用户名: 密码: 验证码:
氢同位素吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢同位素在化工、能源、材料、医疗、检测等领域中已得到广泛应用。然而在氢的天然同位素中,重氢含量只有0.015%,如何提取氢气中的氘气至关重要。
     氘是热核反应的主要原料之一,在以氘氚做燃料的聚变反应堆中,参加反应的氘氚还不到10%,从聚变堆的自持、经济和环境安全考虑,等离子室排出的氘氚需要回收分离并重新进入循环系统。传统的氢同位素分离方法如低温精馏、化学交换、热扩散等具有能耗高以及附属处理设备多的缺点。因此,氢同位素分离受到广泛关注,而且如何寻找一种低成本分离方法对氘氚的工业应用非常关键。通常利用不同组份吸附差异进行分离的成本是较低的,而且吸附法具有方法简便、可靠性高、操作灵活等优点。此外,吸附剂可反复使用,可避免其它分离方法因产生大量氚放射性废物而导致环境污染问题。然而由于氕、氘与氚的性质极其相近,且具有相同的形状和尺寸,在常规吸附剂上平衡吸附量差异也较小,所以如何强化氢同位素之间的平衡吸附差异或动力学吸附差异是吸附分离研究的核心。为此,本课题设计了以低温吸附法来系统研究氢同位素气体在不同吸附剂上的吸附行为,主要内容包括:
     (1)运用常规气相色谱建立相应的氢同位素气体快速检测方法,为吸附床层内穿透曲线的监测做好准备。
     (2)测量氢同位素气体在不同分子筛吸附剂上的平衡吸附量与动态吸附速率,并建立相应动力学吸附模型来计算吸附速率常数k。结果表明:氢同位素气体在分子筛孔径约为0.7 nm时吸附容量最大,但是最大动力学吸附差异的吸附剂孔径却在0.5 nm,而且最大平衡吸附量差异出现在介孔吸附剂上。
     (3)设计氢同位素气体单塔吸附分离的实验装置。测定了不同吸附剂在不同压力、气体流量与吸附床长度条件下的穿透曲线并计算了分离因子,讨论了相同实验条件下氢氘混和气在不同吸附剂上的分离效率以及孔径与比表面积对吸附分离效率的影响。
     (4)为更好解释和预测氢同位素气体在单塔吸附床层内的动力学吸附过程,构建了一个氢同位素在吸附床层内的动态吸附数学模型,该模型可较好地模拟氢同位素气体在分子筛VP800-5与Y上的吸附行为,并可对不同吸附行为进行预测。
Hydrogen isotopes are of great importance due to their wide applications in the fields of chemical industry, energy sources, material, medical cure and detection as a tracer. However, the natural abundance of deuterium is very small, only about 0.015%, so that how to separate deuterium from hydrogen is quite critical. The heavy isotope of hydrogen, deuterium, is an important material in nuclear industry. Moreover, deuterium and tritium combust less than 10% in the nuclear fusion reactor, thus, from the consideration of self-preserve, economy and environmental safety, they must be recovered and separated in order to recycle them after expelling from the plasma. The traditional methods such as cryogenic distillation, chemical exchange and thermal diffusion require incidental facilities and high-energy cost, therefore, the separation of hydrogen isotopes is received great attention, and how to search for a low cost separation method is a key for the industrial application of deuterium and tritium. The separation cost is usually low if the separation is based on the difference of components in adsorption. And the adsorption method has advantages of simplicity, high reliability and flexible operations, furthermore, the adsorbent can be regenerated easily for reuse, which can avoid environmental pollution due to not eject large amount of tritium radwaste. However, the separation between hydrogen isotopes is difficult due to the similarity of isotopes and small difference of their equilibrium amount adsorbed on common adsorbents. Therefore, how to enhance the difference of components in equilibrium and in dynamic adsorption is a focus on studies of adsorption separation. Based on reasons above, we designed cryogenic adsorption method to study behaviors of hydrogen isotopes on different adsorbents systematically, and mainly contents were as follows:
     (1) A rapid detection method of hydrogen isotopes was established with conventional gas chromatography that was prepared to test breakthrough curves in the adsorption column.
     (2) Equilibrium amount adsorbed and kinetic adsorption rate on different molecular sieve adsorbents were measured, and a relative kinetic mathematical model was developed to calculate adsorption rate, from which the highest adsorption capacity was observed at approximately 0.7 nm for hydrogen isotopes, but the largest isotope difference in dynamic adsorption was observed at 0.5 nm and the largest isotope difference in equilibrium adsorption was observed at mesoporous size.
     (3) A one-column experimental apparatus to separate hydrogen isotopes was designed, and we measured breakthrough curves of hydrogen and deuterium on different adsorbents with it and calculated their separation factors for different pressure, gas flow rate and bed length. The separation efficiency of different adsorbents was discussed under the same experimental condition. Moreover, effects of pore size and specific area to hydrogen isotopes separation were also summarized.
     (4) A kinetic adsorption mathematical model in the adsorption column for hydrogen isotopes was developed in order to explain and forecast adsorption processes well, and results simulated on the molecular sieves VP800-5 and Y were in good agreement with experimental results. Additionally, different adsorption behaviors in the column were forecasted with this model.
引文
1 孙艳, 苏伟, 周理, 氢燃料, 北京: 化学工业出版社, 2005, 1-13
    2 毛宗强, 氢能-21 世纪的绿色能源, 北京: 化学工业出版社, 2005, 1-17
    3 周俊波, 王奎升, 高丽萍等, 低温制备气相色谱法分离氢同位素, 原子能科学技术, 2004, 38(3): 218-221
    4 周俊波, 王奎升, 高丽萍等, 低温吸附法净化氢同位素气体, 低温工程, 2004, 138(2): 50-52
    5 Fukuda S, Fujiwara H., Possibility of separation of deuterium from natural hydrogen by a palladium particle bed, Sep. Sci. Technol. 1999, 34(11): 2235-2242
    6 Andreev B. M., Perevezentsev A. N., Shitikov V. V., Kinetic of the hydrogen isotopes exchange in the metal-hydride system, Russ. J. Phys. Chem., 1981, 55(6): 1132 -1135
    7 Fukuda S., Fuchinoue K., Nishigawa M., Isotope separation factor and isotopic exchange rate between hydrogen and deuterium of palladium, J. Nucl. Mat., 1995, 226(1-3): 311-318
    8 Ruthven D. M., Farooq S., Knaebel K. S., Pressure Swing Adsorption, VCH Publisher, Inc, New York, 1994, 1-288
    9 Hirco B., Tritium activities for fusion technology in B-L-C center CEA-France, Fusion Technol., 1998, 8(1-3): 425-428
    10 Hirco B., Overview of tritium technology development for fusion in Europe, Fusion Technol., 1992, 21(1-3): 206-214
    11 Dautovich D. P., Miller J. M., Overview of Canadian activities in tritium, Fusion Tchnol., 1995, 28(1-3): 439-448
    12 Okamoto M., Okun K., Overview of tritium activities in Japan, Fusion Tchnol., 1995, 28(1-3): 460-469
    13 Dinner P. J., ITER: Overview and fuel cycle conceptual design, Fusion Tchnol., 1992, 21(1-3): 197-205
    14 Dautovich D. P., Gierszewski P. J., Kveton O. K., Overview of tritium work in Canada, Fusion Tchnol., 1992, 21(1-3): 215-225
    15 Dinner P., Chazalon M., Bruggeman A., et al., Tritium technology development in EEC laboratories contributions to design goal for NET, Fusion Tchnol., 1988, 14(1-3): 418-423
    16 Andreani R., Bell A., Murdoch D., et al., Tritium related fusion R&D activities in Europe, Fusion Tchnol., 1995, 28(1-3): 449-459
    17 Belovodskii L. F., Gaevoy V. K., Golubev A. V., Research and developments of Russian Nuclear Centers in tritium technology, Fusion Tchnol., 1995, 28(1-3): 470- 478
    18 Alekseev I. A., Karpov S. P., Trenin V. D., Zeolite cryopumps for hydrogen isotopes transportation, Fusion. Technol., 1995, 28(1-3): 499-504
    19 Kawamura Y., Konishi S., Nishi M., Adsorption isotherms of hydrogen isotopes on molecular sieve 5A at low temperature, J. Nucl. Sci. Technol., 2000, 37(6): 536- 542
    20 Kenji K., Kazuhiko K., Multi-component adsorption behavior of hydrogen isotopes on zeolite 5A and 13X at 77.4K, Fusion Sci. Technol., 2005, 48(1): 148- 151
    21 维拉尼 S(意), 同位素分离(陈 恕, 过松如, 瑞世庄等译), 北京: 原子能出版社, 1983, 38-98, 214-404
    22 Moore C B, 激光化学与同位素分离(杨福明, 周志宏, 张先业等译), 北京: 原子能出版社, 1988, 1-154
    23 张存镇, 王承书, 诸葛福, 离心分离理论, 北京: 原子能出版社, 1987, 1-11
    24 郭正谊, 稳定同位素化学(第十七卷), 北京: 科学出版社, 1984, 253-306
    25 Rae H. K., Separation of hydrogen isotopes, Washington D C: American Chemical Society, 1978: 1-152
    26 Zhang D. H., Kodama A., Goto M., et al., Kinetics in hydrogen isotopes cryogenic adsorption, Sep. Purf. Techonol., 2004, 37(1): 1-8
    27 Fukada S., Fujiwara H., Comparision of chromatographic methods for hydrogen isotope separation by Pd beds, J. Chromatorgr. A, 2000, 898(1): 125-131
    28 Hara M., Shima H., Akamaru S. et al., A new kind of column materials for gas chromatographic hydrogen isotopes separation, Fusion Sci. Technol., 2005, 48(1): 144-147
    29 Fujiwara H., Fukada S., Mohamad S. B., et al., Hydrogen isotope separation by self-displacement chromatography using palladium particles, J. Nucl. Sci. Technol., 2000, 37 (8): 724-726
    30 Aldridge F. T., Gas chromatographic separation of hydrogen isotopes using metal hydrides, J. Less-common Metals, 1985, 108(1-2): 131-150
    31 翁成文,姚琼英,候建平等, 低温热色谱分离氢同位素, 高技术通讯, 1996, 4: 52-56
    32 李观华, 同位素分离, 化学通报, 1978, 41(10): 25-26
    33 Andreev B. M., Kruglov A. V., Selivanenko Y. L., Continuous isotope separation in systems with solid phase. I: Gas-phase separation of isotopes of the light element, Sep. Sci. Technol., 1995, 30 (16): 3211-3227
    34 陈虎翅, 陆光达, 李赣, 钯柱内氢同位素排代计算机模拟, 稀有金属, 2003, 27(6): 742-746
    35 Fukada S., Nishikawa M., Hydrogen isotope separation with palladium particle bed, Fusion Eng. Des., 1998, 39-40(1): 995-999
    36 Ortiz T. M., Meyer B. A., Razani A., Empirical correlation of Equilibrium separation factors in the Pd-H2/D2 system with temperature and composition, J. Chem. Eng. Data, 2000, 45(1):120-123
    37 Ducret D., Ballanger A., Steimetz J., et al., Hydrogen isotopes separation by thermal cycling absorption process, Fusion Eng. Des., 2001, 58-59(1): 417-421
    38 Rumyantsev V. V., Shatalov V. M., Misuna G. Y., Gas separation of hydrogen isotopes by means of multicell metal membrane, Desalination, 2002, 148(1-2): 293-296
    39 Charton S., Corriou J. P., Schweich D., Modeling of hydrogen isotopes separation in a metal hydride bed, Chem. Eng. Sci., 1999, 54(1): 103-113
    40 Fukada S., Fujiwara H., Mohamad S. B., Pressure-temperature-swing process using three adsorption beds for hydrogen isotopes separation, Sep. Sci. Technol., 2002, 37 (13): 3065-3079
    41 Fujiwara H., Fukada S., Nishikawa M., A study of a new hydrogen isotopes separation system using a simulated moving bed, Sep. Sci. Technol., 2001, 36(3): 337-348
    42 Fukada S., Samsun B. M., Fujiwara H., et al., Hydrogen isotope enrichment using multi-column palladium bed, 2002, 41(3): 1082-1085
    43 Chuikov B. A., Osovski V. D., Ptushinskii Y. G., et al., Isotopes effects in kinetics of low temperature adsorption of hydrogen on the Mo (110) surface, Surf. Sci., 2000, 448(2-3): L201-L206
    44 Dus R., Nowicka E., Atomic deuterium (hydrogen) adsorption on thin silver films, Prog. Surf. Sci., 2003, 74(1): 39-56
    45 Wong Y. W., Hill F. B., Separation of hydrogen isotopes via single column pressure swing adsorption, Chem. Eng. Commun. 1982, 15(5-6): 343-356
    46 Samsun B. M., Fukada S., Fujiwara H., Hydrogen isotope absorption amount and rate of Pd- Al2O3 pellets, Int. J. Hydrogen Energy, 2001, 26(2): 225-229
    47 Thomas C. O., Smith H. A., Gas chromatography with hydrogen and deuterium, J. Phys. Chem., 1959, 63(3): 427-432
    48 唐涛, 陆光达, 钯-氢体系的物理化学性质, 稀有金属, 2003, 27(2): 278-285
    49 Knapton A. G., Palladium alloys for H diffusion membranes, Platinum Met. Rev., 1977, 21(2): 44-50
    50 孙东升, 张昭良, 李国勋, 贮氢合金应用研究近况, 功能材料, 1997, 28(2): 215-220
    51 郑元庆, 余守志, 彭亦如, 贮氢合金的开发与研究进展, 河南科学, 1998, 16(4): 422-428
    52 胡子龙, 贮氢材料,北京: 化学工业出版社, 2002, 45-177
    53 Watanabe K., Matsuyama M., Kobayshi T., et al., Gas chromatographic separation of H2-D2 mixtures by Pd-Pt alloy near room temperature, J. Alloys Comp., 1997, 257(1-2): 278-284
    54 Jin Y., Hara M., Wan J. L., et al., Isotope effects on hydrogen absorption by Pd ? 4at.%Pt alloy, J. Alloys Comp., 2002, 340(1-2): 207-213
    55 Tosti S., Violante V., Numerical approach for a study of the hydrogen isotopes separation by palladium alloy membrane, Fusion Eng. Des., 1998, 43(1): 93-100
    56 Luo D. L., Shen C. S., Meng D. Q., Hydrogen isotope separation factors on palladium alloy membranes, Fusion Sci. Technol., 2002, 41(3): 1142-1145
    57 Fukada S., Fuchinoue K., Nishikawa M., Hydrogen isotope separation using particle beds of LaNi3Al2 hydride, J. Alloy Comp., 1993, 201(1-2): 49-55
    58 Jiuxin Q., Xiaoping D., Chaogui Z., et al., Hydrogen and deuterium absorption in LaNixMny, Int. J. Hydrogen Energy, 1986, 11(2): 129-131
    59 Heung L. K., Tran R. S., Stoner K. J., Metal hydride compacts for hydrogen isotope separation, J. Less-Common Metals, 1991, 174(1-2): 1313-1319
    60 Sakaguchi H., Yagi Y., Shiokawa J., et al., Hydrogen isotope separation using rare earth alloy films deposited on polymer membranes, J. Less-Common Metals, 1989, 149(1-2): 185-191
    61 Huang T. J, Hill F. B., Hydrogen isotope separation by a metal hydride process, J. Chin. Inst. Chem. Eng., 1984, 15(1): 41-48
    62 Yawny A., Friedlmeier G., Bolcich J. C., Hydrides for hydrogen-deuterium separation, Int. J. Hydrogen. Energy, 1989, 14(8): 587-597
    63 Tamura T., Katano Y., Kamegawa A., et al., Isotopes effects on protium and deuterium absorption properties in Ti ? 56 at%Cr?20at%Valloy, Mater. Trans., 2004, 45(4): 1355-1359
    64 Cho S. W., Akiba E., Nakamura Y., et al., Hydrogen isotope effects in Ti1.0Mn0.9V1.1 and Ti1.0Mn1.5V1.7 alloys, J. Alloy Comp., 2000, 297(1-2): 253- 260
    65 王和义, 傅依备, 钯基合金膜应用研究进展, 膜科学与技术, 2002, 22(5): 41- 45
    66 Andreev B. M., Magomedbekov E. P., Separation of hydrogen isotopes by chemical isotopes by chemical isotope exchange in systems involving metal and intermetallic compound hydrides, Sep. Sci. Technol., 2001, 36(8): 2027-2086
    67 王新华, 陈长聘, 氢化物氢同位素分离, 材料导报, 1998, 12(3): 24-27
    68 Beck J. S., VartUli J. C., Roth W. J., et al., A New family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 1992, 114(27), 10834-10843
    69 Kresge C.T., Leonowicz M.E., Roth W.J., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359(4): 710-712
    70 Reddy E. P., Davydov L., Smirniotis P. G., Characterization of titania loaded V-, Fe-, and Cr-incorporated MCM-41 by XRD, TPR, UV-vis, Raman, and XPS techniques, J. Phys. Chem. B, 2002, 106(13): 3394-3401
    71 Chen L.Y., Ping Z., Chuah G.K., et al., A comparison of post-synthesis alumination and sol-gel synthesisof MCM-41 with high framework aluminum content, Microporous and Mesoporous Materials, 1999, 27(2-3): 231-242
    72 Yuan Z., Zhou W., A novel morphology of mesoporous molecular sieves MCM-41, Chem. Phys. Lett., 2001, 333(6): 427-431
    73 Díaz I., Alvarez C., Mohino F., et al., A novel synthesis route of well, sulfur-bearing MCM-41 catalysts involving mixtures of neutral and cationic surfactants, Microporous and mesoporous Materials, 2000, 44-45(1): 295-302
    74 Carrott M.M.L.Ribeo, Candeias A.J.E., Carrott P.J.M., et al., Adsorption of nitrogen, neopentane, n-hexane,benzene and methanol for the evaluation of pore sizes in silica grades of MCM-41, Microporous and mesoporous Materials, 2001, 47(2-3): 323-337
    75 Huo Q.S., Margolese D. I., Stucky G. D., Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem. Mater., 1996, 8(5): 1147- 1160
    76 Takahashi H., Li B., Sasaki T., Miyazaki C., et al., Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica, Chem. Mater., 2000, 12(11): 3301- 3305
    77 Zhao D.Y., Huo Q.H, Feng J.L., et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered hydrothermally stable mesoporous silica structures, J. Am. Chem. Soc., 1998, 120(24): 6024-6036
    78 Zhao D. Y., Feng J., Huo Q., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores, Science, 1998, 279(4): 548-552
    79 Joo S. H., Ryoo R., Kruk M., et al., Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates, J. Phys. Chem. B, 2002, 106(18): 4640-4646
    80 Morishige K, Tateishi N, Fukuma S., Capillary condensation of nitrogen in MCM-48 and SBA-16, J. Phys. Chem. B, 2003, 107(22): 5177-5181
    81 Ryoo R., Joo S. H., Jun S., Synthesis of highly ordered carbon molecular sieves via template-mediatiated structural transformation, J. Phys. Chem. B, 1999, 103(37): 7743-7746
    82 Ohkubo T., Miyawaki J., Kaneko K.,et al., Adsorption Properties of Templated Mesoporous Carbon (CMK-1) for Nitrogen and Supercritical MethanesExperiment and GCMC Simulation, J. Phys. Chem. B, 2002, 106(25): 6523-6528
    83 Kim J. Y., Yoon S. B., Yu J. S., Template synthesis of a new mesostructured silica from highly ordered mesoporous carbon molecular sieves, Chem. Mater., 2003, 15(10): 1932-1934
    84 Kruk M., Jaroniec M., Ryoo R., et al., Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates, J. Phys. Chem. B, 2000, 104(33): 7960-7968
    85 Joo R. R., Kruk S. H., Jaroniec M. M., Ordered mesoporous carbons, Adv. Mater. 2001, 13(4): 677-681
    86 Solovyov L. A., Shmakov A. N., Zaikovskii V. I., et al., Detailed structure of the hexagonally packed mesostructured carbon material CMK-3, Carbon, 2002, 40(13): 2477-2481
    87 Zhou H., Zhu S., Honma I., Seki K., Methane gas storage in self-ordered mesoporous carbon (CMK-3), Chem. Phys. Lett., 2004, 396(4-6): 252-255
    88 Parmentier J.,Saadhallah S., Reda M., et al., New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes, J. Phys. Chem. Solids, 2004, 65(1): 139-146
    89 Dolle F. E., Morfin I., Geissler E., et al., Small-angle X-ray scattering and electron microscopy investigation of silica and carbon replicas with ordered porosity, Langmuir, 2003, 19(10): 4303-4308
    90 Vinu A., Streb C., Murugesan V., et al., Adsorption of cytochrome C on new mesoporous carbon molecular sieves, J. Phys. Chem. B, 2003, 107(33): 8297-8299
    91 Carlsson A., Kaneda M., Sakamoto Y., The structure of MCM-48 determined by eletron crystallography, J. Electron Microsc., 1999, 48(4): 795-798
    92 Schumacher K., Grun M., Unger K. K., Novel synthesis of spherical MCM-48, Microporous Mesoporous Mater, 1999, 27(2-3): 201-206.
    93 Kaneda M., Tsubakiyama T., Carsson A., Structural study of mesoporous MCM-48 and carbon networks synthesized in spaces of MCM-48 by electron crystallography, J. Phys. Chem. B, 2002, 106(6):1256-1266
    94 Joo S. H., Choi S. J., Kwak O. I, et al., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 2001, 412(1): 169-172
    95 Solovyov L. A., Kim T. W., Kleitz F., et al., Comprehensive structure analysis of ordered carbon nanopipe materials CMK-5 by X-ray diffraction and electron microscopy, Chem. Mater., 2004, 16(11): 2274-2281
    96 Lu A.H., Li W. C., Schmidt W. , et al., Easy synthesis of an ordered mesoporous carbon with a hexagonally packed tubular structure, Carbon, 2004, 42(14): 2939-2948
    97 Darmstadt H., Roy C., Kaliaguine S., et al., Surface and pore structures of CMK-5 ordered mesoporous carbons by adsorption and surface spectroscopy, Chem. Mater., 2003, 15(17): 3300-3307
    98 Kruk M., Jaroniec M., Kim T. W., et al., Synthesis and characterization of hexagonally ordered carbon nanopipes, Chem. Mater., 2003, 15(14): 2815-2823
    99 王巍, 赵瑞雪, 陈明贵, 近年来分子筛研究的某些进展, 长春理工大学学报,2003, 26(1): 35-38
    100 徐如人, 庞文琴, 于吉红等, 分子筛与多孔材料化学, 北京: 科学出版社, 2004, 1-113, 528-630
    101 Avelino C., From microporous to mesoporous molecular sieves materials and their use in catalysis, Chem. Rev., 1997, 97(6): 2373-2419
    102 Zhang D, Kodama A, Goto M, et al., Kinetics in hydrogen isotopes cryogenic adsorption, Sep. Purf. Techonol., 2004, 37(1): 1-8
    103 Zhang D. H., Kodama A., Goto M., et al., Hydrogen isotopes separation by cryogenic adsorption, Proceedings of APCCHE, Christchurch, New Zealand, September 29-October 4, 2002, 736-741
    104 Willms R., Practical scale tests of cryogenic molecular sieve for separating. Low concentration hydrogen isotopes from helium, Fusion Eng. Res., 1995, 28 (2): 386- 390
    105 Kotoh K., Nishikawa T., Kashio Y., Multi-component adsorption characteristics of hydrogen isotopes on synthetic zeolite 5A at 77.4K, J. Nucl. Sci. Technol., 2002, 39(4): 435-441
    106 Sugiyama T., Asakura Y., Uda T., et al., Measurement of breakthrough curves on pressure swing adsorption for hydrogen isotope separation, Fusion Sci. Technol., 2005, 48(1): 163-166
    107 钟正坤, 刑丕峰, 王昌斌, 低温吸附法分离氦气流中氢同位素的实验研究, 核技术, 2003, 26(6): 436-439
    108 Challa S. R., Sholl D. S., Johnson J. K., Adsorption and separation of hydrogen isotopes in Carbon nanotubes: multicomponent grand canocical Monte Carlo simulations, J. Chem. Phys., 2002, 116(2): 814-824
    109 Hathorn B. C., Sumpter B. G., et al., Contribution of restricted rotors to quantum sieving of hydrogen isotopes, Phys. Rev. A, 2001, 64(2): 022903-7
    110 Su W., Zhou L., Zhou Y. P., Preparation of microporous activated carbon from coconut shells without activating agents, Carbon, 2003, 41(4): 861-863
    111 周理,周亚平, 垃圾焚烧炉耦合活化炉制备高表面活性炭的方法, 发明专利(中国): 02117917. 4
    112 周理, 吕昌忠, 王怡林等, 述评超临界温度气体在多孔固体上的物理吸附, 化学进展, 1999, 11(3): 221-226
    113 Zhou L., Zhang J. S., Zhou Y. P., A simple isotherm equation for modeling the adsorption equilibria on porous solids over wide temperature ranges, Langmuir, 2001, 17(18): 5503-5507
    114 李明, 周理, 吴琴, 多组份气体吸附平衡理论研究进展, 化学进展, 2002, 14(2): 93-97
    115 Tanaka H., Kanoh H., Yudasaka M., et al., Quantum effects on hydrogen isotope adsorption on single-walled nanohorns, J. Am. Chem. Soc., 2005, 127 (20): 7511- 7516
    116 周亚平,冯奎,孙艳等, 述评碳纳米管贮氢研究, 化学进展, 2003, 15(5): 345- 350
    117 Fukada S., Samsun M., Fujiwara H., Hydrogen absorption-desorption cycle experiment of Pd- Al2O3 pellets, Int. J. Hydrogen Energy, 2002, 27(2): 177-181
    118 Strzelczyk F., Leterq D., Wilhelm A. M., et al., Gas-solid chromatographic separation of hydrogen isotopes: a comparison between two palladium bearing materials-alumina and kieselguhr, J. Chromatogr. A, 1998, 822(2): 326-331
    119 Stanciu V., Stefanescu D., David E., Chemically modified glasses for analysis of hydrogen isotopes by gas-chromatography, J. Mater. Proc. Technol., 2001, 118(2): 309-315
    120 Kawamura Y., Iwai Y., Yamanishi T., et al., Analysis of hydrogen isotopes with a micro gas chromatograph, Fusion Eng. and Des., 2000, 49-50(1): 855-861
    121 Kawamura Y., Sonishi S., Nshi M., Development of a micro gas chromatograph for the analysis of hydrogen isotope gas mixtures in the fusion fuel cycle, Fusion Eng. and Des., 2001, 58-59(1): 389-394
    122 Chu X. Z., Zhou Y. P., Zhou L., et al., Adsorption of hydrogen isotopes on micro- and mesoporous adsorbents with orderly structure, J. Phys. Chem. B, 2006, 110(45): 22596-22600
    123 Cheng T. B., Jiang Y., Zhang Y. P., et al., Prediction of breakthrough curves for adsorption on activated carbon fibers in a fixed bed, Carbon, 2004, 42(15): 3081-3085
    124 戴先知, 刘应书, 变压吸附过程数学模型及其应用, 低温与特气, 2006, 24(1): 31- 41
    125 吴加全,多组份气体混合物在多孔固体上吸附平衡研究:[天津大学博士论文],天津:天津大学,2006
    126 Barrer R M.,Intracrystalline Diffusion, in Adv. Chem. Ser., vol. 102, Gould R F. ed., ACS, 1971, 1-52
    127 Sircar S., Hufton J. R., Why does the linear driving force model for adsorption kinetics work?, Adsorption, 2000, 6(1): 137-147
    128 Karger J., Ruthven D. M., Diffusion in Zeolites, New York, Wiley Interscience, 1992, 1-86
    129 Crank J., Mathematics of Diffusion, London: Oxford University Press, 1956, 1-79
    130 Okoye I. P., Benham M., Thomas K. M., Adsorption of gases and Vapors on carbon molecular sieves, Langmuir, 1997, 13(15): 4054-4059
    131 Ried C. R., Thomas K M., Adsorption of gases on a carbon Molecular sieve used for air separation: Linear adsorptives as probes for kinetic selectivity, Langmuir, 1999, 15(9): 3206-3218
    132 Sircar S.,Hufton J. R., Intraparticle adsorbate concentration profile for linear driving force model, AIChE J., 2000, 46(3): 659-660
    133 Ruthven D. M., The rectangular isotherm model for adsorption kinetics, Adsorption, 2000, 6(2): 287-291
    134 Brauch V., Schlunder E. U., The scale-up of activated carbon columns for water purification based on results from batch test, Chem. Eng. Sci., 1975, 30(2): 539- 548
    135 Chagger H. K., Ndaji F. E., Sykes M. L., Thomas K M. Kinetics of adsorption and diffusional characteristics of carbon molecular sieves, Carbon, 1995, 33(10): 1405-1411
    136 Skaratrom C. W., Use of phenomena in automatic plant-type gas analyzers, Ann. N. Y. Acad. Sci., 1959, 72(4): 751-763
    137 Rsjasree R., Moharir A. S., Simulation based synthesis, design and optimization of pressure swing adsorption processes, Computers and Chem. Eng., 2000, 24(11): 2493-2505
    138 Farooq S., Ruthven D. M., Boniface H A. Numerical simulation of a pressure swing adsorption oxygen unit, Chem. Eng. Sci., 1989, 44(11): 2809-2816
    139 Zeng R., Guan J., Progress in pressure swing adsorption models during the recent 30 years, Chinese J. Chem. Eng., 2002, 10(2): 228-235
    140 Raghavan N. S., Hassan M. M., Ruthven D M. Numerical simulation of a PSA system using a pore diffusion model, Chem. Eng. Sci., 1986, 41(11): 2787-2793
    141 Shendalman L. H., Mitchell J. E., A study of heatless adsorption in the model system CO2 in He, Chem. Eng. Sci., 1972, 27(7): 1449-1458
    142 Weaver K., Hamrin C. E. J., Separation of hydrogen isotopes by heatless adsorption, Chem. Eng. Sci., 1974, 29(9): 1873-1882
    143 Fernandez G. F., Kenny C. N., Modeling of the pressure swing air separation process, Chem. Eng. Sci., 1983, 38(6): 827-830
    144 Chan Y. N. I., Hill F. B., Wong Y. W., Equilibrium theory of a pressure swing adsorption process, Chem. Eng. Sci., 1981, 36(1): 243-251
    145 Shendalman L. H., Mitchell J. E., A study of heatless adsorption in the model system CO2 in He, Chem. Eng. Sci., 1972, 27(6): 1449-1458
    146 Knaebel K. S., Hill F. B., Pressure swing adsorption: Development of an equilibrium theory for gas separations, Chem. Eng. Sci., 1985, 40(12): 2351-2360
    147 Kayser J. C., Knaebel K. S., Pressure swing adsorption: Development of an equilibrium theory, Chem. Eng. Sci., 1986, 43(11): 2931-2938
    148 Yang R. T., Doong S. J., Bulk separation of multicomponet gas mixtures by pressure swing adsorption: Pore/Surface diffusion and equilibrium models. AIChE J., 1986, 32(3): 397-410
    149 Underwood R. P., A model of a pressure swing adsorption process for nonlinear adsorption equilibrium. Chem. Eng. Sci., 1986, 41(2): 409-411
    150 Kayser J. C., Knaebel K. S., Pressure swing adsorption: Development of an equilibrium theory for binary gas mixtures with nonlinear isotherms. Chem. Eng. Sci., 1989, 44(1): 1-8
    151 Lu X., Madey R., Rothstein D., Jaroniec M., Pressure swing adsorption for a system with a Langmuir-Freudlish isotherm. Chem. Eng. Sci., 1990, 45(4): 1097- 1103
    152 Sub S. S., Wankat P. C., Pressure swing adsorption process for binary gas separation with Langmuir isotherms. Chem. Eng. Sci., 1989, 44(10): 2407-2410
    153 Serbezov A., Sotirchos S. V., Semianalytical solution for multicomponent PSA: application to PSA process design, Sep. Purif. Technol., 2003, 31(2): 203-223
    154 Turnock P. H., Kadlec R. H., Separation of nitrogen and methane via periodic adsorption. AIChE J., 1971, 17(2): 335-342
    155 Kowler D. E., Kadlec R. H., The optimal control of a periodic adsorber. AIChE J., 1972, 18(6): 1207-1219
    156 Sundaram N., Wankat P., Pressure drop effects in the pressurization and blowdown steps of pressure swing adsorption. Chem. Eng. Sci., 1988, 43(1): 123- 129
    157 Rousar I., Ditl P., Optimization of pressure swing adsorption equipment. Part II. Optimization of two-bed oxygen generation, Chem. Eng. Comm., 1988, 70(1): 93- 103
    158 Matz M. J., Knaebel K. S., Pressure swing adsorption: Effects of incomplete purge, AIChE J., 1988, 34(9): 1486-1492
    159 Tańczyk M., Warmuziński K., Multicomponent pressure swing adsorption Part II. Experimental verification of the model, Chem. Eng. Proc., 1997, 37 (2): 301-315
    160 Doong S. J., Yang R. T., Bidisperse pore diffusion model for zeolite pressure swing adsorption, AIChE J., 1987, 33(6): 1045-1049
    161 Yang R. T., Doong S. J., Gas separation by pressure swing adsorption: A pore-diffusion model for bulk separation, AIChE J., 1985, 31(11): 1829-1842
    162 Shin H. S., Knaebel K. S., Pressure swing adsorption: an experimental study of diffusion-induced separation, AIChE J., 1988, 34(9):1409-1416
    163 Hassan M. M., Raghavan N. S., Ruthven D. M., Air separation by pressure swing adsorption on a carbon molecular sieve, Chem. Eng. Sci., 1986, 41(5): 1333-1343
    164 Liaw C. H., Wang J. S. P., Greenkorn R. A., et al., Kinetics of fixed-bed adsorption: A new solution, AIChE J, 1979, 25(4): 376-381
    165 Ruthven D. M., Farooq S. Air separation by pressure swing adsorption, Gas Sep. Purif., 1990, 4(1): 141-148
    166 Zhu B. L., Wang X. S., Heat transfer in a packed bed-Temperature distribution of bed, J. Chem. Ind. Eng., 1957, 8, 51-72 (Chinese)
    167 Ding J. Q., Zhu B. L., An application of electrical analogue method to measure elution curves of a chromatograph column-Examining in the relationship of parameters in a linear chromatograph column, J. Chem. Ind. Eng., 1960, 11, 46-60 (Chinese)
    168 Crittenden B. D., Guan J., Ng W. N. et al., Dynamics of pressurization and depressurization during pressure swing adsorption, Chem. Eng. Sci, 1994, 49(16): 2657-2669
    169 Crittenden B. D., Guan J., Ng W. N. et al., Pressure, concentration and temperature profile in a 5A zeolite adsorbent bed during pressurization and depressurization with air, Chem. Eng. Sci, 1995, 50(9): 1417-1428
    170 Guan J., Ye Z., Analog circuit for simulation of pressure swing adsorption, Chem. Eng. Sci, 1990, 45(10): 3063-3069
    171 Guan J., Ye Z., Analog circuit for simulation of pressure swing adsorption: kinetic model, Chem. Eng. Sci, 1993, 48(15): 2821-2823
    172 Lewandowaki J., Lemcoff N. O., Palosaari S., Use of neural networks in the simulation and optimization of pressure swing adsorption, Chem. Eng. Technol., 1998, 21(7): 593-597
    173 Samdaram N., Training neutral networks for pressure swing adsorption process, Ind. Eng. Chem. Res., 1999, 38(11): 4449-4457
    174 Katorski A., White D., Theory of adsorption of the isotopic hydrogen molecules at low temperature, J. Chem. Phys., 1964, 40(11): 3183-3193
    175 White D., Lassettre E. N., Theory of orotho-para hydrogen separation by adsorption at low temperatures, isotope separation, J. Chem. Phys., 1960, 32(1): 72-83
    176 Myers A. L., Comparison of molecular simulation of adsorption with experiment, Adsorption, 1997, 3(2): 107-115
    177 Lee S. M., Lee Y. H., Hydrogen storage in single-walled carbon nanotubes, Appl. Phys. Lett., 2000, 76(20): 2877-2879
    178 Darkrim F., Levesque D., High adsorptive property of opened nanotubes at 77 K, J. Phys. Chem. B, 2000, 104(29): 6773-6776
    179 Zuttel A., Sudan P., Mauron P., et al., Hydrogen storage in carbon nanostructure, Int. J. Hydrogen Energy, 2002, 27(2): 203-212
    180 Yang R. T., Gas separation by adsorption process, New York: Butterworth Publishers, 1987, 1-105
    181 张莉, 钟正坤, 朱志艳等, 氢同位素双原子分子的解析势能函数, 化学物理学报, 2003,16(6):455-458
    182 Murrell J. N., Carter S., Farantos S. C., et al., Molecular Potential Energy Functions, New York: Wiley Interscience Publication, 1984, 1-96
    183 朱正和, 俞华根, 分子结构与分子势能函数, 北京:科学出版社, 1997, 1-20
    184 Sazonov A. B., Kagramanov Z. G., Magomedbekov E. P., et al., Simulation of cryogenic rectification of tritium-containing isotopic hydrogen mixture, Atomic Energy, 2001, 91(3): 721- 731
    
    185 Challa S. R., Sholl D. S., Johnson J. K., Light isotope separation in carbon nonotubes through quantum molecular sieving, Phys. Rev. B, 63(24-25): 245419-1~9
    186 Wang Q. Y., Challa S. R., Sholl D. S., et al., Quantum sieving in carbon nanotubes and zeolites, Phys. Rev. Lett., 1999, 82(5): 956-959
    187 Hathorn B. C., Sumpter B. G., Noid D. W., Contribution of restricted rotors to quantum sieving of hydrogen isotopes. Phys. Rev. A, 64(23): 022903-1-7
    188 Gregg S. J., Sing K. S. W., Adsorption surface area and porosity, 2nd ed. Suffolk: St Edmundsbury Press, 1982, 1-25
    189 Rouquerol F., Rouquerol J., Sing K., Adsorption by powders and porous solids, London: Academic Press, 1999, 165-179
    190 Sing K. S. W., Adsorption methods for the characterization of porous materials, J. Coll. Int. Sci., 1998, 76~77(1): 3-10
    191 Diaz L., Hernandez-Huesca R., Aguilar-Armenta G., Characterization of the microporous structure of activated carbons through different approaches, Ind. Eng. Chem. Res., 1999, 38(4): 1396-1399
    192 Kruk M., Jaroniec M., Choma J., Comparative analysis of simple and advanced sorption methods for assessment of microporosity in activated carbons, Carbon, 1998, 36(10): 1447-1458
    193 Setoyama N., Suzuki T., Kaneko K., Simulation study on the relationship between a high resolution αs-plot and the pore size distribution for activated carbon, Carbon, 1998, 36(10): 1459-1467
    194 Span R., Wagner W., A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressure up to 800MPa, J. Phys. Chem. Ref. Data, 1996, 25(6): 1509-1595
    195 Soule A. D., Smith C.A., Yang X., Lira C. T., Adsorption modeling with the ESD equation of state, Langmuir, 2001, 17(10): 2950-2957
    196 Rangarajan B., Lira C. T., Subramanian R., Simplified local density model for adsorption over large pressure ranges, AIChE, 1995, 41(4): 838-845
    197 Zhou L., Yao J., Wang Y., Estiamtion of pore size distribution by CO2 adsorption and its application in physical activation of precursors, Chinese J. Chem. Eng., 2000, 8(3): 279-282
    198 苏伟,椰壳基微孔活性炭制备与表征研究:[天津大学博士论文],天津:天津大学,2003
    199 Naik Y., Rao R. G. A., Venugopal V. J., Separation of hydrogen isotopes by gas chromatography using a vanadium oxide coated molecular sieve (4A) packed column, Radioanalytical Nucl. Chem., 2001, 247(1): 11-14
    200 Carter E. H., Smith H. A., The separation of hydrogen, hydrogen deuteride, tritium hydride, deuterium, tritium derteride, and tritium mixtures by gas chromatography, J. Phys. Chem., 1963, 67(7): 1512-1516
    201 Degtyareva O. F., Bondareva L. T., Gas-chromatographic analysis of mixtures of hydrogen isotopes, J. Anal. Chem., 2004, 59(5): 442-446
    202 Hunt P. P., Smith H. A., Separation of hydrogen, hydrogen deuteride and deuterium mixture by gas chromatography, J. Phys. Chem., 1960, 64(3): 383-384
    203 Hunt P. P., Smith H. A., The separation of hydrogen, deuterium and hydrogen deuteride mixture by gas chromatography, J. Phys. Chem., 1961, 65(1): 87-89
    204 Moore W. R., Ward H. R., Gas-solid chromatography of H2, HD, and D2. Isotopic separation and heats of adsorption on alumina, J. Phys. Chem., 1960, 64(6): 832- 832
    205 Zhou L., Liu X. W., Li. J. W., et al., Methane sorption in ordered mesoporous silica SBA-15 in the presence of water, J Phys. Chem. B, 2005, 109(48), 22710- 22714
    206 Liu X. W., Li. J. W., Zhou L., et al., Mesoporous silica adsorbents synthesis, characterization, and their adsorption equilibrium properties for CO2, N2 and CH4, Chemical Physics Letters, 2005, 415(4-6): 198-201
    207 Zhou L., Liu X. W., Li. J. W., et al., Synthesis of ordered mesoporous carbon molecular sieve and its adsorption capacity for H2, N2, O2, CH4 and CO2, Chemical Physics Letters, 2005, 413 (1-3): 6-9
    208 Liu X. W., Zhou L., Li. J. W., et al., Methane sorption on ordered mesoporous carbon in the presence of water, Carbon, 2006, 44(8): 1386-1392
    209 孙艳,储气材料及其储能性质的实验研究:[硕士学位论文],天津:天津大学,2001
    210 Impéror C. M., Davidson P., Davidson A., Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers, J. Am. Chem. Soc., 2000, 122(48): 11925-11933
    211 Ryoo R., Ko C. H., Kruk M., et al., Block-copolymer-templated ordered mesoporous silica: array of uniform mesopores or mesopore-micropore network, J. Phys. Chem. B, 2000, 104(48): 11465-11471
    212 Zhou L., Zhou Y. P., Sun Y., Enhanced storage of hydrogen at the temperature of liquid nitrogen, Int. J. Hydrogen Energy, 2004, 29(3): 319-322
    213 Darkrim F., Levesque D., Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes, J. Chem. Phys., 1998, 109(12): 4981-4984
    214 Rzepka M., Lamp P., de la Casa-Lillo M. A., Physisorption of hydrogen on microporous carbon and carbon nanotubes, J. Phys. Chem. B, 1998, 102(52): 10894-10898
    215 Wang Q. Y., Johnson J. K., Optimization of carbon nanotube arrays for hydrogen adsorption, J. Phys. Chem. B, 1999, 103(23): 4809-4813
    216 Kowalczyk P., Tanaka H., Holyst R., et al., Storage of hydrogen at 303K in graphite slitlike pores from grand canonical Monte Carlo simulation, J. Phys. Chem. B, 2005, 109(36): 17174-17183
    217 张超, 鲁雪生, 顾安忠, 天然气和氢气吸附储存吸附热研究现状, 2004, 25(2): 249-253
    218 肖锦堂, 用作汽车燃料的天然气低压吸附储存系统的开发和研究, 天然气工业, 1996, 16(1): 65-69
    219 周亚平, 周理, 超临界氢在活性炭上的吸附等温线研究, 物理化学学报, 1997, 13(2): 119-127
    220 周理, 周亚平, 关于氢在活性炭上高压吸附特性的实验研究, 中国科学 B 辑, 1996, 26(5): 473-479
    221 Ruthven D. M., Principles of Adsorption and Adsorption Processes, New York: John Wiley & Sons, 1984, 29-85
    222 Zhou L., Progress and problems in hydrogen storage methods, Renewable & sustainable energy reviews, 2005, 9(4): 395-408
    223 Zhou L., Zhou Y. P., Sun Y., Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials, Int. J. Hydrogen Energy, 2006, 31 (2): 259-264
    224 Zhou L., Sun Y., Zhou Y. P., Storage of hydrogen on carbon materials: Experiments and analyses, Chem. Eng. Commun. 2006, 193 (5): 564-579
    225 Zhou L., Zhou Y. P., Sun Y., A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes, Int. J. Hydrogen Energy, 2004, 29(5): 475-479
    226 Str?bel R., J?rissen L., Schliermann T., et al., Hydrogen adsorption on carbon materials. J. Power Source, 1999, 84(2): 221-224
    227 Nijkamp M. G., Raaymakers J. E. M. J., van Dillen A. J., et al.m, Hydrogen storage using physisorption-materials demands, Appl. Phys. A, 2001, 72(5): 619- 623
    228 Zhang D. H., Kodama A., Goto M., et al., Recovery of trace hydrogen by cryogenic adsorption, Sep. Purif. Techonol., 2004, 35(2):105-112
    229 Sircar S., Golden T. C., Purification hydrogen by pressure swing adsorption, Sep. Sci. Technol., 2000, 35(5): 667-687
    230 Xie Y. C., Zhang J. P., Tong X. Z., et al., High efficiency CO adsorbent CuCl/Zeolite, Chem. J. Chin. Univer., 1997, 18(7):1159-1165
    231 Wang C. M., Zhao B. Y., Xie Y. C., Advances in the studies of spontaneous monolayer dispersion of oxides and salts on supports, Chin. J. Catal., 2003, 24(6): 475-482
    232 Williams K. A., Ekllund P. C., Monte Carlo simulation H2 physisorption in finite-diameter carbon nanotube ropes, Chem. Phys. Lett., 2000, 320(1-3): 352- 358
    233 Ayappa K. G., Influence of temperature on mixture adsorption in carbon nanotubes: a grand canonical Monte Carlo study, Chem. Phys. Lett., 1998, 282 (1-3): 59-63
    234 Steele W., The interaction of gases with solid surfaces, Pergamon: oxford, 1974
    235 Do D. D., Adsorption analysis: Equilibria and Kinetics, London: Imperial College Press, 1998, 82-83, 290-300
    236 Cheng H. C., Hill F. B., Separation of Helium-Methane mixtures by pressure swing adsorption, AIChE J., 1985, 31(1): 95-102
    237 熊洪允, 曾绍标, 毛云英, 应用数学基础, 天津: 天津大学出版社, 1994
    238 Malek. A., Farooq S., Effect of velocity variation due to adsorption-desorption on equilibrium data from breakthrough experiments, Chem. Eng. Sci., 1995, 50(4), 727-740
    239 Malek. A., Farooq S., Kinetics of Hydrocarbon Adsorption on Activated Carbon and Silica gel, AIChE. J., 1997, 43(3), 761-776
    240 Malek. A., Farooq S., Determination of equilibrium isotherms using dynamic column breakthrough and constant flow equilibrium desorption, J. Chem. Eng. Data, 1996, 41(1), 25-32
    241 Kapoor A., Yang R. T., Roll-up in fixed-bed, multicomponent adsorption under pore-diffusion limitation, AIChE. J., 1987, 33(7), 1215-1217
    242 Mayfield P. L. J., Do D. D., Measurement of the single-component adsorption kinetics of ethane, butane, and pentane onto activated carbon using a differential adsorption bed, Ind. Eng. Chem. Res., 1991, 30(6),1262-1270
    243 Hu X. J., Do D. D., Effect of surface energetic heterogeneity on the kinetics of adsorption of gases in microporous activated carbon, Langmuir, 1993, 9(10), 2530-2536
    244 Richard S. T., Paul A. W., Limitations of the LDF/Equimolar counter diffusion assumption for mass transport within porous adsorbent pellet, Chem. Eng. Sci., 2002, 57(19): 4227-4242
    245 Nishikawa M., Tanaka K. I., Uetake M., Mass transfer coefficients in cryosorption of hydrogen isotopes on molecular sieves or activated carbon at 77.4 K, Fusion Technol., 1995, 28(4): 1738-1748
    246 Assael M. J., Mixafendi S., Wakeham W. A., The viscosity of Normal Deuterium in the limit of zero density, J. Phys. Chem. Ref. Data, 1987, 16(2):189-193
    247 贾绍义, 柴诚敬, 化工传质与分离过程,北京: 化学工业出版社, 2001, 32 -38
    248 Jothimurugesan K., Harrison D. P., Reaction between H2S and zinc oxide- titanium oxide sorbents. 2. Single-pellet sulfidation modeling, Ind. Eng. Chem. Res., 1990, 29 (7): 1167-1172
    249 Schiesser W. E., The numerical methods of lines: Integration of partial differential equations, San Diego: Academic Press, 1991, 1-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700