用户名: 密码: 验证码:
往复式热循环多孔介质燃烧系统特性研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源消费日益增长和环境意识的提高,如何实现气体燃料,特别是低热值稀薄气体燃料的高效清洁利用具有重要意义。本论文依托国家863计划(2006AA052223)与浙江省自然科学基金资助项目(Y506071),围绕着低热值稀薄气体燃料高效清洁燃烧,依据多孔介质“超焓燃烧”基本原理,采用试验与数值模拟相结合的方法,针对浙江大学提出的新型往复式热循环(渐变)多孔介质燃烧系统开展研究。论文工作主要包括以下部分:
     1.研究往复式热循环(渐变)多孔介质燃烧系统的流动特性,主要包括压力波动和阻力损失特性。详细分析了各主要参数的影响,发现系统两侧压力,各段阻力损失呈周期性拟矩形波变化,具有明显的周期互换性;系统稳定运行存在最小换向稳定时间,随气体流量(空截面风速)增大变长,受多孔介质孔径影响较小。压力波动与阻力损失随二次风比增大而增大,二次风比不宜大于0.5;随空截面流速增加而增加,大体呈抛物线关系;渐变型组合结构有利于降低流动阻力损失和压力波动;得到燃烧器和蓄热器内阻力损失经验关联式系数。在此基础上,考察了高温空气模拟气流产生的可行性与产生量的影响因素,指出一次风量增加有利于高温空气模拟气流产生,二次风比大于等于1时,模拟气流产生可行,值越大,可行性越好;多孔介质孔径对高温空气模拟气流产生和产生量影响较小,渐变型结构组合有利于分流比增大。从分流比角度,高温空气模拟气流受一次风量影响较小,二次风比增大逐渐减小。
     2.研究往复式热循环(渐变)多孔介质燃烧系统的燃烧特性与动态特性。详细分析低热值稀薄气体燃烧时,换向半周期,当量比,二次风比工况参数对系统温度分布,污染物排放,及燃烧效率的影响。揭示了系统各点温度、污染物产生过程的周期性动态演变过程;指出系统温度关于中心位置对称分布,呈“M”型,距离火焰位置越近,温度波动幅值越大。指出半周期较小时,系统容易出现“双温度峰值”,随半周期增大,燃烧侧的燃烧温度峰值先增大后降低,最高温度出现在40s左右;随当量比增大,系统温度整体水平升高,燃烧火焰向上游传播;随二次风比增大,燃烧侧的燃烧温度峰值先增大后降低;燃烧火焰向上游传播,温度峰值位置向上游移动。CO浓度基本在100ppm以下,NO浓度小于20ppm,并从定性方面与Hoffmann和Fabinao等人的试验结果进行对比;系统燃烧效率非常高,基本保持在99%左右,验证系统高效清洁燃烧低热值稀薄气体燃料可行性。
     3.针对往复式热循环(渐变)多孔介质燃烧系统,建立了往复式热循环多孔介质燃烧系统的一维非稳态“双温度”模型。在分析点火位置对系统燃烧稳定演变过程,以及燃烧稳定时温度分布影响的基础上,并通过相应工况下的试验结果对数值模拟结果进行验证;通过研究往复式热循环多孔介质燃烧系统温度分布特性发现,各换向半周期,燃气热值(当量比),二次风比,以及雷诺数对系统温度分布和燃烧火焰位置的影响规律与试验分析结果规律相吻合,给出系统理论贫燃极限φ=0.125,燃气热值为300KJ/Nm~3;通过分析超焓燃烧特性发现,相对超焓量,随换向半周期增大先逐渐增加后逐渐下降,影响相对较小:随燃气热值增大逐渐迅速降低,呈现出双曲线变化关系,是主要影响因素;随二次风比增加,在α=0.2较高,随后逐渐降低,影响相对较小;燃烧效率与试验结果相吻合,验证了模型有效性和准确性,对系统的优化设计和性能提高具有重要的指导意义。
     4.研究空隙率分段分布,渐变分布,及空隙率渐变分布下半周期,无量纲热值,雷诺数等工况参数对传统往复多孔介质燃烧器温度分布与“超焓燃烧”特性的影响。在前面研究基础上,建立非稳态气固“双温度”模型,采用无量纲形式,首次分析了点火燃烧稳定演变过程,及周期间动态变化特性,并与热循环燃烧系统动态变化特性进行对照,揭示了周期性换向燃烧的动态演变过程。指出在燃烧区有热损失时,燃烧器内的温度分布随着各工况参数的变化基本上都是由倒“V型”向“M型”演变;无热量损失时,温度分布由倒“V型”向“梯形”演变,燃烧区域相应的逐渐拓宽;指出空隙率渐变分布时,贫燃极限可拓宽到当量比为0.125(H_0=0.8),无热量损失时为0.02(H_0=0.12):分析了各工况参数对往复多孔介质燃烧器的相对超焓量,燃烧效率,及燃烧火焰位置等“超焓燃烧”特性的影响,指出“超焓燃烧”受燃气热值(当量比)影响最大,随热值增大(当量比)逐渐降低,存在两个燃烧火焰区,燃烧效率非常高,保持在99%左右。
     论文研究工作表明,利用新型往复式热循环(渐变)多孔介质燃烧系统实现低热值稀薄气体燃料高效清洁利用完全可行;在现有试验条件下可实现φ=0.2预混燃气的稳定燃烧,对应燃气热值为620KJ/Nm~3,数值模拟确定理论贫燃极限φ=0.125,燃气热值为300KJ/Nm~3;燃烧器内采用空隙率分段分布、渐变分布时的燃烧特性优于均匀分布,贫燃极限进一步拓宽。研究结果对进一步研究往复式流动下多孔介质燃烧技术提供重要理论依据。
With increasing of the energy consumption and environmental protection, it is significantly important to make the utilization of fuel gases effectively and cleanly, especially for the low heat valve fuel gases. With the support of the National High-tech Research and Development Program (863, 2006AA05Z223) and the Natural Science Foundation of Zhejiang Province (Y506071), based on the principle of porous media combustion, a systematic research on a novel reciprocal porous media combustion system with heat recirculation (RPMCSHR) was investigated by the methods of experiment and numerical simulation for the combustion of low heat value fuel gases effectively and cleanly.
     Firstly, the characteristic of pressure dynamic, flow resistance in the RPMCSHR was studied experimentally. The effects of reciprocating half-period, superficial velocities, secondary air ratio and porous medium structure on the pressure dynamic distribution were investigated in detail. The results showed that the flow resistance and dynamic pressure varied periodically with rectangle waves when the system operated steadily and periodically. A minimum reciprocating half-period is needed to help the system operation steadily, which is more influenced by superficial velocities than porous media diameter. The results also found the ratio of secondary air and superficial velocity have strong influence on the flow resistance, pressure dynamic, while the half-period and pore size of porous media have relative small effects. The pressure dynamic and flow resistance increase rapidly with increase of the secondary air ratio and superficial velocities. Application of a gradually-varied porous media structure is good to decrease the pressure drop, and pressure dynamic of the system. Empirical correlation coefficients were given based on Ergun equation and test data for different combination of porous media.
     In addition, the influence of primary air, secondary air ratio, and porous media structure on the producing characteristics of the simulating high temperature air was investigated in detail. Results showed the simulating flow of high temperature air can be obtained when the secondary air ratio is no less than 1. The increase in primary air and secondary air ratio will conduce to the producing of simulating high temperature air, and increase the absolute amount of simulating high temperature air. However, the split ratio is little influenced by primary air, and decreases with increasing of the secondary air ratio. It was also found the gradually-varied porous media in the combustor is the better structure on increasing the split ratio than the other structure combinations.
     Secondly, the temperature profiles and emission characteristics of the system at one period and between periods were firstly experimentally investigated. The results show the temperature of any position in the system and emissions varied periodically while the system operated steadily and periodically, which indicates the dynamic process of switching flow combustion. Two temperature peak zones exist in the system, and the temperature distribution in the system has an "M" shape. The nearer to the combustion flame, the larger temperature dynamic is. For the low heat valve gases combustion, the effects of half periods, secondary air ration, and equivalent ratio on the temperature profiles, NO and CO emissions were also experimentally tested and discussed. Two temperature peaks come forth easily at small half period. The temperature in combustion zone firstly increases, and then decreases with increase of half periods and secondary air ratio, and increase with increase equivalent ratio. The flame is gradually propagated to the upstream of the combustor with the increase of secondary air ratio and equivalent ratio. Along with highly perfect combustion efficiency, Low emission levels were obtained and well compared with the experimental results of Hoffmann and Fabinao. The CO emission is mostly below 100ppm, and NO emission is below 20ppm. This sufficiently proves the feasibility of low heat valve gases combustion in the system.
     Thirdly, based on the former research, a dynamic "two temperature" model was founded according to the symmetrical structure and flowing periodically of the RPMCSHR. The ignition location has small influence on the temperature, flame location, and maximum temperature when the combustion come to steady. The simulation results were well agreement with the corresponding experimental results. According to the experimental range of RPMCSHR, the effect of half-period, dimensionless heat valve, and Reynolds on the temperature distribution and "excess enthalpy" were further investigated in detail. The simulation conclusions were also compared by the corresponding experimental results, and a good agreement was obtained.The theoretical flammable limit is also obtained by the model with a equivalence ratio ofφ=0.125 (fuel heat value of 300KJ/Nm3 ) The relative value of excess enthalpy was mostly influenced by fuel gas heat value with a relation of hyperbolic curve. The combustion efficiency of simulation well agrees with the experimental results. The effective of the model was conformed, which will further provide a good reference to the optimization and improvement of the system.
     Forthly, directed against the conventional reciprocal porous media combustion (RSCP), the unsteady "two temperature model" was also founded to investigate the influence of porosity layer distributions and gradually varied distributions on the combustion characteristics. The ignition stabilization of the process in (RSCP) was firstly analyzed by the method of finite volume methods with dimensionless form, in addition to the dynamic characteristics between periods, and compared with the experimental results of the dynamic characteristic in RPMCSHR. The principle of producing the "excess enthalpy combustion" was explained by analyzing the temperature between the "solid and gases". The results showed that when the operating parametric varies, the temperature distribution in the combustor varies from the reversal "V" to "M" under the condition of heat loss in combustion area, or varies from the reversal "V" to trapezium without the heat loss. When the temperature becomes the reverse "V", the system is at the limitation of combustion. Application of a gradually-varied porous media structure is good to further extend the lean combustion limit. It can be obtained withφ=0.125 under the condition of heat loss, orφ= 0.02 without heat loss. In the end, the effects of parameters on the relative excess enthalpy, combustion efficiency, and combustion flame distance were also analyzed. The relative value of excess enthalpy is gradually decreasing with increase of the fuel gas heat value- a major factor, and the high combustion efficiency is obtained.
     It is obviously that the combustion of low heat value gas in the novel RPMCSHR is completely feasible with a high efficiency and low emission. Under the existing experimental condition, the steady combustion can be extended to an equivalence ratio of 0.2, corresponding to the heat value of 620KJ/Nm~3. the theoretical lean flammable limit with an equivalence ratio of 0.125 is also obtained by the numerical simulation. The influence of porosity layers and gradually varied distribution on combustion characteristics is better than the uniform distribution, and the lean flammable limit is further extended. The paper results will provide a good reference on further study of the porous media combustion with a reciprocal flow.
引文
[1].BP.BP statistical review of world energy,http://www.bp.com/centres/energy,2007.
    [2].敖雪桔,刘秀芝.谈环境污染问题.黑龙江环境通报,2000,24(2):47-48.
    [3].国家环保局.全国环境质量报告书.1996.
    [4].张位平.天然气发展及中国市场展望.石油企业管理,2002,(8):70-72.
    [5].王新新.中国的能源安全与能源战略选择.中国科技论坛,2007,(1):17-21.
    [6].李景明,李东旭,李小军.中国石油天然气勘探开发形势与展望.天然气工业,2007,27(2):1-6.
    [7].周总瑛,唐跃刚.中国天然气资源特点及其在能源结构中的地位分析.中国矿业,2004,13(6):17-20.
    [8].杨建红.中国天然气市场发展形势.当代石油石化,2005,(10):32-37.
    [9].唐炼.世界能源供需现状与发展趋势.国际石油经济,2005,13(1):30-33.
    [10].张静.天然气与中国能源发展前景.中国石油和化工经济分析,2007.(12):20-24.
    [11].国家发改委.节能中长期专项规划,2004.
    [12].娄马宝.低热值气体燃料(高炉煤气)的利用.燃气轮机技术,2000,13(3):16-18.
    [13].赵黛青,夏亮,何立波.低热值燃料稳定燃烧的研究现状与进展.世界科技研究与发展,2005,27(5):33-39.
    [14].戴彦德.然气资源合理采集 科学利用空排燃气.中国节能服务导刊,2005,(7):25-27.
    [15].姜学峰.动态信息(1).道路交通与安全,2005,5(3):42-46.
    [16].Weinberg F..Combustion temperature:The future? Nature,1971,(210):223-239.
    [17].吴学成,程乐鸣,王恩宇.多孔介质中的预混燃烧发展现状.电站系统工程,2003,19(1):37-41.
    [18].Weinberg F..Heat -recalculating burners:principles and some recent development.Combustion Science and Technology,1996,121(1):3-22.
    [19].Hsu,P.-F.,Evans W.D.,Howell J.R..Experimental and numerical study of premixed combustion within No homogeneous porous ceramics.Combustion Science and Technology,1993,90(2):149-172.
    [20].Wang,E.-Y.,Cheng L-M,Luo Z-Y,Xing S-X,Cen K-F.Stability of flames in the gradually-varied porous media.Proceedings of the International Conference on Energy and the Environment,2003,977-982.
    [21].Tseng C-J,Li C-H.Thermally-enhanced combustion in a porous medium burner.Transactions of the Chinese Institute of Engineers,Series C,2001,22(3):217-224.
    [22].吕兆华,Matt R D.多孔泡沫陶瓷中预混火焰燃烧速率的试验研究.燃烧科学与技术,1995,1(2):129-134.
    [23].Diamantis D.J.,Mastorakos E.,Goussis D.A.Simulation of premixed combustion in porous media.Combustion Therory and Modelling,6(3):383-411.
    [24].Durst F.,Weclas M..A new type of internal combustion engine based on the porous medium combustion technique.Proceedings of the Institute Mechanical Engineers,Part D,Journal of Automobile Engineering.2001,215(1):63-81.
    [25].M(o|¨)βbauer S.,Picken(a|¨)cker O.,Picken(a|¨)cker K.,Trimis D..Application of the porous burner technology in energy andheat-engineering.The Fifth International Conference on Technologies and Combustion for a Clean Environment(Clean Air V),Lisbon,Portugal,1999,Ⅰ(Lecture 20,2):519-523.
    [26].Hayashi T.C.,Malico I.,Pereira J.F..Three-dimensional modeling of two-layer porous burner for household applications.Computers &Structures,2004,82(4):1543-1550.
    [27].Brenner G,Picken(a|¨)cker K,Picken(a|¨)cker O,Trimis D,Wawrzinek K,Weber T.Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media.Combustion and Flame,2000,123(1):201-213.
    [28].Howell J R,Hall M J,Ellzey J L.Combustion of Hydrocarbon Fuels Within Porous Inert Media.Progress of Energy Combustion Science,1996,22(2):121-145.
    [29].Trimis D.,DUrst F..Combustion in a porous media -advances and applications.Combustion Science and Technology,1996,121(1-6):153-168.
    [30].Mital R.,G.J.P.,Viskanta.A study of the structure of submerged reaction zone in porous ceramic radiant burners.Combustion and Flame,1997,111(2):175-184.
    [31].Malico I.,Zhou X.Y.,Pereira J.C.F..Two-demensional numerical study of combustion and pollutants formation in porous burner.Combustion Science and Technology,2000,152(13):57-79.
    [32].褚金华,程乐鸣,王恩宇,刑守祥,骆仲泱,岑可法.预混天然气在多孔介质燃烧器中的燃烧与传热.燃料化学学报,2005,33(2):166-170.
    [33].Commercial report.A new method of destroying organic pollutants in exhaust air.ADTEC Co.,Ltd.,1990.
    [34].解茂昭,杜礼明,孙文策.多孔介质中往复流动下超绝热燃烧技术的进展与前景[J].燃烧科学与技术,2002,8(6):520-524.
    [35].Bubnovich V.,Mario T..Analytical modelling of filtration combustion in inert porous media.Applied Thermal Engineering,2007,27(7):1144-1149.
    [36].Dobrego K.V.,Kozlov I.M.,Bubnovich V.I.,Rosas C.E..Dynamics of filtration combustion front perturbation in the tubular porous media burner.International Journal of Heat and Mass Transfer,2003,46(17):3279-3289.
    [37].Bubnovich V.I.,Zhdanok S.A.,Dobrego K.V..Analytical study of the combustion waves propagation under filtrationof methane-air mixture in a packed bed.International Journal of Heat and Mass Transfer,2006,49(15):2578-2586.
    [38].Soete D..Stability and propagation of combustion waves in inert porous media.Eleventh Symposium(International) on Combustion,the Combustion Institute,1967,559-566.
    [39].Zhdanok S.A.,Kennedy L.A.,koester G..Superadiabatic combustion of methane air mixture under filtration in a packed bed.Combustion and Flame,1995,110(2):221-231.
    [40].史俊瑞.多孔介质中预混气体超绝热燃烧机理及其火焰特性的研究.博士学位论文,大连,大连理工大学,2007.
    [41].Matros Y.S..Performance of catalytic processes under unsteady conditions.Chemical Engineering Science,1990,45(8):2097-2102.
    [42].Strots V.O.,Matros Y.S.,Bunimovich G.A..Periodically forced SO2 oxidation in CSTR.Chemical Engineering Science,1992,47(9-11):2701-2706.
    [43].Matros Y.S.,Noskov A.S.,Chumachenko V.A..Progress in reverse-process application to catalytic incineration problem.Chemical Engineering and Processing,1993,32(2):89-98.
    [44].Boreskov G.K.,Martros Y.S..Unsteady-state performace of heterogeneous catalytic reactions.Catalysis Reviews,Science and Engineering 1983,25(4):551-590.
    [45].Hoffmann J.G.,Echigo R.,Yoshida H.,Tada S..Experimental study on combustion in porous media with a reciprocating flow system.Combustion and Flame,1997,111(12):32-46.
    [46].郑祥波.多孔介质内往复流动下超绝热燃烧的实验和数值模拟研究,博士学位论文.大连理工大学,大连,2003.
    [47].Martos Y.S.,Boreskov G.K.,Noskov A.S..The decontamination of gases by unsteady-state catalytic method:Theory and Practice.Catalysis Today,1993,17(1-2):261-274.
    [48].Nieken U.,Kolios G.,Eigenberger G.A..Fixed-bed reactores wtih periods flow reversal:experimental results for catalytic combustion Catalysis Today,1994.20(2):335-350.
    [49].Matros Y.S.,Boreskov G.A..Control of volatile orgranic compounds by the catalytic reverse process.Chemical Engineering Science,1995,34(2):1630-1640.
    [50].Grigorii A.,Bunimovich,N.V.,Vemikovskaya,B.S.Ba.Y.S.M.Vadim O.Strots.SO2oxidation in a reverse-flow reactor:Influence of a vanadium catalyst dynamic properties.Chemical Engineering Science,1995,50(4):565-580.
    [51].袁渭康.工业反应过程大开发方法ⅡⅡ:工业废气催化燃烧器反应器的开发.石油化工,1994,23(3):181-186.
    [52].王辉,肖博文,袁渭康.菲稳态SO2转化器稳定性研究.化学工程,1997,25(4):26-29.
    [53].Hong Ruoyu,Xin Li,li Hongzhang.,li C-H..Modeling and simulation of SO_2 oxidation in a fixed-bed reactor with periodic flow reversal.Catalysis Today,1997,38(1):47-58.
    [54].Eigenberger G.A.,N.U..Catalytic combustion with periodic flow reversal Chemical Engineering Science,1988.43(8):2109-2115.
    [55].cittadini M.,Vanni M.,Barresi A.A.,Nleken U..Efficient design and scale-up reverse-flow catalytic combustors.AIDIC conference,1999,4:131-138.
    [56].cittadini M.,Vanni M.,barresi A.A.,N.V..Simplified procedure for design of catalytic combustors with periodic flow reversal.Chemical Engineering and Processing,2001,40(3):255-262.
    [57].Hanamura K.,Echigo R..Super adiabatic combustion in a porous medium.International Journal of Heat and Mass Transfer,1993,36(13):3201-3209.
    [58].Mare L.D.,Mihalik T.A.,m.Continillo G..Expperimental and numerical study of flammablitiy limits of gaseous mixtures in porous media.Experimental Thermal and Fluid Science,2000,21(1-3):117-213.
    [59].Echigo R.,Yoshida H.,TAWATA k.,TAda S..Sophisticated thermoelectric conversion devices of porous materials by superadiabatic combustion 12th international conference on thermoelectrics,Yokohama,1993,.Ⅵ(5.3).
    [60].Hoffmann J.G.,Echigo R.,Tada S.,Yoshida H..Analytical study on flame tabilization reciprocating combustion in porous media with high thermal conductivity 26th Symposium (international) on Combustion,1996,The Combustion Institute:2709-2716.
    [61].Hanamura K.,Kumano T..Thermophotovoltaic power generation by super-adiabatic combustion in porous quartz glass.Thermophotovoltaic generation of electricity:fifth conference on thermophotovoltaic generation of electricity,2003,653:111-120.
    [62].Hanamura K.,Kumano T.,Yuya I..Electric power generation by super-adiabatic combustion in thermoelectric porous element.Enegry,2005,30(2-4):347-357.
    [63].Futoshi K.,Tomida T.,Nakatani H..Development of a thermoelectric power generation system using reciprocating flow combustion in a porous FeSi2 element.Review of Science Instruments,2001,72(10):3996-3999.
    [64].Jugjai S.,Somjetlertcharoen A..Multimode heat transfer in cyclic flow reversal combustion in a porous medium.International Journal of Energy Research,1999,23(3):183-206.
    [65].Jugjai S..Experimental study on cyclic flow reversal combustion in a porous medium.Combustion Science and Technology,2001,163(1-6):245-260.
    [66].Jugjai S.,Wongveera S.,Teawchaiitiporn T.,Kalayarat L..The surface combustor-heater with cyslic flow reversal combustion.Experimental Thermal and Fluid Science,2001,25(3-4):183-192.
    [67].Jugjai S.,Sawananon A..The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank.Fuel,2004,83(17-18):2369-2379.
    [68].Fabiano C,Alexei V S..A reciprocal flow filtration combustion with embedded heat numerical study.Heat and Mass Transfer,2003,46(6):949-961.
    [69].Fabiano C.,William M.B.,Alesi V..Energy Extraction from a Porous Media Reciprocal Flow Burners with Embedded Heated Exchangers.Journal of Heat Transfer,2005,127(1):123-130.
    [70].杜礼明,解茂昭.预混气体在多孔介质中往复流动下超绝热燃烧的理论探讨.能源工程,2003,(5):6-11.
    [71].杜礼明,解茂昭,邓洋波.惰性多孔介质中预混合燃烧的研究进展.热能动力工程,2002,17(19):221-226.
    [72].郑祥波,解茂昭,刘宏升.多孔介质内往复流动下超绝热燃烧试验研究.燃烧科学与技术,2004,10(1):82-87.
    [73].郑祥波,解茂昭.多孔介质内预混超绝热燃烧的排放特性.大连理工大学学报,2004,44(3):392-397.
    [74].杜礼明,解茂昭.多孔介质的热物性对往复流动下超绝热火焰的影响.热能动力工程,2005,(2):148-152.
    [75].杜礼明,解茂昭.往复式多孔介质超绝热燃烧中辐射传热有限体积法.大连理工大学学报,2006,46(5):673-678.
    [76].杜礼明.稀薄预混气体在多孔介质中超绝热燃烧的研究.博士学位论文.大连理工大学,大连,2003.
    [77].马世虎,解茂昭,邓洋波.多孔介质往复流动燃烧的一维数值模拟.热能动力工程,2004,19(4):384-388.
    [78].史俊瑞,解茂昭,周磊.往复流多孔介质燃烧器的二维数值模拟与结构改进.燃烧科学与技术,2007,13(3):280-285.
    [79].岑可法,程乐鸣,骆仲泱,方梦祥,倪明江,施正伦,王勤辉,高翔,周劲松,王树荣,余春江.渐变型多孔介质燃烧器,中国,实用新型专利,ZL012260800[P].2001.
    [80].王恩宇,程乐鸣,吴学成,骆仲泱.渐变型多孔介质中预混燃烧实验研究.浙江大学学报(工学版),2002,36(6):685-689.
    [81].王恩宇,程乐鸣,骆仲泱,岑可法.渐变型多孔介质中预混燃烧温度分布实验.热科学与技术,2003,2(1):64-69.
    [82].王恩宇,程乐鸣,骆仲泱,倪明江,岑可法.天然气在渐变型多孔介质中的预混燃烧试验研究.燃烧科学与技术,2004,10(1):1-6.
    [83].Wang Enyu,Cheng Leming,Xing Shouxiang,Luo Zhongyang,Cen kefa.Stability of Flames in the Gradually-varied Porous Media.Proceedings of International Conference on Energy and the Environment,2003,shanghai.
    [84].王恩宇.气体燃料在渐变型多孔介质中的预混燃烧机理研究,浙江大学博士学位论文.浙江大学,杭州,2004.
    [85].褚金华.渐变型多孔介质燃烧器的研究与开发,硕士学问论文.浙江大学,杭州,2005.
    [86].李昊,程乐鸣,王恩宇,骆仲泱,岑可法.往复式多孔介质燃烧器温度分布的试验研究.浙江大学学报(工学版),2005,39(8):1184-1188.
    [87].李昊.往复式多孔介质燃烧器的试验研究.硕士学位论文.浙江大学,杭州,2004.
    [88].Drayton M.k.,Saveliev A.V.,Kennedy L.A.,nimen..Syngas production using superadiabatic combustion of ultra-rich methane air mixtures.27th International Symposium on combustion,the Combustion Institute,Pittsbugh,PA,1998,361-1368.
    [89].Konstandpoulos A.G.,kostoglou M..Reciprocating flow regeneration of soot filters.Combustion and Flame,2000,121(3):488-500.
    [90].Durst,F.,M.Weclas.A New Concept of I.C.Engine with Homogeneous Combustion in a Porous Medium.The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines,2001,Nagoya:467-472.
    [91].Ferrenberg A..The single cylinder regenerated ICE(R),SAE900911,1990.
    [92].Ferrenberg A..Progress in the development of the regenerated diesel engines.SAE Trans,SAE961677,1996.
    [93].Ferrenberg A..low heat regenerated engine:a surperior alternativeto turbo compounding.SAE Trans,SAE940946,1994.
    [94].Hananmara k.,Bohda K.,Miyairi y..A Study of super-adiabatic combustion engine.Energy Conversion and Management,1997,38(10-13):1259-1266.
    [95].周怀春,盛锋,姚洪等.高温空气燃烧技术—21世纪关键技术之一.工业炉,1998,30(1):19-27.
    [96].彭好义,蒋绍坚,周孑民.高温空气燃烧技术的开发应用、技术优势及展望.工业加热,2004,33(3):11-15.
    [97].刘敏飞,朱彤,张鹤声.高温空气燃烧技术的特点及其应用前景.能源研究与信息,2002,17(1):27-35.
    [98].李茂德,程惠尔.高温空气燃烧系统中陶瓷蓄热体传热特性分析研究.热科学与技术,2004,3(3):255-260.
    [99].温良英,韩明英,董凌燕.高效蓄热室阻力及传热特性.燃烧科学与技术,2005,11(6):255-260.
    [100].钟水库,马宪国,赵无非,眭向荣.蜂窝陶瓷蓄热体换热器热性能实验分析.上海理工大学学报,2004,26(4):333-335.
    [101].张仁元,柯秀芳,李爱菊.无机盐/陶瓷基复合储能材料的制备和性能.材料研究学报,2000,14(6):652-656.
    [102].Katsuki M.,Hasegawa T..The science and technology of combustion in highly preheated air.27th International Symposium on combustion,the Combustion Institute,Pittsbugh,PA,,1998,27:3135-3146.
    [103].Choi G.M.,Katsuki M..Advanced low NOx combustion using highly preheated air.Energy Conversion and Management,2001,42(5):639-652.
    [104].Gupta.A.K.,Li Z..Effect of fuel property on the structure of highly preheat air flames.Proceeding of International Joint Power Generation Conference,1997,Denver:189-196.
    [105].#12
    [106].Dr-Ing,Joachim.Burner design for flameless oxidation with low NO-formation even at maximum air preheat.Industrial Heating,1995,62(1):24-28.
    [107].#12
    [108].Matin t T..Regenerative ceramic burner technology and utilization.Industrial heating,1988,55(11):12-15.
    [109].蒋绍坚,彭好义,艾元方.高温低氧气氛中气体燃料的火焰特性.中南工业大学学报,2000,31(3):228-231.
    [110].Yang W.H.,B.W.Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air Energy,2005,30(2-4):385-398.
    [111].Weber,R..Combustion of natural gas,oil and coal with air preheated to temperatures in excess of 1000℃.Proceedings of 4th International Symposium on High Temperature Air Combustion and Gasification,2001,Editor:ENEA of Italy,331-343.
    [112].Gupta.A K.Thermal characteristics of gaseous fuel flames using high temperature air.Journal of Engineering for Gas Turbines and Power,2004,126(1):9-19.
    [113].Gupta.A.K.Effect of air preheat temperature and oxygen concentration on flame structure and emission.Journal of Energy Resources Technology,1999,121(3):209-216.
    [114].Lille S.,Blasiak W.,Jewartowski M.Experimental study of the fuel jet combustion in high temperature and low oxygen content exhaust gases.Energy,2005,30(2-4):373-384.
    [115].Hino Y.,Sugiyama S.,Suzukawa Y.Two-dimensional spectroscopic observation of non-luminous flames in a regenerative industrial furnace using coal gases.Journal of Engineering for Gas Turbines and Power,2004,126(1):20-27.
    [116].Hasegawa T.,Tanaka R..High temperature air combustion- revolution in combustion technology(part Ⅰ:New findings on high temperature air combustion.JSME International Journal,Series B,1998,41(4):1079-1084.
    [117].Kobayashi M.Recent advances in combustion technology for heating processes.JSME International Journal,Series B,2003,46(4):491-499.
    [118].Yuan J.W.,Naruse I.Effects of air dilution on highly preheated air combustion in a regenerative furnace.Energy &Fuels,1999,13(1):99-105.
    [119].Kasahara M.,Hasegawa T.Characteristics of high-temperature air combustion Ⅱ:Influence of dilution of oxygen concentration.Proceedings of the 34th Japanese Combustion Symposium,1996:642-644.
    [120].Kitagawa K.,Konishi N,Arai N.Temporally resolved two-dimensional spectroscopic study on the effect of highly preheated and low oxygen concentration air on combustion.Journal of Engineering for Gas Turbines and Power,2003,125(1):326-331.
    [121].Shimada T.,Akiyama T.,Mitsui K.Time-resolved temperature profiling of flames with highly preheated/low oxygen concentration air in an industrial size furnace.Journal of Engineering for Gas Turbines and Power,2005,127(3):464-471.
    [122].王皆腾,祁海鹰,李宇红.射流对高温空气燃烧过程中NOx生成的影响.热能动力工程,2002,17(6):575-579.
    [123].苍大强,关运泽,毛一心.高温空气燃烧技术的超低NOx研究.燃烧科学与技术,燃烧科学与技术.2003,9(2):190-193.
    [124].钟水库,马宪国,赵无非,眭向荣.高温低氧燃烧过程中NOx排放规律研究.热能动力工程,2004,19(5):483-486.
    [125].Nishimura M.,Suzuki T.,Nakanishi R..Low-NOx combustion under high preheated air temperature condition in an industrial furnace.Energy Conversion and Management,1997,38(10-13):1153-1163.
    [126].Yang W.H.,Biasiak W..Mathematical modeling of NO emissions from high-temperature air combustion with nitrous oxide mechanism.Fuel Processing and Technology,2005,86(9):943 -957.
    [127].Yoshikawa K..Present status and future plan of crest meet project.Proceeding of the 2nd International High Temperature Air Combustion Symposium,Taiwan,1999.
    [128].彭好义,蒋绍坚,周孑民.高温空气然烧技术的开发应用、技术优势以及展望.工业加热,2004,32(2):11-15.
    [129].王关晴,程乐鸣,骆仲泱,岑可法.高温空气燃烧技术的燃烧特性研究进展.动力工程,2007,27(1):81-89.
    [130].Yoshikawa K..Gasification and power generation from solid fuels using high temperature air Proceeding of high temperature air combustion Symposium,The Engineering Institute of China Association on Science and Technology,Beijing,1999:48-68.
    [131].Sugiyama S.,Yoshikawa K.,Ishii T..Gasification performance of solid fuels using temperature air at the demonstration plant MEET-Ⅱ.Proceeding of the 4td International symposium on high temperature air combustion and gasification,2001,ENEA of Italy.
    [132].曹小玲,蒋绍坚,吴创之.高温空气发生器热态试验研究.中国电机工程学报,2005,25(2):109-113.
    [133].Lucas C.,Szewczyk D.,Blasiak W..High temperature air and steam gasification of densified bio-fuels.Biomass and Bio-energy,2004,27(13):563-575.
    [134].Sugiyama S.,Suzuki N.,Kato Y..Gasification performance of coals using high temperature air.Energy,2005,30(3):399-413.
    [135].Min T.J.,Yoshikawa K.,Murakam K..Distributed gasification and power generation from solid wastes Energy,2005,30(11):2219-2228.
    [136].岑可法,程乐鸣,骆仲泱,方梦祥,高.翔,王树荣,倪明江.往复式多孔介质燃烧高温空气发生系统及其方法.中国,CN1740639[P]2006-03-01.
    [137].贝尔.J著,李竟生,陈崇希译.多孔介质流体动力学.北京,中国建筑工业出版社,1983.
    [138].林瑞泰,多孔介质传热传质引论.北京,科学出版社,1995.
    [139].Ergun S..Fluid flow through packed columns.Chemical Engineering Progress,1952,48(2):89-94.
    [140].王关晴,程乐鸣,郑成航,骆仲泱,岑可法.往复式热循环多孔介质燃烧系统波动特性研究.燃烧科学与技术,2007,13(5):62-67.
    [141].Zhdanok S.A.,Dobrego K.V.,Ftko S.I..Flame localization inside axis-symmetric cylindrical and spherical of methane/air mixtures in an inert porous media.International Journal of Heat and Mass Transfer,1998,41:3674-3655.
    [142].Kennedy L.A.,Saveliev A.V.,B.J.P..Filtration combution of a methane wave in air for Oxygen-enriched and Oxygen-depleted environments,the 29th Proceeding of the international combustion Institute 2002,835-841.
    [143].kennedy L.A.,Fridman A.A.,SAveliev A.V..Superadiabatic combustion in porous meda:wave propagation,instabitlities,new type of chemical reator International Journal of Fluid Mechanics Research,1996,22(1):1-26.
    [144].Minaev S.S.,Potytnyakov S.i.,Babkin V.A..Combustion wave instability in filtration combustion of gases.Combustion Explosion and Shove Waves,1994,30(3):306-310.
    [145].国家环保总局.火电厂大气污染物排放标准.GB13223-2003,2004.
    [146].容銮恩,袁镇福,刘志敏.电站锅炉原理.北京,中国电力出版社,1997.
    [147].Bouma P.h..Methane-air combustion on ceramic foam surface burners,Phd Disserstation.Eindhoven Uinversity of Technology,1997.
    [148].Hsu P.F.,Howell J.R.,Matthews R.D.A numerical investigation of premixed combustion within porous inert media.Journal of heat transfer,1993,115(3):744-750.
    [149].FU X.,Viskanta R.,GoreJ.P..Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics.Experimental Thermal and Fluid Science,1998,17(4):285-293.
    [150].傅维镳,张永廉,王清安.燃烧学.北京,高等教育出版社,1989.
    [151].Hendricks T.J,Howell J.R..Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics.Journal of Heat Transfer,118(1):79-87,1996.
    [152].卞伯绘.辐射换热的分析与计算.北京,高等教育出版社,2000.
    [153].黄卫星,陈文梅.工程流体力学.北京,化学工业出版社,2001.
    [154].程心一.计算流体动力学—偏微分方程的数值解法.北京,科学出版社,1984.
    [155].陶文铨.数值传热学.西安,西安交通大学出版社,1988.
    [156].郭宽良.计算传热学.安徽,中国科技大学出版社出版,1988.
    [157].帕坦卡 S.V..传热与流体流动的数值计算.北京,科学出版社,1984.
    [158].钟万勰.数值计算方法.北京,中国建筑工业社 1991.
    [159].Younis L.B.,R.Viskanta.Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam.International Journal of Heat Mass Transfer,1993,36(6):1245-1434.
    [160].李姮.多孔介质预混燃烧中的气固温度分布及传热特性研究.硕士学位论文,浙江大学,杭州,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700