用户名: 密码: 验证码:
基于三角转子发动机和微生物燃料电池的微小型电源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机电系统(MEMS)的快速发展,为MEMS提供电能的微小型功率器件(PowerMEMS)逐步得到了广泛的研制。为研制微能源系统,本文提出的微小型三角转子发动机发电装置和微小型微生物燃料电池两个不同的方案:微小型三角转子发动机发电装置以液态烃为燃料的微小型三角转子发动机带动微型电机发电,与其他发电装置相比,具有能量密度高,输出稳定可控等优点。而微小型微生物燃料电池则是通过微生物如酵母菌分解葡萄糖的产电效应来发电的,其特点是:原料容易获得且成本很低可再生无污染,不存在燃烧现象无爆炸等潜在危险,发热量极小,可以长期运行等。
     论文的主要内容包括两大部分内容:
     第一部分包括第二到第四章,通过对微尺度燃烧理论研究,分析微尺度条件下燃烧过程中着火和熄火的热力条件和考虑熄火距离对燃烧的影响,结合转子发动机结构原理、工作原理的研究,通过热应力仿真并参照前期实验经验,提出了基于热应力的微小型三角转子发动机型线方程的修复方法。在此基础上成功研制厘米级R.Ⅱ样机和毫米级R.Ⅲ样机。R.Ⅱ样机是国内见报导的稳定运行时间最长的微小型三角转子发动机,其内部核心尺寸最大不超过4cm,外形尺寸最大不超过10cm,最大输出功率可达220W,稳定输出功率为150W,单次运行时间超过一小时,并在航模中试用成功。R.Ⅲ样机是国内能成功点火的最小的转子发动机,输出功率可达2.5W,其内部核心尺寸最大不超过8mm,接近国外最高水平。
     第二部分包括第五到第七章,通过对双极腔间接型微生物燃料电池的发电机理研究和各影响因素的实验探讨分析验证,首创采用铁电极作为阳电极,以驯化后第四代Y20酵母菌为菌种,研制成能反复充电、长时间工作、原料易得、绿色无污染的微小型微生物燃料电池M.Ⅱ和M.Ⅲ,其工作时间长短取决于原料的添加量。M.Ⅱ每个容腔容积8 ml,最大输出0.38mW,内阻320欧姆,最大开路电压为0.725V,可稳定输出250min。M.Ⅲ每个容腔容积3.2ml,最大输出0.33mW,内阻325欧姆,最大开路电压为0.682V,可稳定输出120min。在此基础上发现一种全新的微生物燃料电池的实现方式:铁阳电极单腔无隔膜微生物燃料电池。为微生物燃料电池开辟了一个新的方向,相对常见双极腔间接型MFC,它具有迅速达到工作状态、最大输出功率高、内阻小等优点,并且小型化之后内阻没有太大的变化,同时它取消了最昂贵的PEM隔膜,结构简单,成本低廉,容易实现,更适合微小化。当然也存在着稳定输出时间较短等缺点。
The widely use of MEMS prompted the extensive research of Power MEMS. Micro(small) rotary engine-generator device and Micro(small) microbial fuel cell are two difference research programs of Power MEMS.Micro(small) rotary engine-generator device supplied with liquid hydrocarbon has merits of high power density and its output is steady and controllable.In micro(small) microbial fuel cell,microbial such as saccharomyces cerevisiae catabolize glucose and generate electricity,it has merits of cheap material,no pollution,nonexplosive,long life-span for use etc.
     The thesis includes two main parts:
     The first part includes from chapter two to chapter four.In this part,analyzed the thermodynamic condition of ignition and flameout and the influence of quenching distance in micro-combustion,studied the micro-combustion theory and the configuration and work principle of rotary engine.A modified contour of rotary engine was made based on simulation of thermal stress and testing experience.On these bases,a centimeter-size rotary engine R.Ⅱand a millimeter-size rotary engine R.Ⅲwere designed,manufactured and tested.R.Ⅱrotary engine was the small-scale rotary engine which can steady operate for the longest time in China.The internal key size of R.Ⅱdoes not exceed 4 cm,and total size does not exceed 10 cm,the maximal output of R.II was 220W,and its steady output was 150W,can operated more than one hour every test.R.III was the smallest rotary engine in China,its output was 2.5W,the internal key size of R.Ⅲdoes not exceed 8mm.
     The first part includes from chapter five to chapter seven.In this part,studied and analyzed the electrogenesis principle and influence factors of Microbial Fuel Cell(MFC). Two small-scale MFC devices,M.Ⅱand M.Ⅲ,were made.They use iron electrode as positive electrode,the bacteria spawn of them was the Saccharomyces cerevisiae after fourth electron domestication.The cubage of M.II was 8ml,its output was 0.38mW,its internal resistance was 320Ω,its open voltage was 0.725V,M.Ⅱcan steadily working more than 250min.The cubage of M.III was 3.2ml,its output was 0.33mW,its internal resistance was 325Ω,its open voltage was 0.682V,M.II can steadily working more than 120min.In these bases,a new MFC device was found:iron positive electrode and no-PEM MFC device.Relative to conventional MFC,the new one had merits of higher power output, lower internal resistance and cheaper,but its steadily working time was short.
引文
[1]李德胜,王东红,孙金玮,金鹏.MEMS技术及其应用.哈尔滨:哈尔滨工业大学出版社.2002.3.
    [2]刘文耀,杜君文,应济,MEMS的概念及其国内外的研究状况,机械工程师,2001.2
    [3]白木、周洁,浅议微电子机械系统,中国机电工业,2002(12)
    [4]Alan H.Epstein etc.SHIRTBUTTON-SIZED GAS TURBINS:THE ENGINEERING CHALLENGES OF MICRO HIGH SPEED ROTATING MACHINERY,the 8~(th)International Symposium on Transport Phenomena and Dynamics of Rotating Machinery(ISROMAC-8),Honolulu,HI,March 2000.
    [5]张贵钦,微机电系统研究现状及展望,组合机床与自动化加工技术,2002.7
    [6]Lindsay,W.Teasdale,D.Milanovic,V.,Pister K.and Fernandez-Pello,A.C."Thrust and Electrical Power from Solid Propellant Microrockets",IEEE 14th Int.Conf.on MicroElectroMechanical Systems,Interlaken,Switzerland,p.606-610,Jan.2001.
    [7]MartinA.Schmidt,"Technologies for Microturbomachinery," The 11th International Conference on Solid-State Sensors and Actuators,Munich,Germany,June 10-14,2001
    [8]M.W.Losey,R.J.Jackman,S.L.Firebaugh,M.A.Schmidt,K.F.Jensen,"Design and Fabrication of Microfluidic Devices for Multiphase Mixing and Reaction," IEEE,2002.
    [9]钟晓晖,王小雷,勾昱君等,微型三角转子发动机的研制与实验研究,机电工程,2007.5
    [10]日经BP会社,2005年10月9日,全国清洁汽车行动信息网.丰田燃料电池概念车.http://www.cleanauto.com.cn/fenlei/ranliaodianchi/riben/ranliao dianchi2005-10-19-1.htm.
    [11]《新科学家》杂志社,中国能源网,2003年3月31日,喝乙醇的燃料电池.http://www.inventsky.net/0128.asp.
    [12]Park D H,Z.J.G.,Electricity generation in microbial fuel cells using neutral red as an electronophore.Applied and Environmental Microbiology,2000.66(4):p.1292-1297.
    [13]Gil G C,C.I.S.,Kim B H etal.,Operational parameters affecting the performance of a mediator-less microbial fuel cell.Biosensors and Bioelectronics,2003.18:p.327-334.
    [14]G.H.Rohrback,W.R.S.,J.H.Canfield.,Biochemical FuelCells,in In Proceedings of the 16th Annual Power Sources Conference.1962.
    [15]冯雅丽,联.,无介体微生物燃料电池研究进展.有色金属,2005.57(2):p.:47-50.
    [16]Liu H,L.B.E.,Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.Environmental Science and Technology,2004.38(14):p.4040-4046.
    [17]宝珥,吴霞琴,生物燃料电池的研究进展.电化学,2004.10:p.1-8.
    [18]C.F.Thurston,H.P.B.,G.M.Delaney,etal.,GlucoseMetbaolism ina Microbial Fuel Cell.Stoichiomety of Product Formation in a Thionine Mediated Proteus Vulgaris Fuel Cell and its Relation to Coulombic Yields.Gen.Microbiol.,1985.131:p.1393-1401.
    [19]Kano.,T.I.K.,Bioelectmcatalysis-based applieationof quinoproteins and quinoprotein-containing bacterial cells in biosensors andbiofuel ceils.Biochimica et BiophysicaActa,2003.1647(1):p.121-126.
    [20]C,etal.,L.A.M.R.L.S.I.,Interception of the electron transport chain in bacteria with hydrophilic redox me-diators.Chem Res Synop,1986(5):p.178-179.
    [21]韩保祥,毕可万,采用葡萄糖氧化酶的生物燃料电池的研究.生物工程学报,1992.8(2):p.203-206.
    [22]微生物电池向化学能源发起挑战.今日电子,2004(2):p.2.
    [23]李明霞,酵母菌的研究.工业微生物学成就—庆祝方心芳先生八十诞辰.1988,北京:科学出版社.
    [24]Chaudhuri S K,L.D.R.,Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.Nature Biotechnology,2003.21(10):p.1229-1232.
    [25]Nguyet Thu Phung,J.L.,Analysis of Microbial Diversity in Oligotrophic Microbial Fuel Cells Using 16S rDNA Sequences.FEMS Microbiology Letters,2004(233):p.77-82.
    [26]Kim B.H.,P.H.,Enrichment of Microbial Community Generating Electricity Using a Fuel-cell-type Electrochemical Cell.Appl Microbial Biotechnol.,2004(63):p.672-681.
    [27]Gvazzoni G.Millitary Thermoelectric Generator[A].The 1st European Confererce on Thermoelectric[c]Cardiff:U K;1987(9),p.320-311.
    [28]Mastuura K.Rowe DM,Tsvyoshi A,Min G.Large scale thermoelectric generator' s of low grade heat.Proceeding of 10th International Conference on Thermoelectric,Cardiff[C].U.K.1991,p.233-238.
    [29]王华军,韩刚.半导体热电发电技术[J],太阳能,2002(6):p.17-19.
    [30]J.Vican B.F.Gajdeczko.Development of a Microreator as a Thermal Source for MEMS Power Gernration[A].New Concepts in Combustion Technology.The 29th symposium(International) on Combustion,Sapporo,2002.
    [31]Mastuura K.Rowe DM,Tsvyoshi A,Min G.Large scale thermoelectric generator' s of low grade heat.Proceeding of 10~(th) International Conference on Thermoelectric,Cardiff[C].U.K.,1991,233-238
    [32]T.J.Zhu,X.B.Zhao,S.H.Hu,Phase transition of FeSi_2 and Fe_2Si_5 based alloys prepared by melt spinning,J Mater.Sci.Lett.,(submitted)
    [33]T.J.Zhu,X.B.Zhao et al.Transport porperties of β-Zn_4Sb_3semiconductor prepared by vacuum melting[J],Mater.Lett,2000,46(1):44-48
    [34]Werner J.A.Dahm et al."Micro Internal Combustion Swing Engine (MICSE) for Portable Power Generation System" the 40th AIAA Aerospace Sciences Meeting,Reno,NV,January 14-17,2002
    [35]Wenmin Qu,Matthias Pl(o|¨)tner,Wolf-Joachim Fischer.Microfabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous Microsystems[J].Micromech.Microeng,2001(11) 146-152
    [36]李文望,微电子机械系统(MEMS)技术及其应用,鹭江职业大学学报,2001.6
    [37]李德胜,王东红,孙金玮等编著.MEMS技术及其应用.哈尔滨工业大学出版社 2002
    [38]走近MEMS技术(上)(下),电子产品世界,2000年9月
    [39]陈迪,赵旭.LIGA技术及其应用.高技术通讯 1996.9 p.60-62
    [40]陈迪,雷蔚,李昌敏等.DEM技术中微复制工艺研究.微细加工技术2001.1 p.61-65
    [41]赵旭,陈迪,张大成.三维微加工新技术——DEM技术研究 高技术通讯2000.5:p.107-109
    [42]陈迪,张大成,丁桂甫等.DEM技术研究.微细加工技术 1998.4 p.1-6
    [43]李和太,李晔辰,硅片键合技术的研究进展,技术综述,2002年第9期
    [44]C.M.Spadaccini,A.Mehra,J.Lee,X.Zhang,S.Lukachko,and I.A.Waitz,"aigh power density silicon combustion systems for micro gas turbine engines," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,vol.125,p.709-719,2003.
    [45]刘静微米/纳米尺度传热学.北京:科学出版社,2001
    [46]王沫然,李至信,微尺度热科学及其在MEMS中的应用,传感器技术,2002年第7期
    [47]Venkatasubramanian R,Siivo la E,Colpitts T,et al.Thin-film thermoelectric devices with high room temperature figures of merit [J].Nature,2001;413(10):597-602.
    [48]Ghoshal U,Schmidt R.Refrigeration technology for sub-ambient,temperature operation of computing systems[A].Proc ISSCC 2000[C].USA:San Francisco,2000.216-217.
    [49]Yap D-J.In-plane MEMS thermoelectric microcooler[D].UCLA,PhD dissertation.2001.
    [50]Maruta K,Takeda K,Sitzki L,et al.Catalytic combustion in microchannel for MEMS power generation[A].Third Asia-pacific Conf combustion[C].Korea:Seoul.2001.24-27.
    [51] Fleurial J-P .Solid-state power generation and cooling micro/nanodevices for distributed system architectures [A ].XX Proc ICT 2001[C]. Beijing .China, 2001.24-29.
    [52] Bond D R, L.D.R., Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 2003. 69(3): p. 1548-1555.
    [53] C. L. Hackert, J. L. Ellzey, and O. A. Ezekoye, "Effects of thermal boundary conditions on flame shape and quenching in ducts," Combustion and Flame, vol. 112, p. 73-84, 1998.
    [54] S. M. Hasnain. Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniquesv. Energy Convers. Mgmt Vol. 39, No. 11, p. 1127-1138, 1998
    [55] Hideo Inaba. New challenge in advanced thermal energy transportation using functionally thermal fluids. Int. J. Therm. Sci. 2000, 39, 991-1003
    
    [56] 张孝友, 卫尧, 李德桃 开发微型发动机燃烧器遇到的问题和解决途径,内燃机工程 2003, 4
    [57] Groshenry C., "Preliminary Study of a Micro-Gas Turbine Engine." Cambridge: Massachusetts Institute of Technology, 1995.
    [58] N. Chigier, Energy, Combustion an d Environment. New York: McGraw-Hill,1981.
    
    [59] D. G. Vlachos, Schmidt, L. D., 4 Aris, R., " Ignition and extinction of flames near surfaces: Combustion of CH4 in air. A. I.Ch. E, " A. I.Ch. E. Journal, vol. 40, p. 1005-1017, 1994.
    [60] D. G. Norton and D. G. Vlachos, "Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures," Chemical Engineering Science, vol. 58, p. 4871-4882, 2003.
    [61] M. K. Drost, C. Call, J. Cuta, and R. Wegeng, "MicroChannel combustor/ evaporator thermal processes, " Microscale Thermophysical Engineering, vol. 1, p. 321-332, 1997. [62] D. H. Lee and S. Kwon, "Scale effects on combustion phenomena in a microcombustor," Microscale Thermophysical Engineering, vol. 7, p. 235-251, 2003.
    [63] K. Fu, A. J. Knobloch, F. C. Martinez, D. C. Walther, A. C. Fernandez-Pello, A. P. Pisano, D. Liepmann, K. Miyasaka, and K. Maruta, "Design and Experimental Results of Small-Scale Rotary Engines," in Proc. 2001 International Mechanical Engineering Congress and Exposition (IMECE), New York, November 11-16, 2001. [64] K. Fu, Knobloch, A. J. Cooley, A. Walther, Fernandez-Pello, C. Liepmann, Miyasaka, K., "Microscale Combustion Research for Applications to MEMS Rotary IC Engine," presented at Proc. 2001 National Heat Transfer Conference, Anaheim, CA, 2001.
    [65]D.H.Lee and S.Kwon,"Scale effects on combustion phenomena in a microcombustor," Microscale Thermophysical Engineering,vol.7,p.235-251,2003.
    [66]赵恰钦,许家睿,陈冠邦,“现阶段微尺度燃烧科技发展简介,”燃烧季刊,Vol.11,p.2-10,2002.
    [67]丸田薰,藤森俊朗 “具有释放辐射热的加热表面的微燃烧加热器,”中华人民共和国知识产权局.中国,2004.
    [68]崔海亭,杨锋.蓄热技术及其应用.北京,化学工业出版社 2004(12).
    [69]傅维镳,张永廉,王清安.燃烧学.北京:高等教育出版社1989(4).
    [70]常弘哲,张永廉,沈际群.燃料与燃烧.上海:上海交通大学出版社.1993(3).
    [71]许晋源,徐通模.燃烧学.西安:西安交通大学出版社.1980(12).
    [72]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社.2004(9).
    [73]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社.2004(6).
    [74]张永生,周俊虎,杨卫娟,刘茂省,岑可法.微燃烧稳定性分析和微细管道燃烧实验研究.电机工程学报.
    [75]黄新元.电站锅炉运行与调整.北京:中国电力出版社.2003(1).
    [76]张永生.T型微细管道内氢气空气预混燃烧实验研究.电机工程学报
    [77]甘霖 微型三角转子发动机性能研究[硕士学位论文]浙江杭州 浙江大学 2004 p.40-51
    [78]卢法 余乃彪等,三角转子发动机,国防工业出版社,1990.6
    [79]Kelvin Fu,Aaron J.Knobloch,Fabian C.Martinez,David C.Walther,Carlos Fernandez-Pello*,Al P.Pisano,Dorian Liepmann,DESIGN AND FABRICATION OF A SILICON-BASED MEMS ROTARY ENGINE
    [80]Kelvin Fu,MEMS Rotary Internal MEMS Rotary Internal Combustion EngineCombustion Engine,2002.10
    [81]郑文纬,吴克坚,机械原理,高等教育出版社,1997.7
    [82]赵振起,机械制图手册,国防工业出版社
    [83]沈寿林等,CAXA线切割V2实用教程,北京:机械工业出版社,2002.9
    [84]唐兴伦,范群波,张朝晖.ANSYS工程应用教程,北京:中国铁道出版社,2003.
    [85]胡红军,杨明波,张丁非,ANSYS 10.0材料工程有限元分析实例教程 北京:电子工业出版,2008.
    [86]张朝晖 ANSYS热分析教程与实例解析,北京:中国铁道出版社,2007.
    [87]张国智,胡仁喜,陈继刚等编著 ANSYS 10.0热力学有限元分析实例指导教程 北京:机械工业出版社,2007
    [88]易日编著 使用ANSYS6.1进行结构力学分析 北京:北京大学出版社,2002
    [89]周宁主编 ANSYS机械工程应用实例 北京:中国水利水电出版社 2006
    [90]邢静忠,邢静忠编著 ANSYS应用实例与分析 北京:科学出版社 2006
    [91]葛正浩,杨芙莲编著 Pro/E机构设计与运动仿真实例教程 北京:化学工业出版社 2007
    [92]嘉木工作室编著Pro/E实体建模实例教程 北京:机械工业出版 2003
    [93]孙江宏,黄小龙,罗坤Pro/ENGINEER Wildfire虚拟设计与装配 北京:中国铁道出版社,2004
    [94]邱宣怀主编,机械设计,高等教育出版社,1997
    [95]贾鸿飞,生物燃料电池.电池,2000.30(2):p.86-89.
    [96]Veag C A,F.I.,Mediating effect of ferric chelate compounds in microbial fuel cells with lactobaeillns plan tarnm,streptoeocius laetes,and erwina dissolvens.BioelectrochemBioeng,1987(12):p.217.
    [97]Park D H,Z.J.G.,Utilization of electrically reduced neutral red by Actinobacillus succinogenes:Physiological function of neutral red inmembrane-driven fumarate reduction and energy conservation.Journal of Bacteriology,1999(181):p.2403-2410.
    [98]Park H S,K.B.H.,Kim H S etal.,A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Clostridium butyricwn isolated from a microbial fuel cell.Anaerobe,2001.7:p.297-306.
    [99]Tanaka K,V.C.A.,Tamamushi R.,Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells.Bioelectrochemistry and Bioenergetics,1983(11):p.289-297.
    [100]Akiba T,B.H.P.,Striling J L etal.,Electricity production from alkalophic organisms.Biotechnology Letters,1987(9):p.611-616.
    [101]Rabaey K,B.N.,Siciliano S D etal.,Biofuel cells select for microbial consortia that self-mediate electron transfer.Applied and Environmental Microbiology,2004.70(9):p.5373-5382.
    [102]Bond D R,H.D.E.,Tender L Metal.,Electrode-reducing microorganisms that harvest energy from marine sediments.Science,2002.295:p.485-486
    [103]E.M.D.,Biochemistry:The Chemieal Reaetions of Living Cells.1977:Academic Press
    [104]Aelterman P,R.K.,Pham n T,etal.,Continuous Electricity Generation at High Voltages and Currents Using Stacked Micrbial Fuel Cells[J].Envirnmental Science Technology,2006.40:p.3388-3394.
    [105]Cheng S A,I.L.H.,Logan B E.,Increased power generation in a continuous flow MFC with advective flow through the porus anode and reduced electrode spacing[J].Environmental Science Technology,2006.40:p.2426-2432.
    [106]Makharia R Mathias M F,B.D.R.,Measurment of Catalyst Layer Electrlyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy[J].Joural of the Electrochemical Society,2005.125(5):p.A970-A977.
    [107]莫志军,胡林会,朱新坚.,燃料电池表观内阻的在线测量.电源技术, 2005.29(2):p.95-98.
    [108]Menicucci J,B.H.,Marsili E,etal.,Procedure for Determining Maximum Sustainable Power Generated by Micrbial Fuel Cells[J].Environmental Science Technology,2006.40(3):p.1062-1068.
    [109]Logan B E,M.C.,Scott K et al.,Electricity generation from L-cysteine ina microbial fuel cell.Water Research,2005.39(5):p.942-952.
    [110]王林山,李瑛.,燃料电池,第二版.北京:冶金工业出版社 2005.8,
    [111]Roller S D,B.H.P.,Delaney G M etal.,Electron-transfer coupling in microbial fuel cells.1.Comparison of redox-mediator reduction rates and respiratory rates of bacteria.Chemical Technology and Biotechnology,1984(34B):p.3-12
    [112]邹勇进;孙立贤;徐芬;杨黎妮,以新亚甲基蓝为电子媒介体的大肠杆菌微生物燃料电池的研究.高等学校化学学报,2007(28):p.510-513.
    [113]Chaudhuri SK,L.D.R.,Electricity generation by direct oxidation of glucose in mediatorless microbial fuel ceils.Nature Biotechnology,2003.21(10):p.1229-1232.
    [114]Min B,L.B.E.,Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.Environmental Science and Technology,2004.34(21):p.5809-5814.
    [115]Uwe S,J.N.,Fritz S.,A Generation of Microbial Fuel Cells with Current Outputs Boosted by More Than One Order of Magnitude[J].Angew.Chem.Int.Ed,2003.42:p.2880-2883
    [116]Park D H,Z.J.G.,Improved fuel cell and electrode designs for producing electricity from microbial degradation.Biotechnology and Bioengineering,,2003.81:p.348-355.
    [117]Katz E,W.I.,Kotlyar h B.,A Noncompartmentalized Glucose Vertical Bar 02 Bioengineered Electrode Surface[J.Electroanal.Chem,1999.479:p.64-68.
    [118]徐达伍,王定昌,石瑞祥.,利用味精废液生产单细胞蛋白实现无污染排放.轻功环保,1993.15(2):p.1-4.
    [119]吴昌汉,偏远无电地区的小容量电源设施.天然气工业,2001.21(5):p.96-100.
    [120]任南琪.,发酵法生物制氢技术研究.1994,哈尔滨:哈尔滨建筑大学
    [121]S,etal.,C.Y.J.E.K.,Membrane fluidity sensoring microbial fuel cell[J].Bioelectrochem,2002.59:p.121-127.
    [122]Park D H,K.B.H.,Moore Betal.,Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds..Biotechnology Techniques,1997.11:p.145-148.
    [123]Zhang T,C.C.Z.,Chen S L,eatl.,A Novel Mediatorless Microbial Fuel Cell Based on Direct Biocatalysis of Escherichia coli[J].Chem Comm,2002.21:p.2257-2259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700