME.BERKELEY.EDU/DRM/.
    [166]ERGUN S.Fluid flow through packed columns[J].Chem.Eng.Prog,1952,48(2):89-94.
    [167]Kuwahara F,Yamaha T,Nakayarna A.Large eddy simulation of turbulent flow in porous media[J].Int.Commun.Heat Mass Transf,2006,33(4):411-418.
    [168]GREGORY P.SMITH D M G,MICHAEL FRENKLACH,NIGEL W.MORIARTY,BORIS EITENEER,MIKHAIL GOLDENBERG,C.THOMAS bowman, ronald k. hanson, soonho song, william c. gardiner, jr., vitali v. lissianski, and zhiwei qin, http://www.me.berkeley.edu/gri mech/.
    [169] CHEN J. Development of Reduced Mechanisms for Numerical Modelling of Turbulent Combustion[C][J]. Workshop on Numerical Aspects of Reduction in Chemical Kinetics, CERMICS-ENPC Cite Descartes-Champus sur Marne, France, September 2,, 1997.
    
    [170] SUNG C J, LAW C K, CHEN J Y. Augmented reduced mechanisms for NO emission in methane oxidation[J]. Combustion and Flame, 2001, 125(1-2): 906-919.
    [171] P Glarborg, J Mill. Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors[J]. Combustion and Flame, 1986, 65: 177-202.
    [172] RW BILGER, SH STARNER, RJ KEE On reduced mechanisms for methane-air combustion in nonpremixed flames[J]. Combustion and Flame, 1990, 80: 135-149.
    [173] XU Minghou, FAN Yaoguo, Y Jianwei. Simplification of the mechanism of NOx formation in a CH4/air combustion system [J]. International journal of energy research, 1999,23: 1267-1276.
    [174] L Vervisch,T Poinsot. NUMERICAL SIMULATION OF NON-PREMIXED TURBULENT FLAMES [J]. Annual Reviews in Fluid Mechanics, 1998, 30: 655-691.
    [175] M. Baum, T. J. Poinsot, D. C. Haworth, N. Darabiha. Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows[J]. Journal of Fluid Mechanics 1994,281: 1-31.
    [176] ECHEKKI T, CHEN J H. Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures[J]. Combustion and Flame, 2003, 134(3): 169-191.
    [177] HILBERT R, THENIN D. Autoignition of turbulent non-premixed flames investigated using direct numerical simulations [J]. Combustion and Flame, 2002, 128(1-2): 22-37.
    [178] SM De Bruyn Kops. Numerical simulation of non-premixed turbulent combustion[J]. University of Washington, 1999: 205.
    [179]ELETCHER E A.Hydrogen energy news & views[J].International Journal of Hydrogen Energy,1983,8:833-835.
    [180]毛宗强.氢能及其近期应用前景[J].科技导报,2005.2:36-40.
    [181]肖养田.未来的能源——氢气[J].发明与革新,2002.4:28-29.
    [182]BALE C W,PELTON A D,THOMPSON W T.F~*A~*C~*T 2.1-user mannual[CP/DK][J].Ontario:Royal Military College,1996.
    [183]KEE R J,RUPLEY F M,MEEKS E,et al.Chemkin-Ⅲ:A fortran chemical kinetics package for the analysis of gas phase chemical kinetics[CP][J].SAND 96-8216,1996.
    [184]BLITZ H,PILLING.Sulphur mechanism extension to the Leeds methane oxidation mechanism[EB/OL].http://garfield.chem.elte.hu/combustion/mechanisms/LeedsSOx50.dat,2002-09-12[J].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700