用户名: 密码: 验证码:
现代柴油机全气缸取样系统开发及缸内微粒理化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随世界柴油机保有量的持续增加,其排放微粒对环境和人类健康的危害日益严重,因此,研究柴油机微粒的生成机理及控制技术具有重大的现实意义。本文在CY6102直喷柴油机上,开发了一套可实现模拟增压中冷、EGR和高压共轨燃油喷射先进柴油机技术的全气缸取样系统,并利用该系统对燃烧过程中微粒的理化特性进行了研究,对碳烟形成历程进行了初步数值模拟。论文具体研究工作如下:
     1.开发了柴油机全气缸取样装置,主要包括取样机构、稀释系统和气门停开机构;着重进行了筒刀总成、取样口的设计和对摇臂轴的改造。
     2.充分利用计算机的软硬件资源,设计开发了以中断技术为核心的电控单元(ECU),并采用先进的模糊控制策略设计了共轨压力模糊闭环控制算法,使该系统不仅可以实现喷油量、喷油定时以及取样时刻、气门关闭时刻、稀释时刻的灵活可靠控制,而且能够实现共轨压力的柔性调节。
     3.采用电子低压冲击仪(ELPI),测量燃烧过程中微粒的粒数、粒径分布规律。测量结果表明,微粒粒数浓度随曲轴转角呈单峰状分布,峰值出现在14~18°CA ATDC,燃烧后期约70%以上的微粒(粒数浓度)被氧化燃烧。微粒粒数、粒径呈类似对数正态分布,频度最大值出现在100~200nm之间。
     4.运用场发射透射电镜和图像处理技术,考察了微粒的形态特性、基本碳粒子的微观结构和粒径分布规律。研究结果发现,(1)微粒呈现两种形态,一种是由基本碳粒子凝结而成的典型微粒,另一种是富含金属和非金属元素的无定形微粒,其中金属元素主要来源于润滑机油,贯穿整个燃烧过程,且独立存在;另外,典型微粒具有分形结构特性,分维数介于1.2~1.74之间,且在扩散燃烧初期有降低的趋势。(2)在柴油机高温高压的燃烧过程中,基本碳粒子逐渐向石墨化过渡,最终形成洋葱状的微晶结构,其层数逐渐增多,层间距逐渐减小(0.39nm减小到0.36nm);(3)基本碳粒子粒径呈高斯分布,最大值出现在15~30nm之间;平均粒径介于19.7~29.7nm之间,且在12~15°CA ATDC出现最大值。
     5.将燃烧过程中微粒及其中的可溶有机成分(SOF)进行测量与分离,并采用气相色谱-质谱联用仪(GC-MS)对SOF中的多环芳香烃进行检测分析。结果表明,(1)SOF质量随燃烧时刻的不同而有较大的变化。在燃烧初期,SOF占微粒的80%以上,随着燃烧的进程,SOF含量降低到20%左右。(2)多环芳香烃的总质量随曲轴转角的变化规律与碳烟质量浓度随曲轴转角的变化规律一致。另外,提高共轨压力和发动机转速,PAHs的质量降低。
     6.采用通用STAR-CD软件,建立了碳烟计算模型,并与实验结果进行对比分析。碳烟质量形成历程的模拟结果与实测值的变化趋势基本一致。
With the increase of diesel engines in the world, the pollution of particulate emissions from diesel engines, which are harmful to the atmosphere environment and human health, is getting more and more serious. Therefore, it has a great practical significance to study the formation mechanism of the modern diesel particulates and then work out the control techniques for them. In this paper, a total cylinder sampling system was developed on the model CY6102 DI diesel engine with some advanced functions, such as simulating intercooling, exhaust gas recirculation (EGR), high pressure common rail (CR) and so on. The physicochemical characteristics of in-cylinder particulates were investigated using this sampling system, and three-dimensional numerical simulation was adopted to shed light on the soot formation histories. The main contents of the dissertation are as follows:
     1. The total cylinder dumpling equipment was developed, which mainly contained dumping mechanism, valves deactivator and sampling dilution system. During the development, the emphases were given on the design of cutter assembly, dumping port in the engine head and rebuilding of rocker arm shaft.
     2. Based on the PC resources of hardware and software, the electronic control unit (ECU) was designed using the interruption technology. The closed loop control of common rail pressure was accomplished by fuzzy control strategy. This control system could not only assure the injection duration and the timing of fuel injection, sample dumping, valve closed and dilution to be controlled accurately, but also make injection pressure controlled intelligently. And the control for all the parameters was flexible and reliable.
     3. The number and size distributions of in-cylinder particulate were investigated by the Electrical Low Pressure Impactor (ELPI) detection method. The experimental results indicated that the particulate number concentration showed unimodal distribution with the crank angle (°CA), and the peak point lied at about 14~18°CA ATDC. The particulate was oxidized by above 70% in the late combustion phase. During the combustion process, the particulate number size distribution was lognormal analogously in form with the particulate diameter, and the maximum value was lied at about 100~200nm aerodynamics diameter.
     4. The investigation on the morphology, microstructure and size distribution of primary carbon particle in-cylinder particulates were conducted on a field emission gun transmission electron microscopy (FEG TEM), and the results were analyzed by the image technology. The main study results obtained are as followed:
     The in-cylinder particulates present two morphologies: One is representative particulate which formed through agglomeration of small sphere-like primary carbon particles during combustion process. The other is amorphous particulate which contained abundant metal elements mainly originating from lubricant and nonmetal element, and these particulate had absolute structure and existed cross the whole combustion process. The representative particles were aggregated in the form of fractal-like geometry. The fractal dimension was in a range of 1.2~1.74, and it declined at the early diffusive combustion period.
     The primary particles translated to graphite gradually and formed crystallitic onion-shell carbon finally during the combustion process of diesel engine. The crystal plane spacing composed of graphite crystallites was decreased from 0.39nm to 0.36nm, and the crystal layer number was increased with the burning process.
     It was also found that the size distribution of primary particles was Gauss distribution and the maximum value was lied at about 15~30nm particle diameter. The average diameter was measured in a range of 19.7~29.7nm, and the peak value present at 12~15°CA ATDC.
     5. The soluble organic fraction (SOF) was extracted from the particulates, and its mass in particulates was measured. Meanwhile, the polycyclic aromatic hydrocarbons (PAHs) in SOF were analyzed by gas chromatography-mass spectrometry (GC-MS). The analytical results showed that the SOF mass changed much with the crank angle. In particular, at the initial combustion stage, the proportion could be over 80%, and it decreased in the combustion process, the minimum value was about 20%. The distribution curve of the total PAH mass with the sampling crank angle was in accord with that of the dry soot mass concentration. It was also found that whichever of fuel injection pressure or the engine speed increased could result in the loss of PAH mass.
     6. A numerical simulation model was established by Star-CD software, and comparison was carried out between the simulation calculation and the data obtained from the total cylinder sampling experiments. The result showed that the simulation calculation of soot formation histories was consistent with the experiment data.
引文
[1] Winfried M?ller, Thomas Hofer, Ultrafine Particles Cause Cytoskeletal Dysfunctions in Macrophages, Toxicology and Applied Pharmacology, 2002, 182(3): 197~207
    [2] Panyacosit L. A Review of Particulate Matter and Health: Focus on Developing Countries,Laxengurg, Austria: IIASA, 2000
    [3] Fast Sheet-EPA’s Recommended Fine Ozone and Particulate Matters Standands
    [4] Wei F., Teng E., Wu G. et al, Ambient Concentrations and Elemental Compositions of PM10 and PM2.5 in Four Chinese Cities, Environmental Science and Technology, 1999,33: 4188~4193
    [5] 魏复盛,R.S.Chapman 等编著,空气污染对呼吸健康影响的研究,北京:中国环境科学出版社,2001, 13~14
    [6] Mei Zhenga, Lynn G. Salmonb, James J. Schauerc, Seasonal Trends in PM2.5 Source Contributions in Beijing, China Atmospheric Environment, 2005, 39: 3967~3976
    [7] Bond T.C., Streets D.G., Yarber K.F. et al, A Technology-based Global Inventory of Black and Organic Carbon Emissions from Combustion, Journal of Geophysical Research, 2004, 109: D14203
    [8] Park K., Kittelson D.B., Zachariah M.R. et al, Measurement of Inherent Material Density of Nanoparticle Agglomerates, Journal of Nanoparticle Research, 2004, 6: 267~272
    [9] Michael J. Kleeman and Glen R. Cass, Source Contributions to the Size and Composition Distribution of Urban Particulate Air Pollution. Atmospheric Environment, 1998, 32(16): 2803~2816
    [10] Schauer J.J., Rogge W.F., Hildemann L.M. et al, Source Apportionment of Airborne Particulate Matter Using Organic Compounds as Tracers, Atmospheric Environment, 1996, 30: 3837~3855
    [11] 朱先磊,张远航,曾立民等,北京市大气细颗粒物 PM2.5 的来源研究,环境科学研究,2005, 18(5): 1~5
    [12] 宋宇,唐孝炎,方晨等,北京市大气细粒子的来源分析,环境科学,2002, 23(6): 11~16
    [13] 刘朋, 现代车用柴油机微粒化学成分的分析及生物毒性的研究,硕士论文,天津大学, 2004
    [14] 宋健,不同粒径柴油机排出颗粒物的潜在致癌性及其机制研究。北京:高等教育出版社,2001, 12: 8~15
    [15] 邹建国、钟秦,柴油机排放颗粒物组成分析,中国环境监测,2006, 22(3) : 23~26
    [16] 王桂华,王均效,张锡朝等,柴油机排气微粒中 SOF 成分的试验研究,内燃机学报,2004, 22(2): 110~115
    [17] Dennis S, Frank S Lee, Thomas J Prater, The Identification of Polynuclear Aromatic Hydrocarbon, (PAH) Derivatives in Mutagenic Fractions of Diesel Paticulate Extractst, Intern.J. Environ. Anal. Chem, 1981, 9: 93~144
    [18] Ye Shun-Hua, Zhou Wei, Song Jian et al, Toxicity and Health Effects of Vehicle Emissions in Shanghai, Atmospheric Environment 1999, 34: 419~429.
    [19] 叶舜华、吕源明、祁萍萍,柴油机尾气颗粒物提取物不同组分的致突变性,上海环境科学,1995, 14(8): 35~37
    [20] Song CL, Huang RJ, Wang YQ, Liu KM, Dong SR, Dai SD, Determination of In Vitro Biotoxicity in Exhaust Particulate Matter from Heavy-duty Diesel Engine, Bulletin of Environmental Contamination and Toxicology, 2006, 76: 24~32
    [21] K.A.Bérubé, T.P.Jones, B.J.Williamson et al, Physicochemical Characterization of Diesel Exhaust Particles: Factors for Assessing Biological Activity, Atmospheric Environment, 1999, 33: 1599~1614
    [22] Ya-Fen Wang, Kuo-Lin Huang, Emissions of Fuel Metals Content from a Diesel Vehicle Engine, Atmospheric Environment, 2003, 37: 4637~4643
    [23] 宋崇林,王玉秋,范国梁等,柴油机排气颗粒中有机组分的分离方法及微量金属的测定,天津大学学报,2000, 33(6), 707~710
    [24] Huisingh J., Bradow R., and Jungers R. et al, Application of Bioassay to the Characterization of Diesel Particulate Emissions: PartsⅠ&Ⅱ, In Application of Short-Term Bioassay in the Fractionation and Analysis of Complex Environmental Mixtures, US EPA 600, 1978, 27 (9): 46~75
    [25] Riccardo Crebelli, Luigi Conti, The Effect of Fuel Composition on the Mutagenicity of Diesel Engine Exhaust, Mutation Research Letters, 1995, 346: 167~172
    [26] 宋崇林,范国梁,阎颖等,生物短期试验(Ames 试验法)用于柴油机排气微粒直接致突变性的研究,内燃机学报,2000, 18(4): 375~379
    [27] Yoshito Kumagai, Toyoko Arimoto, Generation of Reactive Oxygen Species During Interaction of Diesel Exhaust Particle Components With Nadphcytochrome P450 Reductase and Involvement of The Bioactivation In The DNA Damage, Original Contribution, 1996, 341(3): 479~487
    [28] Yasunobu Aoki, Hiromi Sato, Accelerated DNA Adduct Formation in the Lung of the Nrf2 Knockout Mouse Exposed to Diesel Exhaust, Toxicology and Applied Pharmacology, 2001, 173: 154~160
    [29] 陈薛、宋崇林、张延峰等,柴油机微粒中直接致突变物对细胞DNA的损伤,卫生毒理学杂志,2001, 15(4): 222~224
    [30] Tran D.Q., Ide C.F., McLachlan J.A. et al, The Anti-Estrogenic Activity of Selected Polynuclear Aromatic Hydrocarbons in Yeast Expressing Human Estrogen Receptor, Biochem. Biophys. Res. Commun., 1996, 229:102~108
    [31] Taneda S., Hayashi H., Sakata M. et al, Anti-estrogenic Activity of Diesel Exhaust Particles, Biol. Pharm. Bull., 2000, 23:1477~1480
    [32] 孟玲,王焕校,六种金属对大肠杆菌体内质粒 DNA 一级结构的影响,中国环境科学,1999, 19(2): 169~171
    [33] Sagai M., Furuyama A., Ichinose T., Biological Effects of Diesel Exhaust Particles (DEP), III. Pathogenesis of Asthma Like Symptoms in Mice, Free Radical Biology and Medicine, 1996, 21: 199~209
    [34] Valavanidis A., Salika A., Theodoropoulou A., Generation of hydroxyl radicals by urban suspended particulate air matter, The role of iron ions, Atmospheric Environment, 2000, 34: 2379~2386
    [35] Ken-ichi Ohyama, Takaaki Ito, The Roles of Diesel Exhaust Particle Extracts and the Promotive Effects of NO2 and/or SO2 Exposure on Rat Lung Tumorigenesis, Cancer Letters, 1999, 139: 189~197
    [36] Kittelson D.B., Engine and Nanoparticles: A Review, Journal of Aerosol Science, 1998, 29: 575~588
    [37] Su D.S., Müller J.O., Jentoft R.E., et al, Fullerene-like Soot from Euro IV Diesel Engine: Consequences for Catalytic Automotive Pollution Control. Topics in Catalysis, 2004, 30(31): 241~245
    [38] Stephen J.Harris et al, Signature Size Distributions for Diesel and Gasoline Exhaust Particulate Matter, Aerosol Science, 2001, 32: 749~764
    [39] H. Burtscher, Physical Characterization of Particulate Emissions From Diesel Engines: A Review, Aerosol Science, 2005, 36: 896~932
    [40] Yuichi, Miyabara, PCDDs and PCDFs in Vehicle Exhaust Particles in Japan, Chemosphere, 1999, 39(1): 143~150
    [41] Elias Vouitsis, Leonidas Ntziachristos, Zissis Samaras, Modeling of Diesel Exhaust Aerosol during Laboratory Sampling, Atmospheric Environment, 2005, 39: 1335~1345
    [42] I.S Abdul-Khalek, et al, Diesel Exhaust Particle Size: Measurement Issues and Trends, SAE Paper 980525, 1998
    [43] Hua Zhao, Nicos Ladommatos, Engine Combustion Instrumentation and Diagnostics, Warrendale, Pa.:Society of Automotive Engineers, Inc, 2001, 159~165
    [44] James E. Bennethum, James. N. Mattavi, and Richard R. Toepel, Diesel Combustion Chamber Sampling –Hardware, Procedures, and Data Interpretation, SAE Paper 750849, 1975
    [45] H. Zhao, G. Lowry, N. Ladommatos, Time-Resolved Measurements and Analysis of In-Cylinder Gases and Particulates in Compression-IgnitionEngines, SAE Paper 961168, 1996
    [46] A. Voiculescu and G. L. Borman, An Experimental Study of Diesel Engine Cylinder Averaged NOx Histories, SAE Paper 780228, 1978
    [47] G.H.Hedding, D.B.Kittelson and H.Scherrer et al., Total Cylinder Sampling from a Diesel Engine, SAE Paper 810257, 1981
    [48] X.liu and D.B.Kittelson , Total Cylinder Sampling from a Diesel Engine(PartⅡ) , SAE Paper 820360, 1982
    [49] Michael J. Pipho, Jeffrey L. Ambs and David B.Kittelson, In-Cylinder Measurements of Particulate Formation in an Indirect Injection Diesel Engine, SAE Paper 860024, 1986
    [50] Du Cao Jian, Kittelson David B, Zweidinger Roy B., Measurement of Polycyclic Aromatic Compounds in the Cylinder of an Operating Diesel Engine, SAE Paper 840364,1984
    [51] D.B.Kittelson, M.J.Pipho, J.L.Ambs et al., Particle Concentrations in a Diesel Cylinder: Comparison of Theory and Experiment, SAE Paper 861569, 1986
    [52] David B. Kittelson, Michael J. Pipho, Jeffrey L. Ambs et al., In-cylinder Measurements of Soot Production in a Direct-Injection Diesel Engine, SAE Paper 880344, 1988
    [53] Luo lang, Pipho Michael J, Particle Growth and Oxidation in a Direct Injection Diesel Engine, SAE Paper 890580, 1989
    [54] Pipho Michael J,Kittelson David B,et al. NO2 Formation in a Diesel Engine.SAE paper 910231, 1991
    [55] pipho Michael J, Kittelson David B, Lang Luo, et al. Injection Timing and Bowl Configuration Effect on In-Cylinder Particle Mass. SAE Paper 921469,1992
    [56] 刘仪,藏仲冬,白翎等,直喷式柴油机缸内气体全量取样技术开发及其在缸内微粒形成过程研究中的应用,内燃机学报,1995, 13(1): 71~76
    [57] 刘仪,柴油机全气缸取样系统开发及缸内微粒形成过程研究,[博士论文],长春,吉林工业大学,1989
    [58] 刘仪,季雨,郭英男等,柴油机全气缸取样系统及其缸内微粒形成过程研究中的应用,内燃机学报, 1990, 8(2): 125~130
    [59] Hiroyuki Hiroyasu, Keiya Nishide et a1, Total In-cylinder Sampling Experiment on Emission Formation Process in a D.I. Diesel Engine, SAE Paper 902062,1990
    [60] H.Gen Fujimoto, J.Senda, T.Ito et al, Characteristics of Intermediate Products Generated During Diesel Combustion by Means of Total Gas Sampling, SAE Paper, 2004-01-2923
    [61] B. Bougie, L.C. Ganippa, A.P. van Vliet et al, Laser-Induced Incandescence Particle Size Measurements in a Heavy-duty Diesel Engine, Combustion and Flame, 2006, 145: 635~637
    [62] Mark P.B. Musculus, Lyle M. Pickett, Diagnostic Considerations for Optical Laser-Extinction Measurements of Soot in High-pPressure Transient, Combustion and Flame, 2005, 141: 371~391
    [63] Boris F. Kock, Benjamin Tribalet, Christof Schulz, Paul Roth, Two-Color Time-resolved LII Applied to Soot Particle Sizing in the Cylinder of a Diesel Engine, Combustion and Flame, 2006, 147: 79~92
    [64] John E.Dec, A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging, SAE Paper 970873, 1997
    [65] 项莉,李强,光学测试方法在柴油机缸内微粒测试技术中的应用,长安大学学报(自然科学版),2002, 22(5): 83~85
    [66] 赵奎翰,魏建勤,息树和等,小缸径直喷式柴油机喷雾、燃烧和碳粒生成过程试验研究,内燃机学报,1997, 2: 152~158
    [67] 赵奎翰,魏建勤,张惠明等,进气涡流比对直喷式柴油机喷雾、燃烧和碳粒变化历程的影响,内燃机学报,1997, 1: 1~8
    [68] Qunc H.X., Vighon J.M. and Brun M., A New Approach of the Two-Color Method for Determing local lnstantaneous Soot Concentration and Temperature in a D.I. Diesel Combustion Chamber, SAE Paper 91736, 1991
    [69] Tree D.R.and Foster D.E., Optical Measurement of Soot Particle Size, Number and Temperature in a Direct Injection Diesel Engine as a Function of Speed and Load, SAE Paper 940270, 19940
    [70] Takayuki Ito, Tomofumi Hosaka, Masato Ueda et al, Detailed Kinetic Modeling and Laser Diagnostics of Soot Formation in Diesel Iet Flame, SAE Paper, 2004-01-1398
    [71] FujiwaraY., S.Fukazawa, S.Tosaka, T.Murayama, Formation of Soot Particulates in the Combustion Chamber of a Precombustion Chamber Type Diesel Engine, SAE Paper 840417, 1984
    [72] Matsui T., T.Kamimoto, S.Matsuoka, Formation and Oxidation Processes of Soot Particulate in a D.I. Diesel Engine-An Experimental Study Via the Two –color Method, SAE 82046.
    [73] Cao Jian Du and David B. Kittelson, Total Cylinder Sampling from a Diesel Engine: Part III-Particle Measurements, SAE Paper, 830243
    [74] Luo Lang, Ph.D, In-cylinder particulate size distribution measurements in a direct-injection diesel engine, University of Minnesota, 1991
    [75] Yasuhiro Fujiware and Shigeru Tosaka, Formation Process of SOF in the Combustion Chamber of IDI Diesel Engines, SAE Paper 932799, 1993
    [76] 彭美春,柴油机排气微粒的理化特性及其催化净化,博士论文,吉林工业大学, 1990
    [77] 张济忠编著,分形,北京: 清华大学出版社,2001
    [78] Mandelbrot B B, Fractals: From, Chance and Dimension, San Francisco: Freeman, 1977
    [79] B.E.Haye 著,徐新阳、康雁、陈旭等译,A Random Walk Through Fractal Dimensions 分形漫步,沈阳: 东北大学出版社,1994.9
    [80] Burtscher H., Characterization of Ultra Fine Particle Emissions from Combustion Systems, Society of Automotive Engineers:Technical Paper Series, SAE Paper 2000-01-1997, 2000
    [81] M. Wentzel, H. Gorzawski, K.-H. Naumann et al, Transmission Electron Microscopical and Aerosol Dynamical Characterization of Soot Aerosols, Aerosol Science, 2003, 34: 1347~1370
    [82] Magín Lapuerta, Rosario Ballesteros, Francisco J. Martos, A Method to Determine the Fractal Dimension of Diesel Soot Agglomerates, Journal of Colloid and Interface Science, 2006, 303: 149~158
    [83] Kyeong Ook Lee, Jinyu Zhu and Stephen Ciatti,Sizes, Graphitic Structures and Fractal Geometry of Light-duty Diesel Engine Particulates, SAE Paper 2003-01-3169
    [84] C. Van Gulijk, J.C.M. Marijnissen, M. Makkee, J.A. Moulijn, A. Schmidt-Ott, Measuring Diesel Soot with a Scanning Mobility Particle Sizer and an Electrical Low-Pressure Impactor: Performance Assessment with a Model for Fractal-like Agglomerates. Aerosol Science, 2004, 35: 633~655
    [85] Masahiko Miyaki, Hideya Fujisawa. Development of New Electronically Controlled Fuel Injection System ECD-U2 for Diesel Engines, SAE Paper 910252, 1991
    [86] 周龙保,刘巽俊,高宗英,内燃机学,北京:机械工业出版社,2003,117~199
    [87] 宋国民,刘学瑜,陆建,高压共轨转速信号测量与精确定时分析,现代车用动力,2003, 2: 22~25
    [88] 张冠生主编,电器学,北京: 机械工业出版社,1980,185~288
    [89] 张敬国,陈兵等,电控柴油机用大流量高速电磁阀测试装置研究,武汉理工大学学报,2003,27(2): 178~181
    [90] 谢 辉, 车用柴油机新型共轨蓄压式电控燃油系统及其开发系统的研究, 博士学位论文,天津大学, 1998,3
    [91] IXYS, “HiPerFETTM Power MOSFETS”, 2000
    [92] 李士勇.模糊控制神经控制和智能控制论,哈尔滨:哈尔滨工业大学出版社,1996
    [93] A.M. Brasil, T.L. Farias, M.G. Carvalho, A Recipe For Image Characterization of Fractal-like Aggregates. J. Aerosol Sci., 1999, 30(10): 1379~1389
    [94] K?ylü ü.?., Faeth G.M., Farias T.L., Carvalho M.G., Fractal and Projected Structure Properties of Soot Aggregates. Combust Flame, 1995, 100: 621~633
    [95] Tomoji Ishiguro, Yoshiki Takatori, Kazuhiro Akihama, Microstructure of Diesel Soot Particles Probed by Electron Microscopy: First Observation of Inner Core and Outer Shell Combustion and Flame, 1997, 108: 231-234
    [96] Anish Goel, Peter Hebgen, John B, Combustion Synthesis of Fullerenes and Fullerenic Nanostructures, Carbon, 2002, 40: 177~182
    [97] 新井纪男(日),燃烧生成物的发生与抑制技术,北京:科学出版社,2001,159~169
    [98] Urs Mathis, Martin Mohr, Ralf Kaegi, Influence of Diesel Engine Combustion Parameters on Primary Soot Particle Diameter, Environ. Sci.Technol., 2005, 39: 1887~1892
    [99] 何学良、李疏松著, 内燃机燃烧学, 北京: 机械工业出版社, 1990
    [100] Rhead M M and Hardy S A, The Sources of Polycyclic Aromatic Compounds in Diesel Engine Emissions, Fuel, 2003, 82: 385~393
    [101] Homdutt Sharma, V.K. Jain, Zahid H. Khan, Characterization and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) in the Urban Environment of Delhi, Chemosphere, 2007, 66(2): 302~310
    [102] DEH (Department of the Environment and Heritage), In: Review of Fuel Quality Requirements for Australian Transport, Coffey Geosciences Pty Ltd for Environment, Australia, 2000, 6~90
    [103] Hsi-Hsien Yang, Chia-Mei Chen, Emission Inventory and Sources of Polycyclic Aromatic Hydrocarbons in the Atmosphere at a Suburban Area in Taiwan. Chemosphere, 2004, 56: 879~887
    [104] 陈薛,车用柴油机燃用乙醇/柴油混合燃料的排放特性及其微粒生物毒性的研究,硕士毕业论文,天津大学,2000
    [105] 刘巽俊编著,内燃机的排放与控制,北京,机械工业出版社,2002.11
    [106] 赵昌普,“BUMP 燃烧室”内混合气形成及缸内气流运动的研究,博士论文,天津大学,2003
    [107] 王福军编著, 计算流体动力学分析—CFD 软件原理与应用, 北京: 清华大学出版社, 2004
    [108] 裴毅强,MULINBUMP 复合燃烧系统中 BUMP 燃烧室混合气形成及燃烧的研究,博士学位论文,天津大学,2004.1
    [109] Huh, K .Y .and Gosman,A .D ., A Phenomenological Model of Diesel Spray Atomization, In Proceedings of The International Conference on Multiphase Flows, 1991.2
    [110] Reitz,R.D., Diwakar R., Effect of Drop Breakup on Fuel Sprays, SAE Technical paper series, 860469, 1986
    [111] 蒋德明编著,内燃机燃烧与排放学,西安交通大学出版社,2002 , 411-418.
    [112] Sazhina, E.M., Sazhin, S.S., Heikal, M.R., Marooney, C.J., The Shell Autoignition Model: Applications to Gasoline and Diesel Fuels, 1999, 78(4)
    [113] Kong S C, Han Z, Reitz R D, The Development and Application of Diesel Ignitionand Combustion Model for Multi-dimensional Engine Simulation, SAE Paper 950278, 1995
    [114] Han Z, Uludogan A, Hampson G J et al, Mechanism of Soot and NOxEmission Reduction Using Multiple-Injection in a Diesel Engin, SAE Paper 960633, 1996
    [115] 解茂昭,内燃机计算燃烧学,大连:大连理工大学出版社,2005, 215~236
    [116] Balthasar M, Frenklach M. Detailed Kinetic Modeling of Soot Aggregate Formation in Laminar Premixed flames, Combustion and Flame, 2005, 140: 130~145
    [117] Mauss F, Schtafer T, Bockhorn H. Inception and Growth of Soot Particles in Dependence on the Surrounding Gas Phase, Combustion and Flame, 1994, 99: 697~705
    [118] Arcoumanis C,Schindler K P.Mixture Formation and Combustion in the DI Diesel Engine, SAE Paper 972681, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700