用户名: 密码: 验证码:
5’-鸟苷酸二钠溶析结晶过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
5’-鸟苷酸二钠是一种重要的食品添加剂及医药用品,属于第二代鲜味剂。5’-鸟苷酸二钠以无定形体和晶体两种固体状态存在。针对目前国内生产5’-鸟苷酸二钠基本为无定形体,且产品纯度低、水含量不稳定等问题,本文对5’-鸟苷酸二钠的结晶过程进行了系统的研究,提出了新型精制结晶工艺,解决了制备高质量的I型5’-鸟苷酸二钠晶体的问题。具体研究内容如下:
     利用聚焦光束反射测量仪(FBRM)、颗粒图像测量仪(PVM)和X射线粉末衍射仪(powder-XRD)等测试手段对5’-鸟苷酸二钠由无定形体转化为晶体的过程进行了研究,推断出其过程机理为溶液过渡转化。考察了pH值、添加剂量、溶剂配比、转化温度和原料粒度等因素对转化速率和转化程度的影响。利用X-射线单晶衍射仪测定了I型5’-鸟苷酸二钠晶体结构。同时测定了溶析结晶所得晶体产品的powder-XRD图谱,经与单晶结构分析结果对比,证明溶析结晶产品为I型5’-鸟苷酸二钠晶体。应用Cerius2分子设计软件分析了真空中的BFDH模型和AE模型晶习,并考察了生长环境对晶习的影响。
     利用热重分析技术对5’-鸟苷酸二钠加热脱水过程进行研究。采用微分法和积分法对实验数据进行处理,推断出5’-鸟苷酸二钠脱水过程机理为三维扩散机理,机理函数为Z-L-T方程。并算得脱水动力学参数E和A。
     采用动态法测定了5’-鸟苷酸二钠在不同温度和溶剂配比下的溶解度,利用经验方程、λh方程和CNIBS/Redlich-Kister方程对溶解度数据进行关联;测定了溶液pH值和添加剂含量对5’-鸟苷酸二钠溶解度的影响,并分别利用两性化合物电离平衡原理和多项式模型对实验结果进行关联;测定了5’-鸟苷酸二钠的结晶介稳区和结晶诱导期,利用初级成核理论计算了固液表面张力。
     采用间歇动态法测定了5’-鸟苷酸二钠溶析结晶过程中的动力学行为。利用矩量变换法按体积无关生长-体积无关多元等体积破碎模型求解粒数衡算方程。采用非线性最小二乘法建立了实验范围内的晶体生长速率、二次成核速率、破碎速率常数以及破碎分布函数的数学模型。
     在结晶热力学、结晶动力学以及结晶过程分析的基础上,建立了5’-鸟苷酸二钠结晶过程数学模型。实验考察了各种操作参数对结晶过程及最终晶体产品质量的影响,得到5’-鸟苷酸二钠优化结晶工艺条件。制得了高质量的I型5’-鸟苷酸二钠结晶。
     本文研究成果尚未见国内外文献报道。
Disodium 5’-guanylate heptahydrate (5’-GMPNa2) is an important food additive and medicine material, which belongs to the second-generation fresh reagents. 5’-GMPNa2 exists in two solid forms: amorphism and crystal. In order to overcome the fault of 5’-GMPNa2 product quality, such as amorphic state, lower purity and inconstant water content, a systematical study on the crystallization process of 5’-GMPNa2 had been presented in this thesis. A new crystallization process has been developed, with which the high quality crystals of 5’-GMPNa2 (formⅠ) can be obtained. The main contents in this thesis go as follows.
     The polymorphic transition process of 5’-GMPNa2 from amorphism to crystal (formⅠ) was investigated by in-situ monitoring technique( FBRM and PVM) and ex-situ monitoring technique(powder-XRD). The transition mechanism was deduced to be solution mediated transition (SMT). The effects of pH, additive, solvent ratio, temperature and particle size of raw materials on transition rate and transition degree were studied.
     By the use of X-ray single crystal diffraction technique, the crystal structure of 5’-GMPNa2 was determined. In addition, the powder X-ray diffraction pattern of 5’-GMPNa2 from dilution crystallization was measured. By comparing the single crystal diffraction data and the powder-XRD pattern, it can be concluded that the dilution crystallization product is form I of 5’-GMPNa2. With commercial software Cerius2, the crystal morphology in the vacuum was calculated based on BFDH and AE principles. The factors that may affect the crystal habit were discussed.
     The non-isothermal dehydration behavior of 5’-GMPNa2 was investigated by thermogravimetry /differential thermal analysis (TG-DTA). The dehydration kinetics were achieved from the TG-DTA curves by both the differential method and the integral method. The dynamic dehydration processes for all four steps are best expressed by the Z-L-T equation, suggesting a three-dimensional diffusion-controlled mechanism. The dehydration kinetics parameters, E and A, were calculated.
     The solubilities of 5’-GMPNa2 at different temperature and solvents were measured with dynamic method, and correlated by empirical equation,λh equation and CNIBS/Redlich-Kister equation, respectively. The dependence of solubility on pH and additive were studied, and results were correlated by the principle of ionization equilibrium and polynomial model respectively. The metastable zone and induction period for crystallization of 5’-GMPNa2 were also measured. The solid-liquid surface tension was estimated from primary nucleation theory.
     The dilution crystallization kinetic behaviors of 5’-GMPNa2 were measured with batch dynamic method. By moment transformation method, and basing on particle size independent growth– particle size independent multi equal volume breakage model, the population balance equation was solved. By non-linear least square method, the mathematical models for crystal growth rate, secondary nucleation rate, breakage rate constant and daughter distribution were established.
     On the basis of population balance equations and crystallization thermodynamics, kinetics, as well as mass balance equations, the mathematical model for dilution crystallization process of 5’-GMPNa2 was established. The effects of operation conditions on the crystallization process and the quality of product were studied in detail by both experiments and model simulation, on the basis of which the optimal operation strategy was established. And the high quality crystals of 5’-GMPNa2 (formⅠ) were obtained.
     No same report to above study results has been published in literature up to date.
引文
[1] 凌关庭, 食品添加剂手册 (第三版), 北京: 化学工业出版社, 2003.2.103
    [2] 刘程, 食品添加剂使用大全, 北京: 北京工业大学出版社, 2004.1.273-275
    [3] 林春绵 , 徐明仙 , 陶雪文 , 食品添加剂 , 北京 : 化学工业出版社 , 2004.10.160-161
    [4] Nishizawa N, Fujimoto M, Cholesterol metabolism controlling agents containing purine nucleotides, the compositions, and food and beverages containing them., Japan, 1997.08.12.
    [5] Nagafuchi S Y, Katayanagi K, Takahashi T, et al., Immunomodulators compositions containing nucleic acids., Japan, 1997.12.16.
    [6] Leary H L, Burns R A, Nutritional formulas supplemented with nucleotides, and processes thereof, WO 9806277USA, 1998.02.19.
    [7] Mari H, Hidehiko Y, Masahiro I, Nucleotide-containing compositions and foods for improvement of emotional disorders., Japan, 1998.08.04.
    [8] 国家技术监督局, GB 10796-89, 食品添加剂 5'-鸟苷酸二钠, 北京: 中国标准出版社, 1989.03.31.
    [9] 郭勇, 郑穗平, 食品增味剂, 北京: 中国轻工业出版社, 2000.9.119-120
    [10] 郭勇, 郑穗平, 食品增味剂, 北京: 中国轻工业出版社, 2000.9.138-176
    [11] 张克从, 近代晶体学基础, 北京: 科学出版社, 1987.2.1-2
    [12] 周公度, 晶体结构测定, 北京: 科学出版社, 1981.1.21-23
    [13] Giron D, Investigations of polymorphism and pseudo-polymorphism in pharmaceuticals by combined thermoanalytical techniques, Journal Of Thermal Analysis And Calorimetry, 2001, 64 (1): 37-60.
    [14] Giron D, Applications of thermal analysis and coupled techniques in pharmaceutical industry, Journal Of Thermal Analysis And Calorimetry, 2002, 68 (2): 335-357.
    [15] Tedesco E, Giron D, Pfeffer S, Crystal structure elucidation and morphology study of pharmaceuticals in development, Crystengcomm, 2002: 393-400.
    [16] 冒莉, 郑启泰, 吕扬, 固体药物多晶型的研究进展, 天然产物研究与开发, 2005, 117 (3): 371-375.
    [17] 张涛, 赵先英, 药物研究和生产过程中的多晶型现象, 中国新药与临床杂志, 2003, (10): 615-620.
    [18] 梁敬魁 , 粉末衍射法测定晶体结构 ( 上册 ), 北京 : 科学出版社 , 2003.4.216-223
    [19] 钱易泰, 结晶化学导论 (第 3 版), 合肥: 结晶化学导论, 2005.3
    [20] 梁敬魁, 粉末衍射法测定晶体结构 (上册), 北京: 科学出版社, 2003.4.210
    [21] O'Sullivan B, Barrett P, Hsiao G, et al., In Situ Monitoring of Polymorphic Transitions, Organic Process Research & Development, 2003, 7 (6): 977-982.
    [22] Boistelle R, Astier J P, Crystallization mechanisms in solution, Journal of Crystal Growth, 1988, 90 (1): 14-30.
    [23] Ng J D, Lorber B, Witz J, et al., The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening, Journal of Crystal Growth, 1996, 168 (1-4): 50-62.
    [24] Ostwald W, Studien uber die Bildung und Umwandlung fester Korper, Zeitschrift fur Physiologische Chemie, 1897, 22: 289.
    [25] O'Sullivan B, Glennon B, Application of in situ FBRM and ATR-FTIR to the monitoring of the polymorphic transformation of D-mannitol, Organic Process Research & Development, 2005, 9 (6): 884-889.
    [26] Kralj D, Brecevic L, Kontrec J, Vaterite growth and dissolution in aqueous solution. III. Kinetics of transformation, Journal of Crystal Growth, 1997, 177 (3-4): 248-257.
    [27] Davey R J, Cardew P T, McEwan D, et al., Rate controlling processes in solvent-mediated phase transformations, Journal of Crystal Growth, 1986, 79 (1-3, Part 2): 648-653.
    [28] Zhang G G Z, Law D, Schmitt E A, et al., Phase transformation considerations during process development and manufacture of solid oral dosage forms, Advanced Drug Delivery Reviews, 2004, 56 (3): 371-390.
    [29] Kitamura M, Ishizu T, Kinetic effect of L-phenylalanine on growth process of L-glutamic acid polymorph, Journal Of Crystal Growth, 1998, 192 (1-2): 225-235.
    [30] Kitamura M, Polymorphism in the crystallization of L-glutamic acid, Journal of Crystal Growth, 1989, 96 (3): 514-516.
    [31] Beckmann W, Seeding the desired polymorph: Background, possibilities, limitations, and case studies, Organic Process Research & Development, 2000,4 (5): 372-383.
    [32] Yu L, Reutzel-Edens S M, Mitchell C A, Crystallization and polymorphism of conformationally flexible molecules: Problems, patterns, and strategies, Organic Process Research & Development, 2000, 4 (5): 396-402.
    [33] Blagden N, Davey R J, Lieberman H F, et al., Crystal chemistry and solvent effects in polymorphic systems - Sulfathiazole, Journal Of The Chemical Society-Faraday Transactions, 1998, 94 (8): 1035-1044.
    [34] Kitamura M, Nakamura K, Dependence of polymorphic transformation on anti-solvent composition and crystallization behavior of thiazole-derivative pharmaceutical, Journal Of Chemical Engineering Of Japan, 2002, 35 (11): 1116-1122.
    [35] Kitamura M, Controlling factor of polymorphism in crystallization process, Journal of Crystal Growth, 2002, 237-239: 2205-2214.
    [36] Therfall T, Analysis of organic polymorphs, Analyst, 1995, 120: 2435.
    [37] 任国宾, 王静康, 徐昭, 同质多晶现象, 中国抗生素杂志, 2005, 30 (1): 32-37,55.
    [38] Yu L, Reutzel S M, Stephenson G A, Physical characterization of polymorphic drugs: an integrated characterization strategy, Pharmaceutical Science & Technology Today, 1998, 1 (3): 118-127.
    [39] Wang Z Z, Wang J K, Dang L P, Nucleation, growth, and solvated behavior of erythromycin as monitored in situ by using FBRM and PVM, Organic Process Research & Development, 2006, 10 (3): 450-456.
    [40] Shaikh A A, Salman A D, McNamara S, et al., In situ observation of the conversion of sodium carbonate to sodium carbonate monohydrate in aqueous suspension, Industrial & Engineering Chemistry Research, 2005, 44 (26): 9921-9930.
    [41] Karjalainen M, Airaksinen S, Rantanen J, et al., Characterization of polymorphic solid-state changes using variable temperature X-ray powder diffraction, Journal Of Pharmaceutical And Biomedical Analysis, 2005, 39 (1-2): 27-32.
    [42] Wojcik G, Mossakowska I, Polymorphs of p-nitrophenol as studied by variable-temperature X-ray diffraction and calorimetry: comparison with m-nitrophenol, Acta Crystallographica Section B-Structural Science, 2006, 62: 143-152.
    [43] Wojcik G, Holband J, Szymczak J J, et al., Interactions in polymorphic crystals of m-nitrophenol as studied by variable-temperature X-ray diffraction and quantum chemical calculations, Crystal Growth & Design, 2006, 6 (1): 274-282.
    [44] de Villiers M M, Terblanche R J, Liebenberg W, et al., Variable-temperature X-ray powder diffraction analysis of the crystal transformation of the pharmaceutically preferred polymorph C of mebendazole, Journal Of Pharmaceutical And Biomedical Analysis, 2005, 38 (3): 435-441.
    [45] Kirsch B L, Riley A E, Gross A F, et al., Probing the effects of interfacial chemistry on the kinetics of phase transitions in amorphous and tetragonal zirconia nanocrystals, Langmuir, 2004, 20 (25): 11247-11254.
    [46] Zimmerman S B, X-ray study by fiber diffraction methods of a self-aggregate of guanosine-5'-phosphate with the same helical parameters as poly(rG), Journal of Molecular Biology, 1976, 106: 663-672.
    [47] Sasisekharan V, Zimmerman S, Davies D R, The structure of helical 5'-guanosine monophosphate, Journal of Molecular Biology, 1975, 92: 171-179.
    [48] Lipanov A A, Quintana J, Dickerson R E, Disordered single crystal evidence for a quadruple helix formed by guanosine 5'-monophosphate, Journal of Biomolecular Structure & Dynamics, 1990, 8 (3): 483-489.
    [49] Katti S K, Seshadri T P, Viswamitra M A, Structure of disodium guanosine 5'-phosphate heptahydrate, Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry, 1981, B37 (10): 1825-1831.
    [50] Katti S K, Seshadri T P, Viswamitra M A, Structure and conformation of disodium guanosine-5'-phosphate heptahydrate, Current Science, 1980, 49 (14): 533-535.
    [51] Kamio H, Nakamachi H, Water of crystallization in disodium 5'-inosinate and disodium 5'-guanylate and their mixed crystal formation, Yakugaku Zasshi, 1967, 87 (12): 1436-1441.
    [52] Hirahara T, Suzuki Y, Toki T, et al., Stable disodium 5'-guanylate crystals - suspension allowed to crystallise in the presence of sodium alkylmonocarboxylic acid, JP74037271-B, 1974.10.07.
    [53] Barnes C L, Hawkinson S W, Structure of disodium guanosine 5'-phosphate heptahydrate, Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry, 1982, B38 (3): 812-817.
    [54] Davey R J, Guy P D, Ruddick A J, The IV → III polymorphic phase transitionin aqueous slurries of ammonium nitrate, Journal of Colloid and Interface Science, 1985, 108 (1): 189-192.
    [55] 陈小明 , 荣继文 , 单晶结构分析原理与实践 , 北京 : 科学出版社 , 2003.139-140
    [56] Hovmoller S, Zou X D, Weirich T E: Crystal structure determination from EM images and electron diffraction patterns. in Advances In Imaging And Electron Physics, Vol 123. Advances In Imaging And Electron Physics. 2002, vol 123, 257-289.
    [57] Zheng J G, Vincent R, Steeds J W, Crystal structure determination of an Al-Fe-Si-Be phase by convergent-beam electron diffraction, Philosophical Magazine A-Physics Of Condensed Matter Structure Defects And Mechanical Properties, 1999, 79 (11): 2725-2733.
    [58] Man L I, Imamov R M, Determination of crystal structures by electron diffraction structure analysis, Crystallography Reports, 1998, 43 (6): 940-944.
    [59] Fossdal A, Brinks H W, Fichtner M, et al., Determination of the crystal structure of Mg(AlH4)(2)by combined X-ray and neutron diffraction, Journal Of Alloys And Compounds, 2005, 387 (1-2): 47-51.
    [60] Bull C L, McMillan P F, Soignard E, et al., Determination of the crystal structure of delta-MoN by neutron diffraction, Journal Of Solid State Chemistry, 2004, 177 (4-5): 1488-1492.
    [61] Rodriguez R, Pacheco S, Vargas S, et al., Crystalline structure determination of anisotropic dimethyl terephthalate crystallites by micro-Raman spectroscopy, Journal Of Materials Research, 2000, 15 (6): 1397-1403.
    [62] 郭森立, 侯廷军, 徐筱杰等, 一个新 BEDT-TTF 电荷转移盐的晶体结构预测, 物理化学学报, 2002, 18 (4): 289-291.
    [63] Nowell H, Price S L, Validation of a search technique for crystal structure prediction of flexible molecules by application to piracetam, Acta Crystallographica Section B-Structural Science, 2005, 61: 558-568.
    [64] Karamertzanis P G, Price S L, Challenges of crystal structure prediction of diastereomeric salt pairs, Journal Of Physical Chemistry B, 2005, 109 (36): 17134-17150.
    [65] 王英华, 晶体学导论, 北京: 清华大学出版社, 1989.1-105
    [66] 陈小明, 荣继文, 单晶结构分析原理与实践, 北京: 科学出版社, 2003.2
    [67] 陈小明, 荣继文, 单晶结构分析原理与实践, 北京: 科学出版社, 2003.9-11
    [68] 周公度, 晶体结构测定, 北京: 科学出版社, 1981.1.42-44
    [69] Rietveld H M, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, 1969, 2 (2): 65-71.
    [70] Rietveld H M, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallographica, 1967, 22 (1): 151-152.
    [71] 马礼敦, 近代 X 射线多晶体衍射—实验技术与数据分析, 北京: 化学工业出版社, 2004.403
    [72] 马礼敦, X 射线粉末衍射的新起点—Rietveld 全谱拟合, 物理学进展, 1996, 16 (2): 251-265.
    [73] 王静康, 黄向荣, 刘秉文等, 有机分子晶体晶习预测的研究进展, 人工晶体学报, 2002, 31 (3): 218-223.
    [74] Bravais A, Etudes Cristallographiques, Paris: Gauthier-Villars, 1866.1
    [75] Hartman P, Perdok W G, On the Relations Between Structure and Morphology of Crystals III, Acta Cryst., 1955, 8: 525-529.
    [76] Hartman P, Perdok W G, On the Relations Between Structure and Morphology of Crystals II, Acta Cryst., 1955, 8: 521-524.
    [77] Hartman P, Perdok W G, On the Relations Between Structure and Morphology of Crystals I, Acta Cryst., 1955, 8: 49-52.
    [78] Hartman P, P.Bennema, The attachment energy as a habit controlling factor: I. Theoretical considerations, 1980, 49 (1): 145-156.
    [79] Sundaralingam M, Prusiner P, Zwitterionic character of nucleotides: possible significance in the evolution of nucleic acids, Nucleic Acids Research, 1978, 5: 4375-4384.
    [80] Tajmir-Riahi H A, Theophanides T, A Fourier transform infrared study of the electrophilic attack at the N7-site of guanosine-5'-monophosphate, Canadian Journal of Chemistry, 1984, 62: 266-272.
    [81] Mullin J W, Crystallization (3rd edition), 北京: 世界图书出版公司, 1997.248-257
    [82] 于伯龄, 姜胶东, 实用热分析, 北京: 纺织工业出版社, 1990.3.138
    [83] 胡祖荣, 史启祯, 热分析动力学, 北京: 科学出版社, 2001.8.2
    [84] Achar B N N, Bridley G W, Sharp J H, Thermal decomposition kinetics of some new unsaturated polyesters, Proc. Int. Clay Conf., 1966, 1: 67.
    [85] Coats A W, Redfern J P, Kinetics parameters from thermogravimetric data, Nature, 1964, 201: 68-69.
    [86] 胡祖荣, 史启祯, 热分析动力学, 北京: 科学出版社, 2001.8.127-131
    [87] Vlaev L T, Nikolova M M, Gospodinov G G, Non-isothermal kinetics of dehydration of some selenite hexahydrates, Journal of Solid State Chemistry, 2004, 177: 2663-2669.
    [88] Byrn S R, Lin C-T, The effect of crystal packing and defects on desolvation of hydrate crystals of caffeine and L-(-)-1,4-cyclohexadiene-1-alanine, Journal of the American Chemical Society, 1976, 98 (13): 4004-4005.
    [89] Perrier P, Byrn S R, Influence of crystal packing on the solid-state desolvation of purine and pyrimidine hydrates: loss of water of crystallization from thymine monohydrate, cytosine monohydrate, 5-nitrouracil monohydrate, and 2'-deoxyadenosine monohydrate, The Journal of Organic Chemistry, 1982, 47 (24): 4671 - 4676.
    [90] DONG Z, SALSBURY J S, ZHOU D, et al., Dehydration Kinetics of Neotame Monohydrate, Journal of Pharmaceutical Sciences, 2002, 91 (6): 1423-1431.
    [91] 王静康, 化学工程手册·结晶 (第二版), 北京: 化学工业出版社, 1996.10-15
    [92] 瓦拉斯 斯, 化工相平衡, 北京: 中国石化出版社, 1991.444
    [93] 马沛生, 化工热力学(通用型), 北京: 化学工业出版社, 2005.6.176-177
    [94] 陈新志, 蔡振云, 胡望明, 化工热力学, 北京: 化学工业出版社, 2001.4.168
    [95] Mateo A d, Kurata F, Correlation and Prediction of Solubilities of Solid Hydrocarbons in Liquid Methane Using the Redlich-Kwong Equation of State, Industrial & Engineering Chemistry Process Design and Development, 1975, 14 (2): 137 - 140.
    [96] Han N Y, Zhu L, Wang L S, et al., Aqueous solubility of m-phthalic acid, o-phthalic acid and p-phthalic acid from 298 to 483 K, Separation And Purification Technology, 1999, 16 (2): 175-180.
    [97] Soave G S, Application of the redlich-kwong-soave equation of state to solid-liquid equilibria calculations, Chemical Engineering Science, 1979, 34 (2): 225-229.
    [98] Masuoka H, Tawaraya R, Sito S, Calculation of solid-liquid equilibria using the modified BWR equation of state of Lee and Kesler, Journal of Chemical Engineering of Japan, 1979, 12 (4): 257-263.
    [99] Lee M J, Chi P C, Solid-liquid equilibrium calculation from the Patel-Teja equation of state, Journal of the Chinese Institute of Chemical Engineers, 1993,24 (5): 289-297.
    [100] Anderko A, A simple equation of state incorporating association, Fluid Phase Equilibria, 1989, 45 (1): 39-67.
    [101] 马沛生, 化工热力学(通用型), 北京: 化学工业出版社, 2005.6.177-179
    [102] Teychene S, Autret J M, Biscans B, Determination of solubility profiles of eflucimibe polymorphs: Experimental and modeling, Journal Of Pharmaceutical Sciences, 2006, 95 (4): 871-882.
    [103] Manifar T, Rohani S, Duque R, et al., Characterization and solubility measurement and prediction of selected arylamines in hexane, methanol and benzene, Chemical Engineering Science, 2006, 61 (8): 2590-2598.
    [104] Dolejs D, Baker D R, Fluorite solubility in hydrous haplogranitic melts at 100 MPa, Chemical Geology, 2006, 225 (1-2): 40-60.
    [105] Ruckenstein E, Shulgin I, Solubility of hydrophobic organic pollutants in binary and multicomponent aqueous sovents, Environmental Science and Technology, 2005, 39 (6): 1623-1631.
    [106] Fan C, Jafvert C T, Margules equations applied to PAH solubilities in alcohol-water mixtures, Environmental Science and Technology, 1997, 37 (12): 3516-3522.
    [107] Worlitschek J, Bosco M, Huber M, et al., Solid-liquid equilibrium of Troger's base enantiomers in ethanol: Experiments and modelling, Helvetica Chimica Acta, 2004, 87 (2): 279-291.
    [108] Smith R L, Acosta G M, Arai K, Prediction and correlation of triglyceride-solvent solid-liquid equilibria with activity coefficient models, Fluid Phase Equilibria, 1998, 145 (1): 53-68.
    [109] Chen C C, Crafts P A, Correlation and prediction of drug molecule solubility in mixed solvent systems with the Nonrandom Two-Liquid Segment Activity Coefficient (NRTL-SAC) model, Industrial & Engineering Chemistry Research, 2006, 45 (13): 4816-4824.
    [110] Chen C C, Zhu Y, Evans L B, Phase partitioning of biomolecules:solubilities of amino acids, Biotechnol. Prog, 1989, 5: 111-118.
    [111] Gracin S, Brinck T, Rasmuson A C, Prediction of solubility of solid organic compounds in solvents by UNIFAC, Industrial & Engineering Chemistry Research, 2002, 41: 5114-5124.
    [112] Mirmehrabi M, Rohani S, Perry L, Thermodynamic mdeling of activitycoefficient and prediction of solubility: part 1. Predictive models, Journal Of Pharmaceutical Sciences, 2006, 95 (4): 790-797.
    [113] Mirmehrabi M, Rohani S, Perry L, Thermodynamic modeling of activity coefficient and prediction of solubility: part 2. Semipredictive or semiempirical models, Journal Of Pharmaceutical Sciences, 2006, 95 (4): 798-809.
    [114] Grant D J W, Mehdizadeh M, Chow A H-L, et al., Non-linear van't Hoff solubility-temperature plots and their pharmaceutical interpretation, International Journal of Pharmaceutics, 1984, 18 (1-2): 25-38.
    [115] Buchowski H, Ksiazczak A, Pietrzyk S, Solvent activity along a saturation line and solubility of hydrogen-bonding solids, Journal of Physical Chemistry, 1980, 84 (9): 975 - 979.
    [116] 鲍颖, 王静康, 王永莉等, 盐酸大观霉素在纯水及丙酮-水混合溶剂中的溶解度测定与关联, 高校化学工程学报, 2003, 17 (4): 457-461.
    [117] Wang S, Wang J, Yin Q, Measurement and Correlation of Solubility of 7-Aminocephalosporanic Acid in Aqueous Acetone Mixtures, Industrial & Engineering Chemistry Research, 2005, 44: 3783-3787.
    [118] Acree W E, Jr., Mathematical representation of thermodynamic properties: Part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model, Thermochimica Acta, 1992, 198: 71-79.
    [119] Acree W E, Jr., McCargar J W, et al., Mathematical representation of thermodynamic properties. Carbazole solubilities in binary alkane+dibutyl ether and alkane+tetrahydropyran solvent mixtures, Physics and Chemistry of Liquids, 1991, 23 (1): 27-35.
    [120] Acree W E, Jr., Zvaigzne A I, Thermodynamic properties of non-electrolyte solutions: Part 4. Estimation and mathematical representation of solute activity coefficients and solubilities in binary solvents using the NIBS and Modified Wilson equation, Thermochimica Acta, 1991, 178: 151-167.
    [121] Hefter G T, Tomkins R P T, The Experimental Determination of Solubilities, Chichester: John Wiley & Sons, 2003.259-279
    [122] 马沛生, 化工数据, 北京: 中国石化出版社, 2003.232-233
    [123] Gray M C, Converse A O, Wyman C E, Novel in situ device for measuring solubilities, Industrial & Engineering Chemistry Research, 2004, 43 (20): 6587-6591.
    [124] Laallam L, Jouaiti A, El Allali S, et al., Phase diagram of the ternary Cu(NO3)(2)-Zn(NO3)(2)-H2O system, Materials Letters, 2003, 57 (18): 2707-2709.
    [125] Atbir A, El Hadek M, Cohen-Adad R, Solid-liquid equilibria in the quaternary system NaCl-FeCl2-FeCl3-H2O, Fluid Phase Equilibria, 2001, 181 (1-2): 187-194.
    [126] Gao Y G, Zhou C R, Shi X H, et al., Solid-liquid equilibria of the trans-1,2-cyclohexanediol plus ethyl acetate plus water ternary system, Journal Of Chemical And Engineering Data, 2006, 51 (2): 412-415.
    [127] Zhou C R, Wang H F, Jiang D G, Solubility of trans-1,2-cyclohexanediol in some solvents, Chinese Journal Of Chemical Engineering, 2005, 13 (4): 560-563.
    [128] 丁绪淮, 谈遒, 工业结晶, 北京: 化学工业出版社, 1985.13
    [129] 刘勇, 盐酸环丙沙星合成与结晶过程的研究, 博士学位论文, 2003.
    [130] Madsen H E L, Theory of long induction periods, Journal of Crystal Growth, 1987, 80 (2): 371-377.
    [131] Mullin J W, Crystallization (3rd edition), 北京: 世界图书出版公司, 1997.197-200
    [132] Randolph A D, Larson M A, Theory of particulate process (2nd edition), San Diego: Academic Press, 1988.111-112
    [133] 丁绪淮, 谈遒, 工业结晶, 北京: 化学工业出版社, 1985.78
    [134] 王静康, 化学工程手册·结晶 (第二版), 北京: 化学工业出版社, 1996.10-19
    [135] Randolph A D, Larson M A, Theory of particulate process (2nd edition), San Diego: Academic Press, 1988.122-123
    [136] Gibbs J W, Collected works, Vol I, thermodynamics, New Haven: Yale University Press, 1948
    [137] Volmer M, Kinetics der phasenbildung, Leipzig: Steinkopff, 1939
    [138] Frank F C, On the kinematic theory of crystal growth and dissolution processes, New York: John Wiley& Sons Inc., 1958.411-420
    [139] Noyes A A, Whiteney W R, Rate of solution of solid substances in their own solution, Journal of American Chemical Society, 1897, 19: 930-934.
    [140] Randolph A D, Larson M A, Theory of particulate process (2nd edition), San Diego: Academic Press, 1988.120
    [141] Jackson K A, Liquid Metals and Solidification, Cleveland: American Society of Metals, 1958.174-175
    [142] S.H. Bransom, Factors in the design of Continuous crystallizer, British Chemical Engineering, 1960, 5: 838-843.
    [143] Canning T F, Randolph A D, Some aspects of crystallization theory: System that violate McCabe's △L laws, AIChE Journal, 1967, 13: 5-11.
    [144] Mydlarz J, Jones A G, On modeling the size-dependent growth rate of potassium sulphate in an MSMPR crystallizer, Chem. Eng. Commun., 1990, 90: 47-56.
    [145] Abegg C F, Stevens J D, Larson M A, Crystal size distribution in continuous crystallizer when growth rate is size-dependent, AIChE Journal, 1968, 14: 188-193.
    [146] Jones C M, Larson M A, Ristic R I, et al., The role of dislocations, integral strain, and supersaturation on the growth rates of sodium nitrate, Journal Of Crystal Growth, 2000, 208 (1-4): 520-524.
    [147] BUTTERLY P G, KEOHANE G J, KOSAL E F, Potassium clavulanate in the form of crystalline rosette-like starbursts, useful for treating bacterial infections in humans and animals., US, 2002004595-A1, 2002.
    [148] Randolph A D, Larson M A, Theory of particulate process (2nd edition), San Diego: Academic Press, 1988.70-71
    [149] Kostoglou M, Dovas S, Karabelas A J, On the steady-state size distribution of dispersions in breakage processes, Chemical Engineering Science, 1997, 52 (8): 1285-1299.
    [150] V igil R D, Ziff R M, On the stability of coagulationAn efficient method for solving population balance in crystallization with agglomeration, Chemical Engineering Science, 1988, 43 (1): 59-67.
    [156] Tavare, Narayan S, Characterization of crystallization kinetics from batch experiments, Separation and purification methods, 1993, 22 (2): 93-210.
    [157] Bransom S H, Factors in the design of Continuous crystallizer, British Chemical Engineering, 1960, 5: 838.
    [158] Bao Y, Zhang J L, Yin Q X, et al., Calibration for measured crystal size distribution, Powder Technology, 2006, 161 (3): 242-247.
    [159] 陈敏恒, 丛德滋, 方图南等, 化工原理(上册), 北京: 化学工业出版社, 1999.146
    [160] 丁绪淮, 谈遒, 工业结晶, 北京: 化学工业出版社, 1985.92-93
    [161] Heijden A E D M v d, Eerden J P v d, Rosmalen G M v, The secondary nucleation rate: a physical model, Chemical Engineering Science, 1994, 49 (18): 3103-3113.
    [162] Hulburt H M, Katz S, Some problems in particle technology: A statistical mechanical formulation, chemical Engineering Science, 1964, 19 (8): 555-574.
    [163] Rawlings J B, Witkowski W R, Eaton J W, Modelling and control of crystallizers, Powder Technology, 1992, 69 (1): 3-9.
    [164] Gooch J R, Hounslow M J, Monte Carlo Simulation of Size-Enlargement Mechanisms in Crystallization, AIChE Journal, 1996, 42 (7): 1864-1874.
    [165] Griffiths H, Mechanical crystallization, J Soc Chem Ind, 1925, 44: 7-18.
    [166] Mullin J W, Nyvlt J, Programmed cooling of batch crystallizers, Chemical Engineering Science, 1971, 26 (3): 369-377.
    [167] Jones A G, Optimal operation of a batch cooling crystallizer, Chemical Engineering Science, 1974, 29 (5): 1075-1087.
    [168] Bohlin M, Rasmuson ? C, Modeling of growth rate dispersion in batch cooling crystallization, AIChE Journal, 1992, 38 (12): 1853-1863.
    [169] Gabas N, Laguérie C, Batch Crystallization of D-xylose by Programmed Cooling or by Programmed Adding of Ethanol, Chemical Engineering Science, 1992, 47 (12): 3148-3152.
    [170] Tavare N S, Chivate M R, CSD Analysis from a Batch Dilution Crystallizer, Journal of Chemical Engineering of Japan, 1980, 13 (5): 371-379.
    [171] Tavare N S, Garside J, Analysis of Batch Crystallizers, Ind.Eng.Chem.Process Des.Dev., 1980, 19: 653-665.
    [172] Chivate M R, Palwe B G, Tavare N S, Effect of Seed Concentration in a Batch Dilution Crystallizer, Chem.Eng.Commun., 1979, 3: 127-133.
    [173] KOGYO K H, Crystalline disodium 5-guanylate, JP 078886, 1965.
    [174] AJINOMOTO, Recovery of disodium guanylate crystals, JP71015668-B, 1971.
    [175] AJINOMOTO, Crystallisation of 5-guanilic acid disodium salt from aq. solns. containing one or more sodium salts., JP076562, 1965.
    [176] AJINOMOTO, Stable disodium 5'-guanylate crystals - suspension allowed to crystallise in the presence of sodium alkylmonocarboxylic acid, JP74037271-B, 1974.
    [177] SHYOYU Y, Crystalline disodium 5-guanylate prepn - by adjusting hydrogen ion conc of satd soln, JP72042505-B, 1972.
    [178] SHOYU Y, Disodium guanosine-5'-monophosphate crystn - from soln contg polyalcohols, JP48022662-A, 1974.
    [179] SHOYUCO Y, Disodium 5'-guanylate crystals prepn - by treating aq soln with alcohol and/or ketone, JP48018299-A, 1974.
    [180] AJINOMOTO, Crystallization method of disodium guanylate, JP68004428, 1968.
    [181] SUGAR J I, Sodium 5-guanylate crystallisation - using sodium phosphate salt and hydrophilic organic solvent, KR8701571-B, 1987.
    [182] YUN S, CHOI H, Crystallisation of di:sodium salt of guanylic acid - comprises adding hydrophilic organic solvent to aq. soln. of prescribed salt in presence of sodium carbonate, KR9204487-B, 1992.
    [183] LEE J, LEE K, Method for crystallizing 5-guanylic acid 2 sodium 7 hydrate in macro-size, KR9703128-B1, 1997.
    [184] AJINOMOTO, Crystallisation of the di-sodium salt of (5')-guanylic acid - by slowly adding aq. soln. of salt to methanol, ethanol and/or acetone having controlled water content, JP77045778-B, 1977.
    [185] YANG D, HWANG I, 5'-Sodium guanylate purificn., useful as food additive - by adding (m)ethanol solvent, increasing concn., adding soln. of guanylic acid and crystallising guanosine 5'-monophosphate disodium salt hydrate, KR9500259-B1, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700