用户名: 密码: 验证码:
上海环球金融中心大厦基于性能的抗震设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的抗震设计(PBSD)是90年代初美、日等国家的学者根据震害调查提出的新概念,也是工程抗震发展史上的一个重要里程碑。基于性能的抗震设计的目的是将所设计的结构在指定强度地震下的破损状态及其造成的经济损失、人员伤亡等控制在预期的目标范围内,使结构震后的功能得以延续、维持。
     建设中的上海环球金融中心大厦101层,结构高度492m,高宽比8.49,拟建成为世界上结构主体最高的建筑物。根据我国《高层建筑混凝土结构技术规程》(JGJ3-2002),该建筑总高超过了型钢混凝土框架—钢筋混凝土筒体最大高度190m的限值,高宽比超过了设防烈度7度地区为7的限值。大厦采用了三重结构体系抵抗水平荷载,它们由巨型框架、钢筋混凝土核心筒及构成核心筒和巨型型钢混凝土柱之间相互作用的伸臂桁架组成。核心简竖向不连续,由低筒、中筒和上部筒三部分组成。位于结构平面角部的巨型柱B在42层以上开始分叉形成倾斜曲面,巨型斜撑只设置在垂直立面上,且采用单向支撑。
     本文以该大厦的结构体系为研究对象,采用基于性能的抗震设计思想,在综合考虑场地特征、结构功能与重要性、投资与效益等因素的前提下,提出了抗震性能目标,并通过以下的理论和试验研究检验了大厦的结构体系是否满足性能目标的要求:
     首先进行了1:50比例的微粒混凝土整体模型的地震模拟振动台试验,分别按照7度多遇、基本、罕遇和8度罕遇的顺序分四个阶段由台面依次输入El Centro波、San Fernando波和SHW2波。地震波持续时间按相似关系压缩为原地震波的1/11.18,输入方向分为双向或单向水平输入。在不同水准地震波输入前后,均对模型进行白噪声扫频,以测量结构的自振频率、振型和阻尼比等动力特征参数。根据动力相似原理计算出原型结构动力特性和动力反应,整体结构振动台试验研究表明:结构满足抗震性能目标的要求。
     利用大型通用有限元软件ANSYS进行了整体结构在7度多遇、基本和罕遇地震作用下的数值计算分析,并将理论值和试验数据进行了对比,验证了分析的可靠性。分析得到了各水准地震作用下结构的动力特性、结构的位移反应和核心筒壁的应力分布,计算结果表明结构能够满足抗震设防目标的要求。
     利用同济大学结构工程与防灾研究所开发的高层结构弹塑性时程软件TBNLDA,进行了该大厦简化计算模型的弹塑性时程分析。首先将振动台试验模型进行了简化,简化模型仅考虑了主要的三重抗侧力结构体系,略去了支撑在巨型框架上的楼面钢柱和钢梁,将振动台试验的简化模型分析结果与试验结果作了对比分析。在此基础上进一步对原型结构进行了弹塑性时程分析,得到了结构在7度多遇、基本和罕遇以及8度罕遇地震作用下结构的动力特性和动力反应,分析结果检验了结构满足抗震设防目标的要求。
     利用巨型斜撑和带状桁架弦杆的关键节点的试验和计算研究结果,检验了关键节点能够满足抗震设防目标的要求。试件分纯钢骨和钢骨钢筋混凝土二类节点,试验采用静力反复加载,并利用有限元软件ANSYS对试件进行了7度多遇、基本和罕遇地震作用下的静力分析和屈曲分析。
     利用大型通用有限元软件ANSYS子模型技术,建立了56~61层的局部模型,对低筒向中筒转换进行厚板转换的57~60层进行了精细有限元分析,分析了转换厚楼板和核心筒壁的应力和位移分布特征,检验了结构转换楼层能够满足抗震设防目标的要求。
     试验与理论分析起到了验证与相互补充的作用。综合研究表明:上海环球金融中心结构能够满足不同地震水准作用下的抗震性能目标
The theory of performance-based seismic design (PBSD) was proposed by American and Japanese researchers in the early 1990's, which is a milestone in the modern seismic design procedures. The objective of performance-based seismic design is to control structural damage, economic loss and casualties under designable extent, moreover, to maintain the buildings functional after earthquake.
    The height of 101-storey Shanghai World Financial Center Tower (SHWFC) is 492m above ground making it possible the tallest building in the world when completed, and its aspect ratio of height to width is 8.49. According to Technical specifications for concrete structures of tall building (JGJ3-2002), the height of the building clearly exceeds the stipulated maximum height of 190m for a composite frame/reinforced concrete core building. The aspect ratio also exceeds the stipulated limit of 7 for a basic seismic intensity of 7. Three parallel structural systems being composed of mega-structure, the reinforced concrete and braced steel services core and the outrigger trusses, are employed to resist lateral loads. The reinforced concrete consisting of lower core, middle core and upper core are not continuous vertically. Instead of providing braced frames at the exterior curved surfaces of the building, single-diagonal system is adopted on the vertical faces in the mega-structure frame.
    Considering the properties of site soil, the building functions and importance, the investment and profit, the seismic design objectives were firstly proposed. A series of experimental and analytical researches were carried on the SHWFC adopted the theory of performance-based seismic design to verify that the structural system meets the seismic design objectives. The main contests are as follows:
    A scaled model was made and tested on shaking table. The test was carried out in four phases representing frequent, basic and seldom occurrences of design intensity 7, and seldom occurrence of design intensity 8, respectively. 2-D waves of El Centro, San Fernando and 1-D wave of Shanghai artificial accelerogram (SHW2) were selected. The time scale was 1/11.18. After different series of ground acceleration were inputted, the white noise was scanned to determine the natural frequencies and the damping ratios of the model structure. According to the similitude law, dynamic characteristics and responses of the prototype structure were calculated. The
     experimental results demonstrate that the structural system meets the seismic design objectives.
     A finite element analysis was carded on SHWFC in the phases representing frequent, basic and seldom occurrences of design intensity 7 using the program of ANSYS. The analytical results were compared with the experimental ones to verify the accuracies. Dynamic characteristics, responses of the prototype structure and stress contour of R.C. core were obtained. The finite element analytical results demonstrate that the structural system meets the seismic design objectives.
     A nonlinear time history analysis was carried on the simplified structural system using TBNLDA, which was developed by State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University. The simplified model was composed of three parallel lateral resistant structural system and perimeter steel columns and beams were omitted. The analytical results were compared with ones from shaking table test. The prototype structure was analyzed to study its dynamic characteristics and responses under the different earthquakes of frequent, basic, seldom occurrences of design intensity 7 and seldom occurrences of design intensity 8. The nonlinear time history analytical results demonstrate that the structural system meets the seismic design objectives.
     The analytical and experimental results were adopted to Verify that the key joints at the connection of mega-column, mega diagonals and belt truss meet the seismic design objectives. Steel specimens and concrete specimens with steel embedded were tested by adopting cyclic reverse loads. Finite element software ANSYS was used to analyze the static stress and yielding distribution.
     A refined finite element analysis was made on transfer stories from floor 56 to floor 61 using sub-model functions of ANSYS. The characteristics of stress and displacement contours for transfer slabs and R. C. core were analyzed. The results show that the responses of transfer stories meet the seismic design objectives.
     Experimental and analytical studies verify and complement each other, and overall results demonstrate that SHWFC meets the seismic design objectives under different earthquake levels.
引文
[1] 龚思礼.建筑抗震设计.中国建筑工业出版社,北京,1994.
    [2] 小谷俊介.日本基于性能结构抗震设计方法的发展.建筑结构,2000,30(6):3-9.
    [3] Ghobarah, Ahmed. Performance-based design in earthquake engineering: state of development. Engineering Structures, 2001, 23 (8): 878-884.
    [4] 王亚勇.我国2000年抗震设计模式展望[J].建筑结构,1999,29(6):13-19.
    [5] Chandler A M, Lam N T K. Performance-based design in earthquake Engineering: a multi-disciplinary review [J]. Engineering Structures, 2001, 23:1525-1543.
    [6] 张敏政.近年地震震害的几点启示[J].工程抗震,2001,(1):11-15.
    [7] 胡聿贤.地震工程学.北京:地震出版社,1988.
    [8] M. A. Sozen, review of earthquake response of RC buildings with a view to drift control. State of the Art in earthquake Engineering, 1981, Ankara, 383-418.
    [9] Wolfgram, C., Rothe, D., Wilson, P., Sozen, M. Earthquake simulation tests of three one-tenth scale models.Publication SP -American Concrete Institute, 1985, 347-373.
    [10] Pan, Austin; Moehle, Jack P., Lateral displacement ductility of reinforced concrete fiat plates. ACI Structural Journal, 1989, 86(3): 250-258.
    [11] Moehle J P. Displacement Based deign of RC structure [C]. Eerva A. Proceedings of the 10th World Conference on Earthquake Engineering (WCEE), Mexico, 1992: 724-732.
    [12] Kowalsky MJ, Priestley MJN, MacRae GA. Displacement-based design of RC bridge columns in seismic regions. Earthquake Engineering and Structural Dynamics,1995, 24(12): 1623-1643.
    [13] Caivi GM, Kingsley GR. Displacement based seismic design of multi-degree-of-freedom bridge structures. Earthquake Engineering and Structural Dynamics, 1995, 24(9): 1247-1266.
    [14] Guikar P, Sozen M. Inelastic response of reinforced concrete structures to earthquakes motions. ACI.Structural Journal, 1974, 71 (12): 604-610.
    [15] Shibata A, Sozen M. Substitute structure method for seismic design in RC. Journal of the Structural Division ASCE, 1976, 102 (1): 1-18.
    [16] Applied Technology Council. A critical review of current approaches to earthquake-resistant design [R]. ATC- 34, 1995:72-81
    [17] Applied Technology Council. Seismic evaluation and retrofit of existing concrete building[R]. ATC-40. Redwood City (CA), 1996:159-268
    [18] Federal Emergency Management Agency. NEHRP guidelines for the seismic rehabilitation of buildings [R]. FEMA 273. FEMA 274. Commentary. Washington (DC), 1996: 247-255.
    [19] 王亚勇.我国2000年工程抗震设计模式规范基本问题研究综述.建筑结构学报,2000,21(1):2-4.
    [20] 谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态,2003,298(10):1-8.
    [21] Priestley M. J., Kowalsky M. J. Direction displacement-based seismic design of conerete building. [J]. Bulletin of the Zealand Society for Earthquake Engineering, 2000, 33 (4): 421-444.
    [22] Bertero R D, Bertero V V. Performance-based seismic Engineering: the need for a reliable conceptual comprehensive approach [J]. Earthquake Engineering and Structrual Dymunics, 2002, 31: 627-652.
    [23] A Framework for Performance-based Engineering [R]. SEAOC Vision 2000. Structural Engineering Association of California, 1995:276-284
    [24] Priestley M J N. Performance based seismic design. 12th World Conference on Earthquake Engineering (12WCEE), Auckland, New Zealand, 2000, Paper No. 2831.
    [25] JGJ3-2002《高层建筑混凝土结构技术规程》[S],北京:中国建筑出版社,2002
    [26] 朱伯龙 结构抗震试验[M] 北京:地震出版社,1989.
    [27] DGJ08-9-2003《建筑抗震设计规程》[S],上海:上海工程标准定额管理站,2003
    [28] 白葳,喻海良.通用有限元分析ANSYS 8.0基础教程.北京:清华大学出版社.2005.
    [29] E.C. Mojekwu. Nonlinear Analysis of Reinforced Concrete Frame. 1986
    [30] R.帕克,T.波利.钢筋混凝土结构.重庆:重庆大学出版社,1985
    [31] 吕西林,金国芳,吴晓涵,钢筋混凝土结构非线性有限元理论与应用,上海:同济大学出版社,1997
    [32] 张汝清,詹先义,非线性有限元分析,重庆:重庆大学出版社,1990
    [33] Bicanic N., Mang H., Computer-Aided Analysis and Design of Concrete Structures, Pineridge Press, Swanses, 1990
    [34] Agrawal A.B., Jaeger L.G., Mufti A. A., Response of RC shear wall under ground motions[J]. ASCE, J. Struct. Div., 1981: 395~411.
    [35] 叶献国,基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟,土木工程学报,1998(8):3~13
    [36] Smith, K.G. Innovation in earthquake resistant concrete structure design philosophies: a century of progress since Hennebique's patent. Engineering Structures, 2001, 23 (1): 72-81.
    [37] 钱江,吕西林.上海环球金融中心结构抗震计算分析报告.同济大学结构工程与防灾研究所.2004.
    [38] 陈以一,胡敬礼.上海环球金融中心大厦节点试验研究报告.同济大学建筑工程系.2004.
    [39] 马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报,2002,(12):1429-1434.
    [40] 杨志勇,何若全.高层钢结构弹塑性抗震分析静动力综合法[J].建筑结构学报,2003,24(3):25-32.
    [41] 江梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究[J].土木工程学报,2003,36(11):44-49.
    [42] Jinkoo Kim, Hyunhoon Choi, Kyung2Won Min. Performance2Based design of added viscous dampers using capacity spectrum method [J]. Journal of Earthqnake Engineering, 2003, 7 (1): 1-24.
    [43] Lin Y. Y, Chang K C. An improved capacity spectrum method for ATC- 40 [J]. Earthquake Engineering and Structural Dynamics, 2003, 32:2013-2025.
    [44] Ghobmh A. Performance2based design in Earthquake Engineering: state of development [J]. Engineering Structures, 2001, 23: 878-884.
    [45] Yang Pu et al. A Study on Improvement of Ptmhover Analysis [C]. 12 WCEE(C), Auckland, New Zealand, 2000: 468-475.
    [46] Xilin Lu, Huiyun Zhang, et al., Shaking table testing of a U-shaped plan building model [J], Canadian Journal of Civil Engineering, 1999, 26:746-759
    [47] 黄世敏,魏琏.等高层建筑中水平加强最优位置的研究[J].建筑科学,2003,19(2):4-6
    [48] 程绍革,刘经伟.上海仙乐斯广场模型振动台试验[J].建筑科学,1998,14(5):8-13
    [49] Xilin Lu. Application of identification methodology to shaking table tests on reinforced concrete columns [J]. Engineering Structural995, 17(7): 505-511.
    [50] Xilin Lu, Qiang Zhou. Dynamic analysis method of a combined energy dissipation system and its experimental verification [J]. Earthquake Engineering & Structural Dynamics. 2002,31(6): 1251-1265.
    [51] 吕西林,邹昀.上海环球金融中心大厦结构模型振动台抗震试验[J].地震工程与工种振动.2004,24(3):57-63.
    [52] 邹昀,吕西林.上海环球金融中心大厦振动台抗震试验方案研究[J].地震工程与工程振动.2005,Vol.25(4):54-59
    [53] 朱杰江,吕西林,邹昀.海环球金融中心模型结构振动台试验与理论分析的对比研究.土木工程学报.2005,38(10):18-26
    [54] 李国强,丁翔等,高层建筑钢—混凝土混合结构分区耦合分析模型及开裂层位移参数分析.建筑结构,2002,(2):21-25:
    [55] 李国强,姜丽人等,高层建筑钢-混凝土混合结构简化分析模型,建筑结构,1999,(6):12-14;
    [56] 李国强,周向明,高层建筑钢-混凝土混合结构模型模拟地震振动台试验研究,建筑结构学报,2001,(4):2-7;
    [57] 姜丽人,高层建筑钢-混凝土混合结构地震反应简化分析模型及位移参数分析,同济大学硕士论文,1998;
    [58] 周定松,钢筋混凝土框架结构基于性能的抗震设计方法,同济大学博士论文,2004;
    [59] 李检保,SRC框架—核心筒高层混合结构抗震性能试验及非线性分析,同济大学博士论文,2006;
    [60] 龚治国,复杂体型框架—核心筒结构抗震性能和减振研究,同济大学博士论文,2006;
    [61] 龚炳年,郝锐坤,钢-混凝土混合结构模型动力特性的试验研究,建筑结构学报,1995,(6):37-42;
    [62] 龚炳年,郝锐坤,钢-混凝土混合结构模型试验研究,建筑科学,1994,(1):10-14;
    [63] 程绍革,钢-混凝土筒混合结构弹塑性反应分析及探讨,建筑结构,1998,(6):33-36;
    [64] Hiroyuki Kuribayashi, Design Example of Core-RC and Exterior-Steel-Frame Combined High-rise Building, Proceedings of 6th ASCCS conference, Los Angeles, USA, March 22-24,2000:55-93;
    [65] 周向明,李国强等,高层钢—混凝土混合结构弹塑性地震反应简化分析模型,建筑结构,2002,(5):26-30;
    [66] 丁翔,高层建筑钢.混凝土混合结构非线形抗震性能理论与试验研究,同济大学博士论文,2001;
    [67] 李俊兰,钢筋混凝土核心简体抗震性能研究,博士论文,同济大学,2002:
    [68] 周鲁敏,劲性钢筋混凝土开洞低剪力墙抗震性能和设计方法的研究,硕士论文,东南大学,2002。
    [69] 包世华,新编高层建筑结构,中国水利水电出版社,1998。
    [70] 多层及高层建筑结构空间有限元分析与设计软件SATWE,中国建筑科学研究院PKPMCAD工程部,2002。
    [80] 李云贵,邵弘,薄壁杆件理论在高层结构分析中的应用,建筑结构,1999,(2):8-10;
    [81] 姬守中,高层钢筋混凝土框—剪结构在地震作用下的弹塑性时程反应分析,博士论文,同济大学,2002;
    [82] 沈蒲生,剪力墙结构非线性地震反应分析,土木工程学报,2003,(5),11-16;
    [83] 汪梦蒲,钢筋混凝土高层结构非线性地震反应分析现状,世界地震工程,1998,(2):1-8;
    [84] 汪梦甫,钢筋混凝土剪力墙单元非线性分析模型及其应用,力学季刊,2002,(1);
    [85] 钱稼茹,吕文,基于位移延性的剪力墙抗震设计,建筑结构学报,1999,(3):42-49;
    [86] 袁志芬,王正中等,混凝土非线性本构模型的构建,西北农林科技大学,2001,(3):
    [87] N.K. Oztoruna, E. Citipitioglu b, N. Akkas, Three-dimensional finite element analysis of shear wall Buildings, Computers and Structures , 1998, Vol. 68: 41-55;
    [88] 郭子雄,基于变形的抗震设计理论及应用研究,博士论文,同济大学,2000;
    [89] 周颖,振动台模型试验研究大纲,同济大学土木工程防灾国家重点实验室,2004;
    [90] 蒋利学,用广义剪切变形参数分析超高层混凝土结构的层间变形,建筑结构,2001,(1):7-10;
    [91] 蒋利学,俞伟根,钢筋混凝土超高层建筑层间位移的模型试验研究,建筑结构,2001,(1):3-6;
    [92] 杜赞华,宋骥,连梁对RC双肢剪力墙抗震性能影响初探,石家庄铁道学院学报,2002,(1):49-51;
    [93] 陈兰,梁启智,加劲梁对双肢剪力墙结构的地震反应影响分析,华南理工大学学报,2000,(4):80-85;
    [94] 梁启智,韩小雷,低周反复荷载作用下刚性连梁及普通连梁性能,华南理工大学学报,1995,(1):27-33;
    [95] 刘建新,框架—剪力墙刚接结构连梁的分析和设计,工业建筑,1997,(7):20-25;
    [96] 吕西林,李学平,超限高层建筑工程抗震设计中的若干问题,建筑结构学报,2002,(2):13—18;
    [97] Sheikh, S.A. A Comparative Study of Confinement Models[J]. ACI J,1982:296-306
    [98] 孙飞飞.高层钢筋混凝土空间框架结构地震反应分析的仿真分析[D].1999.2
    [99] Murat Saatcioglu and Salim R. Razvi. Strength and Ductility of Confined Concrete[J]. J. of Struc. Engr., ASCE, 118(6) ,1992:1590-1607
    [100] Filippou, F. C. Popor, E. P., and Bertero, V. V. (1983). Effects of Bond Deterioration on Hysteretic Behavior of Reinforce Concrete Joint. UCB/ERC-83/19.
    [101] Niwa, J., Chou, 1. and Okamura, H.(1985). Nonlinear Spring Element for SWain-Slip Relationship of a Reformed Bar, Finite Element Analysis of Reinforced Concrete Structures. Ed. By Meyer, C. and Okamura, H.:374-383
    [102] Maw Shyong Sheu. A Grid Model for Prediction of the Monotonic and Hysteretic Behavior of Reinforced Concrete Slab-Column Connections Transferring Moments [D]. University of Washington, 1976
    [103] 王选民,邹银生.复杂高层建筑结构地震作用的计算[J].建筑结构学报,1998,Vol.19.(2):60-66,
    [104] 梁启智等.框架结构非线性动力时程分析的一个方法[J].工程力学,7(2),1990.5:62-69;
    [105] 刘南科等.钢筋混凝土框架的非线性全过程分析[J].土木工程学报,23(4),1990.11:2-13
    [106] 李田,吴学敏.高层及复杂结构多维时程弹塑性动力分析[J].建筑结构学报,13(6),1992.12:2-10
    [107] 邹银生,王建平等.钢筋混凝土框架—剪力墙结构非线性地震反应分析[J].湖南大学学报,20(1),1993.2:31-41
    [108] 梁启智等.框架结构非线性动力时程分析的一个方法[J].工程力学,7(2),1990.5:62-69
    [109] 李田,吴学敏.高层及复杂结构多维时程弹塑性动力分析[J].建筑结构学报,13(6),1992.12:2-10
    [110] 邹银生,王建平等.钢筋混凝土框架—剪力墙结构非线性地震反应分析[J].湖南大学学报,20(1),1993.2:31-41
    [111] 魏琏.地震作用下建筑结构变形计算方法[J].建筑结构学报,15(2),1994.4:2-10
    [112] Sashi K. Kunnath, et al.. ,Analytical Modeling of Inelastic Seismic Response of R/C Structures[J]. Journal of Structural Engineering, Vol. 116, No. 4, April 1990:996-1017
    [113] Steven M. Vukazich, et al.. Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis[J]. Journal of Structural Engineering, Vol. 122, No. 12, December 1996: 1418-1426
    [114] Ananth Ramaswamy, et al.. Postcracking Formulation for Analysis of RC Structures Based on Secant Stiffness[J]. Journal of Engineering Mechanics, Vol. 120, No. 12, December 1994:2621-2640
    [115] Anthony G. Gillies,et al.. Post-Elastic Dynamics of Three-Dimensional Frames[J]. Journal of the Structural Division, Vol. 107, No. 8, August 1981:1485-1501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700