用户名: 密码: 验证码:
煤的部分气化及半焦燃烧系统集成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国的主要一次能源,目前大部分通过燃烧的单一方式加以利用。煤的分级转化技术是根据煤在不同阶段反应特性不同的特点,从分级利用的角度提高煤炭资源的利用率,不仅技术简单可行,投资较低,而且有效解决了所面临的资源与环境问题。
     本文在对国内外主要的部分气化及半焦燃烧技术进行了评述基础上,提出了煤部分气化和燃烧的的多联产技术。
     为了深入了解煤在不同阶段的不同反应特点,在热天平试验台上进行了煤的热解、气化、燃烧的动力学试验研究,分析了各物理因素对热解、气化、燃烧过程的影响,研究表明:相比热解和燃烧,气化反应发生的相对速率较低,发生的条件需要高温和长停留时间;随着升温速率的增加,煤热解和气化反应速率加快;煤灰对气化的影响较大,随着灰/煤比的增加,反应速率先增加后减小,这说明存在一个最佳的煤/灰比。
     为了研究运行条件对煤气化和半焦特性的影响,建立了煤燃烧气化多功能试验装置,并进行了不同煤种、不同粒径、不同气氛下的煤的热解气化试验,得出了各运行条件对气化过程的影响,并研究了运行条件对半焦孔隙特性的影响。试验表明:煤热解过程中,随着密相区温度的升高,煤气中H_2、CO、CO_2、CH_4的含量升高,而在研究煤的空气/水蒸汽部分气化时,增加风煤比,煤气产量增加,增加汽煤比,煤气质量显著改善;采用空气/氧气/水蒸汽进行气化时,煤气的质量又有了以进一步的提高。在此基础上,在多功能试验台上进行了半焦的燃烧特性试验,研究发现:部分气化半焦可以在流化床内稳定的燃烧,其污染物排放量很小。
     为了验证煤部分气化及半焦燃烧技术的工艺可行性,建立了1MW煤热电气多联产试验装置,并进行空气部分气化及半焦燃烧和再循环煤气热解及半焦燃烧两种方案试验,试验研究显示:空气部分气化及半焦燃烧方案得到的煤气热值较低,气化炉的床温较高,碳转化率随温度的升高而增大。再循环煤气热解及半焦燃烧方案虽然生产的煤气热值较高,但气化炉内碳转化率较低,煤气产率较低。
     在总结前人建立的流化床燃烧、气化模型的基础上,结合试验研究结果,建立了煤部分热解气化及半焦燃烧系统的数学模型。模型主要考虑了流化床流体动力学特性模型、煤热解气化模型、分离器模型、煤焦的磨损扬析模型、流化床换热模型以及气化炉、燃烧炉之间的物质平衡和能量平衡关系。并利用模型对1MW多联产试验台上进行试验工况的模拟计算与对比,分析显示该模型计算结果与试验结果基本吻合,该模型可以为煤部分气化和半焦燃烧工艺设计提供依据。
Coal is the primary energy source of China,Most of the coal consumed is usually used through a single combustion way. Coal staged conversion improve utilization ratio of coal source from staged utilization according to different reaction properties in different reaction stage,not only this technology is easy and feasible,the investment is low,but also it may solves source and energy problem effectively.
     A review on coal partial gasification technology and semickoe combustion technology for domestic and oversea is proceeded . On basis of this, a coal partial gasification and combustion multi-generation technology was put forward.
     In order to deeply know the different reaction properties in different reaction stage and analyze the effect on gasification and combustion for the physical factor, the kinetics experiment was carried out on coal pyrolysis,gasification,combustion and semicoke combustion with TGA. Research show that: reaction rate on gasification is low and high temperature and long residence time was needed for gasification reaction occurrence compared with combustion and pyrolysis ; Reaction rate for coal gasification and pyrolysis is accelerated with increase of heating rate; gasification reaction is affected deeply by ratio of coal to ash, Reaction rate firstly increases and then decreases with the increase on ratio of coal to ash, experiment show optimum ratio of coal to ash is existing.
     In order to make further research the effects for opration condition on coal gasification and semicoke character, a multifunctioanal test device for coal combustion and gasification was set up. A lot of experiment was conducted on it. Experiment on coal pyrolysis and gasification with different coal type, coal size and atmosphere has been made on it. emicoke character was analysed by nitrogen adsorption instrument. Experiment show that content of H_2、CO、CO_2、CH_4 increase with dense phase temperature increases in process of coal pyrolysis. Output of coal gas increases with ratio of gas to coal increased and gas quality was improved with ratio of steam to coal increased in process of coal parical gasification in atmosphere of air and steam. Gas quality was further increased in atmosphere of air/steam/oxygen. On basis of it, Experiment about semicoke combustion was conducted on the multifunctional test device.Research shows that semicoke of partial gasification can be stably burned and emission of pollutants was less.
     In order to verify feasibility of the technology of coal partial gasification and semicoke combustion, a 1MW pilot plant facility has been erected. A lot of experiments on coal partical gasification with air and semicoke combustion, recycle gas pyrolysis and semicoke combustion has been made on the 1MW pilot paint test facility. With air as gasification agent, system can produce low heating value gas,temperature is high and carbon conversion efficiendy increases with the bed temperature in the gasifier. With recycle gas as gasification agent, the system can produce high heating value gas, but carbon conversion efficiency is low and gas yield is low.
     On basis of summary on model about combustion and gasification in fluidized bed established by previous researchers, a mathmatic model on coal partial pyrolysis and gasification system was estebliashed according to result of experiment. The model include model for fluid dynamics in fluidized bed, model for coal pyrolysis and gasification, model for cyclone, model for partical attrition and elutriation, model for heat transfer in CFB, mass balance and energy balance about combustion furnace and gasifier. Simulation calculation for experiment condition on 1MW multi-generation pilot plant was proceeded. The result shows that experiment result and model calculation is coincidence primarily.
引文
[1]World Energy Outlook,2006,http://www.iea.org/textbase/nppdf/free/2006/weo2006.pdf
    [2]Key World EnergySatistics.2007,http://www.iea.org/Textbase/publications /free_new_Desc.asp?PUBS_ID=1199
    [3]钱伯章.2005年世界能源结构消费统计评论.上海节能.2006(4):57
    [4]世界电力统计数据.http://www.bshp.com.cn/newsp/sjdl/dltj/dltj107.htm
    [5]中国能源战略研究,中国能源战略研究课题组,中国电力出版社,1996.
    [6]支同祥.中国煤炭工业 http://www.chinacoal.gov.cn/meitanzixun/meitanzixun.htm
    [7](美)P.Nowacki.煤炭气化工艺.赵振本等译.山西:山西科学教育出版社.
    [8]毛健雄,毛健全,赵树民,煤的清洁燃烧,科学出版社,1998
    [9]骆仲泱,刘妮,高翔,岑可法,中国能源与可持续发展,中国青年动力工程年会论文集,1999
    [10]中国可再生能源网,http://www.cses.org.cn/persoa_file/2007-11-28/20071128163238.html
    [11]周锡堂,樊栓狮.二氧化碳收集利用与处置技术分析.中外能源.2006,11(5):10-14
    [12]中国能源研究会,关于我国21世纪能源发展战略的建议,山西能源与节能,2000,4
    [13]姚福生.洁净煤技术.中国工程院第三次院士大会报告,1996,6.
    [14]郑楚光.洁净煤技术.华中理工大学出版社,1996.
    [15]俞珠峰.洁净煤技术发展及应用.化学工业出版社.2004,5
    [16]陈文敏,李文华,徐振刚.洁净煤技术基础.煤炭工业出版社.1997,3
    [17]葛岭梅.洁净煤技术概论.煤炭工业出版社.1997,8
    [18].林鹏云,罗永浩,陆方.洁净煤技术促进节能减排.上海节能.2006,6:42-45
    [19]骆仲泱,王勤辉,方梦祥等.煤的热电气多联产技术及工程实例.化学工业出版社,2004年6月.
    [20]王同章.煤炭气化原理与设备.机械工业出版社,2001年.
    [21]Octave L.Chemical Reaction Engineering[M].New York:John Wiley&Sons,Inc,1974.
    [22]Roberston A.Development of Foster Wheeler's Vision 21 Partial Gasification Module.In:The Vision 21 Program Review Meeting.Morgantown,West Virginia:2001,November 6-7.
    [23]Roberston,Froehlich R,Fan Z,et al.Partial Gasification Tests with Pittsburgh No.8 Coal.In:Sakkested B A,ed.The 28~(th) International Technical Conference on Coal Utilization and Fuel Systems.Florida,USA:Clearwater,March 10-13,2003.
    [24]Roberston A.Foster Wheeler Development Corporation,USA.Vision 21 Partional Gasification Module pilot PlantTests.In:Sakkestad B A,ed.The 27~(th) International Technical Conference on coal Utilization and Fuel Sysytems,Sheraton Sand Key.Florida,USA:Clearaer,March,2002.
    [25]R.R.McKinsey,A.I.McCone,J.M.Wheeldon,G.S.Booras.An assessment of advanced pressurized fluidized-bed combustion power plants.In:Heinschel K.J.ed.Proc.of 13th Inter.Conf.on FBC(Volume 1),Orlando Florida:653-661
    [26].盛宏志,刘典福,魏小林等.煤部分气化后生成半焦的特性.燃烧科学与技术.2004,4(10):187-191
    [27].岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行.中国电力出版社.2004
    [28].Archie Robertson,Dave Kulcsar,James Van Hook,Chongqing Lu,Frank Burkhard,et al.Pilot plant becomes demonstration plant desigh.DOE/MC/21023-96/C0501,Advanced Coal-Fired Power Systems '95 Review Meeting,Morgantown,West Virginia,June 27-29,1995.
    [29].A.Robertson,W.Domerachi,D.Horazak,R.Newby,A.Rehmat.Increased efficiency of Topping Cycle PCFB power plants.DOE/MC/21023-96/C0687,American Power Conference,Chicago,Illinois,April 9-11,1996.
    [30].A.Robertson,H.Goidstein,D.Horazak,et al.Second-generation PFB plant performance with W501G gas turbine.Proceedings of 16~(th) International Conference on Fluidized Bed Combustion,Reno,Nevada May 13-16,2001,FBC01-0010.
    [31].J.M.Wheeldon,A.K.Bonsu,J.P.Foote,F.C.Morton,D.E.Romans,E D.Zoldak.Commissioning of the Circulating PFBC in the Foster Wheeler Advanced PFBC train at the PSDF.Proceeding of the 16~(th) International Conference on FBC,Reno.Nevad.May,2001,13-16.
    [32].P66.007 Power Systems Development Facility(PSDF) Annual Report-2003(052507).http://www.epri.com/destinations/dynamic/dilbert.asp?product_id=21332&year=2003.
    [33].Engineering development of coal-fired high-performance power systems.DE-AC22-95PC95143,Technical progress report 3,January through March 1996,June 1996.
    [34].A.Robertson(FWDC).Development of Foster Wheeler's Vision 21 Partial Gasification Module. The Vision 21 Program Review Meeting,Morgantown,West Virginia,November 6-7,2001.
    [35].S.J.Provol,S.Ambrose.The Midwest power DMEC-2 advanced PCFB demonstration project AHLSTROM PYROFLOW advanced pressurized circulating fluidized bed technology.Proceedings of The 1993 International Conference on Fluidized Bed Combustion.Vol 2,ASME,1993.
    [36].Richard E.Weinstein,Nelson F.Rekos,Mark D.Freier.Repowering with advanced green coal combustion systems makes sense.The Proceedings of the 26~(th) International Technical Conferene on Coal Utilization & Fuel Systems,Sheraton Sand Key Clearwater,Florida,USA,March 5-8,2001,1-10.
    [37].Nelson F.Rekos,Richard E.Weinstein.APFBC repowering makes sense for existing coal-fired units.Proceedings of 16~(th) International Conference on Fluidized Bed Combustion,Reno,Nevada May 13-16,2001,FBC01-0054
    [38].Richard E.Wweinstein,Douglas J.Roll,Robert W.Travers.Would APFBC repowering of AES Greenidge Unit 4 make sense? Proceedings of 16~(th) International Conference on Fluidized Bed Combustion,Reno,Nevada May 13-16,2001,FBC01-0055.
    [39].Bruce A.Salisbury,Richard E.Weinstein,Mark D.Freler,et al.APFBC repowering for Four Comers Station uses a unique approach.Proceedings of 16~(th) International Conference on Fluidized Bed Combustion,Reno,Nevada May 13-16,2001,FBC01-0053.
    [40].John C.Wolfmeyer,Cal Jowers,Richard E.Weinstein,et al.Advanced circulating pressurized fluidized bed combustion(APFBC) repowering concept assessment at Duke Energy's Dand River Station.http://www.netl.doe.gov/coalpower/combustion/pdf /00011.pdf.
    [41].Brandon M.Davis,Peter V.Smith,James Longanbach,et al.Operation of the PSDF transport gasifier.KBR Paper#1728,http://www.netl.doe.gov/coalpower/gasification /projects/adv-gas/docs/19%20Pitts%20CC%20KBR%201728.pdf.
    [42].Roxann Leonard,Peter V.Smith,James Longanbach,et al.Development status of the transport gasifier at the PSDF.http://www.netl.doe.gov/coalpower/gasification/projects /adv-gas/docs/DEVELOPMENT%20STATUS%200F%20THE%20TRANSPORT%20GASIFIER%20A T%20THE%20PSDF.pdf,Gasification Technologies 2001,San Francisco,California,October 7-10,2001.
    [43].E.P.Holley(Air Products and Chemicals,Inc.),J.J.Lewnard,et al.(Four Rivers Energy Partners,L.P.).Four Rivers Second Generation Pressurized Circulating Fluidized-Bed Combustion Project. Proceedings of the 13~(th) International Conference on Fluidized-Bed Combustion,May 1995.
    [44].I.E Abdulaily,I.Alkan.Advanced pressurized circulating fluidized bed system:beyond the demonstration stage.Proc.of 13th Inter.Conf.on FBC,ASME 1995,Volume 1.
    [45].Alfred M.Dodd,George Lynch,Donald L.Bonk.McIntosh Unit 4B topped PCFB demonstration project,http://www.lanl.gov/projects/cctc/factsheets/lklndb /macunit4bdemohtml.Advanced Electric Power Generation Fluidized-Bed Combustion,November 4,2002.
    [46].R.A.Newby,T.E.Lippert,M.A.Alvin,et al.Hot gas filter status and innovations for PFBC.Proceedings of 16~(th) International Conference on Fluidized Bed Combustion,Reno,Nevada May 13-16,2001,FBC01-0024
    [47].Robertson A,Bonk D.Effect of pressure on second-generation PFB combustion plant.Journal of Engineering for Gas Turbines and Power,Transaction of the ASME,April 1994,Vol.116:345-351.
    [48].Hyre M R,Horazak D A,Rubow L N,Buchanan T L,Robertson A.PFBC performance and cost improvements using state-of-art and advanced topping/bottoming cycles.In Proc.of the 11~(th) Int.Conf.On Fluidized Bed Combustion,ASME,1991,125-130.
    [49].Arun C.Bose,Daniel J.seery,Greg F.Weber,et al.High performance power system:a viable step to vision 21.The Proceedings of the 26~(th) International Technical Conference on Coal Utilzation & Fuel Systems,Sheraton Sand Key Clearwater,Florida,USA,March 5-8,2001,41-46.
    [50].Mark R.Torpey,Jan Friedrich,Richard J.Graham,et al.Design and development of a pulverized char combustor for the high performance power system.http://www.netl.doe.gov/publications/proceedings/98/98ps/ps1-8.pdf.
    [51].FWDC Project 9-41-3492,development of a high-performance coal-fired power generating system with pyrolysis and char-fired high temperature furnace(H1TAF).DE-AC22-91PC91154,Final report,Volume 1,February 1996.
    [52].Engineering development of coal-fired high-performance power generating systems.DE-AC22-96PC96143,Technical progress report 5,July through september 1996,November 1996.
    [53].Engineering development of coal-fired high-performance power systems.DE-AC22-95PC95143,Technical progress report 1,July through september 1995,December 1995.
    [54].Engineering development of coal-fired high-performance power systems.DE-AC22-95PC95143,Technical progress report 2,October through December 1995,February 1996.
    [55].Engineering development of coal-fired high-performance power systems.DE-AC22-95PC95143,Technical progress report 3,January through March 1996,June 1996.
    [56].A.Robertson,R.Froehlich,Z.Fan,C.Lu(Foster Wheeler Power Group Inc.).Partial gasification tests with Pittsburgh No 8 coal.The 28th International Technical Conference on Coal Utilization & Fuel Systems,Clearwater,Florida,USA,March 10-13 2003.
    [57].A.Robertson,Foster Wheeler Development Corporation,USA.Vision 21 Partial Gasification Module Pilot Plant Tests.The 27~(th) International Technical Conference on Coal Utilization & Fuel Systems,Sheraton Sand Key,Clearwater,Florida,USA,March 2002.
    [58].G B Welford,P Melling,A J Martin,Siqing Lu,F Wood,B Williams,R Evans,Ye Huang(Mitsui Babcock Energy Ltd).Gasifier Developments and The Air Blown Gasification Cycle.Report No.Coal R195,DTI/Pub URN 00/968,September 2000.
    [59].S.G.Dawes,M.Mordecai,D.Brown,G.K.Burnard.Air blown gasification cycle.Inst.Chem.Eng.Symp.Ser.,1997,143,91-103.
    [60].G B Welford,P Melling,A J Martin,Siqing Lu,F Wood,B Williams,R Evans,Ye Huang(Mitsui Babcock Energy Ltd).Gasifier Developments and The Air Blown Gasification Cycle.Report No.Coal R195,DTI/Pub URN 00/968,September 2000.
    [61].S.G.Dawes,M.Mordecai,D.Brown,G.K.Burnard.Air blown gasification cycle.Inst.Chem.Eng.Symp.Ser.,1997,143:91-103.
    [62].Nigel Paterson.Fuel behaviour studies in the air-blown gasification cycle.Fuel Vol.76,Num.13,1997:1319-1325.
    [63].UK capabilities:research and development in cleaner coal technologies,http://www.coal.gov.uk/Information/cleanercoaltechnologies/CleanerCoalDTlpaper.pdf,Department of Trade and Industry(DTI),March 2001.
    [64].Center for Coal Utilization,Japan(CCUJ).Country report on coal rsearch and development in Japan.The 27~(th) Meeting of International Committee for Coal Research,Brisbane,Australia,September 24-25,2002.
    [65].Center for Coal Utilization,Japan.Country Report on Coal Research and Eevelopment in Japan.The 26th Meeting of International Committee for Coal Research,Strasbourg,France,October,2001.
    [66].R & D of advanced pressurized fluizized bed combustion technology(APFBC).http://www.ccuj.or.jp/gijutsu/pdf/ml-le.PDF,Ministry of Economy,Trade and Industry(METI).
    [67].Kiyota Muramatsu.Current situation and prospect of high efficiency coal utilization technology in Japan.Proceeding of 2~(nd) International High Temperature Air Combustion(HTAC) Symposium,Kaohsiung,Taiwan,January 20-22,1999.
    [68]徐向东等.载热气化燃煤联合循环性能研究.热能动力工程.1996,11(6):337-342
    [69].徐向东,钊丽.焦载热部分气化燃煤联合循环系统性能分析.热能动力工程.1997,12(5)
    [70].徐向东等.载热气化燃煤联合循环性能研究.热能动力工程.1996,11(6)
    [71].钊丽等.焦载热气化炉数学模型研究.煤炭转化,1998,21(3)
    [72].房倚天,周政.循环流化床(CFB)煤/焦气化反应的研究.操作气速、固体循环速率对循环流化床气化反应的影响,燃料化学学报Vol.26 No,6,1998.
    [73].房倚天,陈富艳.循环流化床(CFB)煤/焦气化反应的研究.温度、氧含量及煤种对CFB气化反应的影响,燃料化学学报Vol.27,No.1,1999
    [74].房倚天,勾吉祥.循环流化床(CFB)煤/焦气化反应的研究.同鼓泡流化床(BFB)气化反应的对比,燃料化学学报Vol.27,No.1,Feb.1999
    [75].段钰锋,梅志林,赵长遂.V型布风板流化床煤气化试验研究及工业应用。工程热物理学报,vol 22.No.6.Nov.2001
    [76].肖睿,金保升.空气鼓风流化床煤部分气化炉煤气成分与热值试验.动力工程Vol.24,No.3,June,2004
    [77].黄亚继,金保升.循环流化床部分煤气化试验研究.煤炭科学技术.2003年12月.
    [78].王俊琪,方梦祥等.煤的部分空气气化联合循环发电系统特性研究.能源工程.
    [79].Mengxiang Fang,Zhongyang Luo,A Multi-product Cogeneration System Using Combined Coal Gasification and Combustion,Engergy,1998,23(3)
    [80].王勤辉,方梦祥等.汽气共生热电气联产技术的研究.浙江大学学报(自然科学版),No2,Vol.31,Mar.1997.
    [81].王勤辉,骆仲泱,方梦祥等.12兆瓦热电气多联产装置的开发.燃料化学学报.2002,30(4):141-146
    [82].刘耀鑫,方梦祥,余春江等.循环流化床热、电、气多联产技术方案研究.热力发电.2003(2):2-4
    [83].王勤辉,沈洵,骆仲泱,岑可法.新型近零排放煤气化燃烧利用系统.动力工程.2003,23(5):2711-2715
    [84]周颖,郭树才等.褐煤固体热载体干馏新技术-固体热载体循环系统设计.煤化工.1998,5 (2):13-16
    [85]郭树才.褐煤干馏新法.煤化工.2000,8(3):6-8
    [86]陈沅,罗长齐.褐煤转化与DG新技术及其应用的几个问题.煤化工.1996,5(2):38-42
    [87]郭树才.年轻褐煤固体热载体低温干馏.煤炭转化.1998,7:23-26
    [88]张秋民.DG技术及其用于钢铁企业能源平衡的可行性分析.冶金能源.1998,3(17):23-27
    [89]郭树才.煤化工工艺学.化学工业出版社,1992.5
    [90]Lurgi Gesellschaften,"Lurgi Handbuch",1970
    [91](美)P.Nowacki.煤炭气化工艺.赵振本等译.山西:山西科学教育出版社.
    [92]李余增.热分析.北京:清华大学出版社,1987
    [93]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985
    [94]于伯龄,姜胶东.实用热分析.北京:纺织工业出版社,1990
    [95]刘振海.热分析导论.北京:化学工业出版社,1991
    [96](日)神户博太.热分析.北京:化学工业出版社,1982
    [97]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985
    [98]蔡正千.热分析.北京:高等教育出版社,1993
    [99]胡荣祖,史启祯.热分析动力学北京:科学出版社,2001
    [100]方梦祥,骆仲泱等.循环流化床热电气三联产装置的开发和应用前景分析[J].动力工程.1997,17(4):48-53
    [101]怀涛,陈文七.对我国热、电、煤气“三联产”技术研究开发状况的分析及建议[J].中国能源.1998(12):20-22
    [102]徐秀清,沈幼庭,李定凯,马润田.循环流化床煤气-蒸汽联产炉[J],锅炉技术,1994,25(8):11-15
    [103]王勤辉,骆中泱,方梦祥等.12兆瓦热电气多联产装置的开发[J].燃料化学学报.2002,30(4):141-146
    [104]徐振刚.多联产是煤化工的发展方面[J].洁净煤技术.2002,8(2):5-7
    [105]倪维斗,李政.煤的超清洁利用-多联产系统[J].节能与环保.2001,5:16-21
    [106]周怀祖,刘红艳等.煤基洁净高效多产品联合生产系统.中美清洁能源技术论坛.北京:2001,8
    [107]刘红艳,周怀祖等.煤基洁净高效多产品联合生产系统[J].中国煤炭.2002,28(1):31-34
    [108]金红光,高林等.煤基化工与动力多联产系统开拓研究[J].工程热热物理学报.2001,22(4):397-400
    [109]王乃计.大型气化联产热、冷、电、燃料及化工产品.工厂动力[J].2002,1:36-39
    [110]邹纲明,李海滨.煤液化过程热解动力学特性的研究.茂名学院学报.VOL.13(1)
    [111]周静,龚欣,郭小雷,于尊宏.煤低温试验研究(Ⅰ)氮气中煤热失重及物理性质研究.煤炭转化.2002,10(5):13-18
    [112]朱学栋,朱子彬,朱学余,张成芳.煤化程度和升温速率对热分解影响的分析[J].煤炭转化.1999,4(2):43-47
    [113]韩永霞,姚昭章.升温速度对煤热解动力学的影响[J].华东冶金学院学报.1999,10(4):318-322
    [114]吕太,张翠珍,吴超.粒径和升温速率对煤热分解影响的研究[J].煤炭转化.2005,1(1):17-20
    [115]韩三霞,方庆艳,傅培舫等.煤的热天平燃烧反应动力学特性的研究.工程热物理学报.2004,25(5):891-893
    [116]姚昭章,韩永霞.不同煤化程度煤的热解动力学参数.煤化工.1994(2)
    [117]徐越年.煤热解的反应动力学研究.热能动力工程.1995,10(3):154-157
    [118]郭树才,袁庆春,朱盛维.褐煤热重法热解动力学研究.1989,17(1):55-61
    [119]胡文斌,杨海瑞,吕俊复等.电站系统工程.2005,21(2):8-10
    [120]刘洋,张香兰,王启宝,等.煤半焦催化活化制备多孔活性碳[J].煤炭加工与综合利用,2005,(6):32-35.
    [121]吕俊复,陈科宇,黄南,等.循环灰条件下1-甲基萘催化裂解的试验研究[J].煤炭转化,2004,25(2):74-78.
    [122]向银花,房倚天,张守玉,等.煤焦部分气化燃烧集成热重分析研究[J].燃料化学学报,2000,28(5):435-438
    [123]牛宇岚.TPD法研究平朔煤半焦的灰分在气化中的作用[J].华北工学院学报.2002(5):329-333
    [124]黄亚继,金保升,仲兆平等.流化床部分煤气化影响因素研究.锅炉技术.2005,36(6):8-14
    [125]吴诗勇,李莉,顾菁等.高碳转化率下热解神府煤焦CO2高温气化反应性.燃料化学学报.2006,34(4):399-403
    [126]向银花,李海滨,房倚天等.煤部分气化燃烧集成系统最优化模型及其求解.煤炭转化.2003,26(4):42-45
    [127]向银花,王洋,张建民等.部分气化煤焦燃烧特性研究.煤炭转化.2002,25(4):35-38
    [128]Newkirk,A.E.,Anal.Chem.1960,12
    [129]Freeman,E.S,B.Carroll,J.Phys.Chem.1958,62
    [130]Anderson,D.A.,S.E.Freeman,J.Polymer Sci.1961,64
    [131]Doyle,C.D.,J.Appl.Polymer Sci.1960,5:282-292
    [132]Ozawa,T.,Bull.Chem.Soc.Japan.1965,38
    [133]Flynn,J.H.,T.Ozawa,M.Kanazashi.Thermo-chim.Acta.1972,3
    [134]Coats,A.W.,Redfern,J.P.,Nature,1964,201
    [135]Horowitz,H.H.,G.Metzger,Anal Chem.1963,35(10)
    [136]Broido,A.,J.Polymer Sci.1969,27
    [137]Kissinger,H.E.,Anal Chem.1957,29
    [138]Irfan Ar,Gulsen Dogu,Calcination kinetics of high purity linestone,Chem.Eng.J.2001
    [139]仲兆平,Marnie Telfer,章明耀,Caroline.石灰煅烧的试验研究.洁净煤燃烧与发电技术.30期:18-23
    [140]郑瑛,史学锋,周英彪,郑楚光.石灰石静态煅烧特性的研究.热能动力工程.1998(13):319-321
    [141]Stantan J E.In:fluidized Beds:Combustion and Application.Ed.Howard J R.Lodon:Applied science,1985
    [142]崔洪,朱珍平,刘振宇等.程序升温热重法研究扎赉诺尔煤的气化动力学.燃料化学学报.1996,24(5):399-403
    [143]邱宽嵘.煤的热解动力学特性研究.中国矿业大学学报.1994,23(3):42-47
    [144]魏兴海,顾永达.在三个不同升温速率下用热天平研究煤的热解及其反应动力学.燃料化学学报.1993,21(4):430-435
    [145]徐秀峰,崔洪,朱珍平等.TPR方法研究煤焦CO2气化反应(Ⅱ)不同方法计算动力学参数和补偿效应.煤化工.1996(4):42-46
    [146]闵凡飞,张明旭.热分析在煤燃烧和热解及气化动力学研究中的应用.煤炭转化.2004,27(1):9-12
    [147]Tseng H P.,Edgar T F.Combustion Behaviour of Bituminous and Anthracite Coalchar Between 425℃ and 900℃.Fuel.1985,64(3):373-379
    [148]徐跃华.低质烟煤的燃烧特性研究.煤炭转化.1995,18(2):53-55
    [149]聂红,孙绍增,李争起等.褐煤混煤燃烧特性的热重分析法研究.燃烧科学与技术.2001,7(1):72-76
    [150]刘亮,周臻,李录平等.混煤燃烧反应动力学参数的实验研究.电站系统工程.2006,22(2):7-9
    [151]崔洪,徐秀峰,顾永达.煤焦CO2气化的热重分析研究(Ⅰ)等温热重研究.煤炭转化.1996,19 (2):75-79
    [152]崔洪,徐秀峰,顾永达.煤焦CO2气化的热重分析研究(Ⅱ)程序升温热重研究.煤炭转化.1996,19(3):82-85
    [153]刘德昌.流化床燃烧技术的工业应用.中国电力出版社,1999.
    [154]房倚天.循环流化床煤/焦气化的实验研究.中国科学院山西煤炭化学研究所博士学位论文.1997,5.
    [155]国营北京建中机器厂.电阻炉设计.1982
    [156]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行.中国电力工业出版社,1997.
    [157]金涌,祝京旭,汪展文,等.流态化工程原理.清华大学出版社,2001.
    [158]化工部热工设计技术中心站.热能工程设计手册.化学工业出版社,1998.
    [159]黎强,邱宽嵘,丁玉.流态化原理及其应用.中国矿业大学出版社,1994.
    [160]德意志联邦共和国工程师协会工艺与化学工程学会.传热手册.化学工业出版社.
    [161]南京化工设计院石油、化工起重运输设计建设组组织编写.螺旋输送机与斗新时代出版,意志联邦共和国工程师协会工艺与化学工程学会.传热手册.化学工业出版设,1973.
    [162]P.巴苏,S.A.弗雷泽,著.岑可法,倪明江,骆仲泱,等,译.循环流化床锅炉的设计与运行.科学出版社,1994.
    [163]刘德昌,阎维平.流化床燃烧技术.中国电力出版社,1995.
    [164]吴文渊,杨励丹.煤在热载体流化床中的热解模型.燃料化学学报,1994,22(4):
    [165]李海滨,白秀钢等.煤在流化床中的热解-实验研究及数学模型.煤化工,1998年5月.
    [166]陈彩霞,孙学信.煤粉快速热解规律的实验研究.华中理工大学学报,1994,22(3)
    [167]Zhang Yongzhe,Xuxiaodong,Zuo Yu.Experiments and modeling of coal pyrolysis under Fluidized bed conditions.J.of Thermal Science Vol,No.3.
    [168]吕俊复,岳光溪.焦油主要组分的热裂解.公用科技,1996年第4期.
    [169]S.Hanson,J.W.Patrick,A.Water.The effect of coal particle size on pyrolysis and steam gasification.Fuel,81(2002)531-537.
    [170]王俊琪,方梦祥等.煤的部分空气气化联合循环发电系统特性研究.能源工程.2004(3):1-4
    [171]黄亚继,金保升等.循环流化床部分煤气化实验研究.煤炭科学技术,2003,31(12):20-23
    [172]胡平放.流化床气化煤气热值的影响因素.武汉城市建设学院学报.1996,13(3):92-94
    [173]Wells W F,Smoot L D.Relation between reactivity and structure for coal and chars.Fuel.1991,70(3):454-458
    [174]Nattem ann C,Huttinger K J.Research on the pressurized gasification of coal with steam carbon dioxide.Petrochem ie vereinigt m it B rennstoff-Chem ie.1994(47):287-295
    [175]Yang Y,Watkinson A P.Gasification reactivity of some Western Canadian coal.Fuel.1994(73):1786-1791
    [176]沙兴中,杨南星.煤的气化与应用.上海:华东理工大学出版社,1995
    [177]朱廷钰,王洋.粒径对煤温和气化特性的影响.煤炭转换.1999,22(3):39-43
    [178]周宏仓,金保升,仲兆平等.流化床部分煤气化实验研究.热能动力工程.2004,19(3)252-256
    [179]肖睿,金保升,欧阳嘉等.空气鼓风流化床煤部分气化炉煤气成分与热值试验.动力工程,2004,24(3):416-420
    [180]张荣光,常万林,那永杰等.空煤比对循环流化床煤气化过程的影响.煤炭科学技术.2006,34(3):46-49
    [181]张荣光,唐海香,那永杰等.常压循环流化床煤气化试验.中国煤炭.2006,32(6):49-52
    [182]重庆建筑工程学院.燃气的生产与净化,北京:中国建筑工业出版社,1984
    [183]戢绪国,邓一英,王鹏.七种煤常压纯氧固定床气化的特征.洁净煤技术.2004,10(4):49-52
    [184]戢绪国.煤加压固定床纯氧气化试验研究.煤气与热力.2005,25(2):1-4
    [185]戢绪国,步学朋,邓一英等.煤常压富氧固定床气化的研究.煤气与热力:2005,25(4):9-13
    [186]陈鸿.煤焦燃尽动力学及孔隙结构的研究[D].武汉:华中理工大学,1993
    [187]Jerzy C,Mietek J,Wanda B M et al,Critical appraisal of classical methods for determination of mesopore size distributions of MCM-41 material[J],proceedings of CSEE,2001,21(8):34-36
    [188]Gregg S J,Sing K S W.Adsorption,surface area and porosity[M].London:Academic Press,1982
    [189]严继明,张启元,高敬琮.吸附与凝聚:固体的表面与孔.第二版[M].北京:科学出版社,1986
    [190]周毅,段钰锋,陈晓平等.半焦孔隙结构的影响因素[J].锅炉技术.2005,36(4):34-38
    [191]范云鸽,李燕鸿,马建标.交联苯乙烯型多孔吸附剂的中孔性质研究[J].高等学校化学学报.2002,23(8):1622-1626
    [192]袁晓红,姚源,唐永良.活性碳吸附剂的孔结构表征[J].中国粉体技术.2000,6(增刊):190-191
    [193]段钰锋,周毅等.煤气化半焦孔隙结构[J].东南大学学报(自然科学版).2005,1(35):135-139
    [194]周毅,段钰锋.部分气化后半焦的孔隙结构[J].能源研究与利用.2004(4):24-28
    [195]陈晓平,谷小兵,段钰锋等.半焦加压燃烧特性研究[J].工程热物理学报.2004,25(4):345 -347
    [196]向银花,房倚天,黄戒介等.煤焦的燃烧特性和动力学模型研究[J].煤炭转化.2000,23(1):10-15
    [197]Yong,B.C.,etc,Temperature measurements of Beulah lignite char in a novel laminar-flowreactor,Fuel,1988,(67):40
    [198]Hustard,J.E.,etc.,Burning rates of coke particles in the freeboard above a fluidized bed reactor,Combustion and Flame,1991,(85):223-240
    [199]Alying,A.B.,etc,Measured temperatures of burning pulverized fuel particles and nature of the primary reaction product,Combution and Flame,1972,(18):173-184
    [200]傅维标,王庆华.煤焦还原气化反应动力学参数与煤种的通用关系[J].燃烧科学与技术,2000(6):96-100
    [201]傅维标,张百立.煤焦燃烧反应动力学参数与煤种的通用关系[J].燃烧科学与技术.1997,(3):1-14
    [202]沈胜强,李素芬,石英.半焦粒子着火与燃烧过程实验研究[J].燃烧科学与技术,2000,(6):66-69
    [203]刘鑫,沈胜强.半焦粒子团燃烧模型与计算分析[J].燃烧科学与技术,1997,(3):304-308
    [204].Mengxiang Fang,Zhongyang Luo,A Multi-product Cogeneration System Using Combined Coal Gasification and Combustion,Engergy,1998,23(3)
    [205]王勤辉,方梦祥等.汽气共生热电气联产技术的研究.浙江大学学报(自然科学版),No2Vol.31,Mar.1997.
    [206]岑可法,方梦祥等.循环流化床热电气三联产装置研究.工程热物理学报,1995,16(4)
    [207]吕小兰.煤部分气化联合循环发电技术.浙江大学硕士学位论文,2002年1月。
    [208]范从振主编,电厂锅炉原理,北京:水利电力出版社,1984
    [209]刘德昌,陈汉平主编,锅炉改造技术,中国电力出版社,2001
    [210]冯俊凯,沈幼庭主编,锅炉原理及计算,科学出版社,1979
    [211]沈洵.新型近零排放煤气化燃烧利用系统.浙江大学硕士学位论文,2004年2月。
    [212]王同章.煤炭气化原理与设备.机械工业出版社,2001.
    [213]吕俊复,岳光溪.氧化钙条件下焦油主要组分的催化裂解.清华大学学报(自然科学版),1997,37(2):6-10.
    [214]朱廷钰.氧化钙对流化床煤温和气化过程影响的研究:[学位论文],太原:中国科学院山西煤 炭化学研究所,1999.
    [215]吕俊复,岳光溪.一种循环床循环灰条件下焦油组分的催化裂解.清华大学学报(自然科学版),1998年第38卷
    [216]吴学成,王勤辉,骆仲泱等.不同常压流化床煤气化方案的模型预测Ⅰ.模型建立及验证.燃料化学学报.2004(32)3:287-291
    [217]吴学成,王勤辉,骆仲泱等.不同常压流化床煤气化方案的模型预测Ⅱ.模型预测及分析.燃料化学学报.2004(32)3:292-296
    [218]沈幼庭,李定凯,崔琳.水蒸汽流态化条件下煤的热解气化综合过程模型研究.工程热物理学报.1995(16)1:101-105
    [219]崔琳,沈幼庭,李定凯等.水蒸汽流化条件下的煤气化实验与模型研究.燃料化学学报.1997(25)2:97-103
    [220]赵浮,李定凯.水蒸汽流化下煤热解气化中污染物释放与脱硫综合模型及参数的识别方法研究.燃烧科学与技术.1996(2)2:161-169
    [221]赵浮,李定凯,吕子安等.水蒸汽流化下煤气化气态污染物释放研究Ⅰ.污染物生成与脱硫实验研究.环境科学学报.1998(18)3:225-229
    [222]赵浮,李定凯,吕子安.水蒸汽流化下煤气化气态污染物释放研究Ⅱ.污染物生成与脱硫过程综合模型.环境科学学报.1998(18)231-236
    [223]余廷芳,蔡宁生.部分煤气化炉的热力学数学模型.动力工程.2004(24)4:560-566
    [224]Watkinson A P,Lucas J P,Lim C J.A Prediction of Performance of Commercial Coal Gasifiers.Fuel,图2.19山西煤化所小型流化床反应器 1991,70:519-527
    [225]Ruprecht P,Schafer W,Wallace P.A Computer Model Entrained Coal Gasification.Fuel,1988,57(6):739-743
    [226]向银花,王洋,张建民等.煤气化动力学模型研究.燃料化学学报.2002(30)1:21-26
    [227]陈明,徐向东.一种流化床气化炉的数学模型及其动态特性分析.燃气轮机技术.2003(16)2:31-35
    [228]钊丽,徐向东.焦载热气化炉的数学模型研究.煤炭转化.1998(21)3:63-67
    [229]钊丽,徐向东.焦载热气化燃煤联合循环系统的数学模型研究.工程热物理学报.1999(20)1:26-29
    [230]Merrick D.Fuel.1983,63:534-539
    [231]Fett F N,Dersch J.BMFT-Forderkennzeichen,0326737A,1994
    [232]汤忠,张建民,王洋等.流化床气化炉稀相段反应模型(1)-模型建立.燃烧科学与技术.1998(4)2:150-156
    [233]张荣光,那永洁,吕清刚.循环流化床煤气化平衡模型.电机工程学报.2005(25)18:80-85
    [234]张荣光.常压循环流化床煤气化试验与模型研究[D].中国科学院.2005
    [235]向银花,李海滨,房倚天等.煤部分气化集成燃烧系统最优化模型及其求解.煤炭转化.2003(26)4:42-45
    [236]汪洋,代正华,于光锁等.运用Gibbs自由能最小化方法模拟气流床煤气化炉.煤炭转化.2004,10(27):27-33
    [237]赵伟杰,许正宇、王渊等.循环流化床过程的流程模拟.上海市石油学会论文集.86-91
    [238]张斌、李政、江宁等.基于Aspen Plus建立喷流床煤气化炉模型.化工学报.2003,8(54):1179-1181
    [239]徐越,吴一宁,危师让.基于Aspen Plus平台的干粉加压气流床气化性能模拟[J].西安交通大学学报,2003,37(7):20-22
    [240]徐越,吴一宁,危师让.二段式干煤粉气流床气化技术的模拟研究与分析[J].中国电机工程学报,2003,23(10):15-17
    [241]徐越,邓世敏,危师让等.部分煤气化空气预热燃煤联合循环发电系统(PGACC)技术方案研究[J].燃气轮机技术.2002,15(2):25-27
    [242]韩安沛,徐越.部分气化空气预热燃煤联合循环发电系统[J].中国电力.2001,34(3)
    [243]S.Jarungthammachote,A.Dutta.Equilibrium modeling of Gasification:Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers.Energy Conversion & Management.2008,doi:10.1016/J.enconman.2008.01.006
    [244]X.Li,J.R.Grace,A.P.Watkinson etc.Equilibrium modeling of gasification:a free energy minimization approach and its application to a circulating fluidized bed coal gasifier.Fuel.2001,80:195-207
    [245]R.Sotudeh-Gharebaagh,R.Legros,J.Chaouki etc.Simulation of circulating fluidized bed reactor using ASPEN PLUS.Fuel,1998(77)4:327-337
    [246]胡芝娟,刘志江,陆继东等.不同煤质煤焦燃烧模型的研究.硅酸盐学报.2004(32):306-310
    [247]Young,B.C.,etc.Temperature measurements of Beulah lignite char in a novel laminar-flow reactor.Fuel.1988(67):40.
    [248]Hustard,J.E.,etc.Burning rates of coke particles in the freboard above a fluidized bed reactor, Combustion and Flam.1991(85):223-240
    [249]Alying,A.B.,etc.Measured temperatures of burning pulveized-fuel particles and the nature of the primary reaction prouct,Combustion and Flame.1972(18):173-184.
    [250]傅维标,张百立.煤焦燃烧反应动力学参数与煤种的通用关系[J].燃烧科学与技术,1997,(3):1-14.
    [251]傅维标,王庆华.煤焦还原气化反应动力学参数与煤种的通用关系[J].燃烧科学与技术.2000,(6)::96-100.
    [252]沈胜强,李素芬,石英.半焦粒子着火与燃烧过程实验研究[J].燃烧科学与技术,2000,(6):66-69.
    [253]刘鑫,沈胜强.半焦粒子团燃烧模型与计算分析[J].燃烧科学与技术,1997,(3):304-308.
    [254]赵宗彬,李保庆.煤中矿物质对NO-半焦还原反应的影响[J].燃料与化学学报.2001,(29):129-134.
    [255]谷小兵.半焦加压燃烧特性研究[D].南京:东南大学,2003
    [256]周毅,段钰锋,陈晓平等.压力下半焦燃烧特性的研究.锅炉技术.2005(36)1:33-37
    [257]Weimer A W,Clough D E.Modeling a low Pressure Steam Oxygen Fluidized Bed Coal Gasifying Reactor.Chem Eng.Sci.1981.Vol:549
    [258]Merick D..Mathmatical model of the thermal decomposition of coal I.The evolution of volatile matter.Fuel,1983,62(5):534-539
    [259]高福烨.燃气制造工艺学[M].北京:中国建筑工业出版社,1992.224-234.
    [260]Gurura V S,Agarwal P K,Agnew J B.Mathematical Modelling of Fluidized Bed Coal Gasifiers[J].Trans IchemE,1992,70(A):211-238.
    [261]邓世敏,危从师,林万超.IGCC系统专用单元模型研究.电机工程学报.2001,21(3):34-36
    [262]Watkinson AP,Lucas JP,Lim CJ.A prediction of performance of commercial coal gasifiers.Fuel,1991,70(4):519-527
    [263]张晋,段远源,李政.气化剂配比对气化炉性能的影响.化工学报.2003,54(12):1740-1744
    [264]余延芳,蔡宁生.部分煤气化炉的热力学数学模型.动力工程.2004,24(4):560-566
    [265]邬纫云等.煤炭气化.中国矿业大学出版社.1989
    [266]Abbssian J et al.IEC process Des.Dev.1984,23:742
    [265]严建华.沸腾炉扬析夹带特性研究.教委直属高校优秀毕业论文汇编.1982
    [266]D'Amore M,et al.Bed Carbon Loading and Particle Size Distribution in Fluidized Combustion of Fuel of Various Reactivity.Proceedings of 6~(th) International Conference on Fluidized Bed Combustion.1980
    [267]Donsi G et al.Carbom Fines Production and Elutriation from the Bed of a Fluidized Coal Combustor.Combustion &Flame.1981.No.41:57
    [268]Arena U et al.Carbon Attrition During the Fluidized Combustion of a Coal.AICHE J.1983 Vol 29.No 1:40-48
    [269]徐祥.IGCC和联产的系统研究[D].北京:中国科学院工程热物理研究所,2007年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700