用户名: 密码: 验证码:
浮法玻璃表面渗锡研究及电气石纳米薄膜制备与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本篇论文工作分为两个方面。第一,针对浮法玻璃材料特定的渗锡缺陷,采用多种现代分析手段进行了渗锡形成机理的研究,对减轻渗锡的处理方法中的科学问题等进行了讨论,确认了新的定量渗锡测量的分析手段及表征方法,建立了判断出现浮法玻璃表面钢化虹彩的渗锡量阈值;第二,针对目前电磁屏蔽玻璃透光性与高频段屏蔽效能无法兼顾的问题,结合纳米电气石材料具有的自发极化特征,设计了宽频带电磁屏蔽玻璃的功能材料结构,并对靶材及成膜机制开展了系列实验研究,确认了电气石被沉积在镀有导电膜的玻璃表面,对薄膜性能进行了初步测试。
     研究结果表明,可以用XRF(X-Ray Fluorescence spectroscopy)强度测量值表征浮法玻璃表面渗锡含量。用XPS(X-ray Photoelectron Spectroscopy)方法明确了浮法玻璃下表面中的锡元素以Sn0、Sn2+、Sn4+状态存在,确定了各价态的锡元素在渗入玻璃中的比例。渗锡量中Sn2+的含量决定着是否产生钢化虹彩以及其程度,XRF锡计数可以用来近似表征Sn2+的含量,也确定产生虹彩现象存在渗锡量的临界值。通过光致发光(Photoluminescence, PL)分析方法,找出了浮法玻璃表面渗锡的荧光激发发射特征谱,并建立了与XRF的定量关系。在第一性原理的基础上,分别按CaSi4O8体系、MgSi4O8体系计算了Mg、Fe和Sn离子替换Ca离子前后体系结构能量的变化。以化学配位理论为出发点,讨论了在玻璃成形的高温环境中,可能的离子替换是所产生的系统结构能量与初始结构能量差较小的容易发生,而那些替换完成后系统结构能量变得较高的状态相对较难发生,在结构能量接近的情况下存在多种替换反应同时发生的可能性。对计算结果的分析表明,当玻璃体中含铁量较高,或者金属锡液中加入微量铁的情况下,可以阻止锡元素向玻璃内部的扩散。经对SO2处理前后浮法玻璃下表面样品的XRF和EDX(Energy Dispersive X-ray spectroscopy)分析表明,未能找到浮法玻璃下表面内锡离子在SO2气氛的作用下的产物和锡离子进一步扩散的特征。采用多种分析方法对过渡辊材料的样品表面进行的分析,表明热辊表面硫含量按着非线性指数规律增加,热辊样品表面形成了具有层状结构的疏松的FeS层,可以起到润滑作用。但SO2熏蒸热辊时间和加大浓度,对热辊表面润滑作用不会进一步增加,对浮法玻璃生产环境有一定污染。SO2气体与浮法玻璃表面富集的碱金属氧化物反应形成硫酸盐,起到了抗发霉作用。
     系统研究了镀有ITO导电膜的透明玻璃的电磁屏蔽特征,ITO玻璃薄膜对电磁波的反射率在低频段(<1 GHe)保持在97%以上,但在高频波段,ITO镀膜玻璃的屏蔽效能明显下降,典型值为在600 MHz,下降到43 dB,在4 GHz,下降到35.5 dB。在明确电气石热学性能的情况下,利用离子束溅射沉积方法,选择合适的条件,在在线Low-E玻璃表面实现电气石的纳米化镀层,并表现出特有的自发极化特征。
This paper is mainly composed of two parts. Firstly, focusing on the mechanisms of the formed tin-related defects in float glass and the methods to alleviate them, new analyzing and assigning methods were developed to carry out quantitative measurement accurately. A new critical value of tin content was also proposed and affirmed as the threshold of the appearance of bloom phenomenon during further quenching process on float glass. Secondly, due to the problems of traditional electromagnetic shielding glass in achieving high visible light transparency and high shielding effectness in high frequency region simultaneously, a new functional material structure based on the self-polarization of nanometer-scaled tourmaline was proposed to abtain better shielding effectness in a more wider electromagnetic wave range, where system studies were dedicated to the target and deposition mechanisms of thin films to affirm the deposition of nanometer-sized tourmaline film on glass substrate. After that primary investigations were conducted to analysze the properties of the as-prepared thin films.
     The results displayed that the XRF (X-Ray Fluorescence spectroscopy) can be used to investigate the tin content in float glass, while XPS (X-ray Photoelectron Spectroscopy) was used to affirm the existing stated and their relative proportions of Sn0, Sn2+ and Sn4+. The content of Sn2+ will decide the appearance and the degree of bloom phenomenon. Therefore, XRF intensity of tin can be used approximatively as the staff of Sn2+ content and the further threshold of the appearance of bloom phenomenon during quenching process on float glass. PL (photoluminescence) analysis was used to investigate to characterictic PL excitation and emission spectra of tin in float glass. The quantitative relationship between PL intensity and XRF intensity of tin in float glass was also affirmed. Based on first principles calculations, the varieties of total energies of the models incorporated as CaSi4O8 system and MgSi4O8 system with Ca displaced by Mg, Fe or Sn or other elements were calculated. With chemical ligand field theory, the possible ion exchange reactions happened at high tempereture were estimated by evaluating the energy gap between the models before and after element relpacing. Tt is believed that the replace will not happen if the energy gap is huge, on the other hand, several replaces may exist simultaneously when the energies are very near and small. The results exhibited that it would block the duffusion of tin into float glass by high Fe content in float glass or the minor accession of Fe in tin liquid. XRF and EDX (Energy Dispersive X-ray spectroscopy) analysis on float glass samples maintained in SO2 atmosphere with different treating times revealed no proof for further diffusion of tin in the tin-bath surface of float glass. The analysis by several methods showed that the S content in the surface of transitional roll increased exponentially, where layered loose FeS formed and acted as lubricant. However, prolonging the treating time or elevating the SO2 concentration won’t enhance the lubricating effect of the FeS layer, but only causing the pollution for the environment. The sulphate formed by the reaction between SO2 and the alkali oxide enriched near the surface of float glass will help the glass from going moldy.
     The electromagnetic shielding behavior of transparent glass covered with ITO conducting film was investigated systematically. The reflectness of this kind of ITO glass in low frequency region (<1 GHe ) maintains above 97%, but at high frequency region the shielding effectness drops remarkablly. The typical value of the shielding effectness at 600 MHz and 4 GHz were 43 dB and 35.5 dB, respectively. On the basic of comprehension of the calorifics properties of tourmaline, proper measurements were taken to obtain nanometer-sized tourmaline film successfully fabricated by ion-beam sputtering deposition on on-line Low-E glass substrate and gain the characteristic self-polarization of the as-prepared film.
引文
1黄钧.浮法玻璃的原理和生产.秦皇岛:《玻璃》编辑部,1987:1-12
    2王崇光.玻璃行业前景分析及对策.中国建材,2001,6:45-48
    3陈正树等.浮法玻璃.武汉:武汉工业大学出版社,1997:12-56
    4闵参厚.中国浮法玻璃的发展.中国建材,2002,4:56-58
    5刘世民.我国浮法玻璃工业现状与展望.硅酸盐通报,1998, 4:5-9
    6西北轻工业学院.玻璃工艺学.武汉:中国轻工业出版社,1995:67-89
    7 H.基埔生-马威德, R.布吕克纳.玻璃制造中的缺陷.黄照柏译.武汉:轻工业出版社,1988:150-168
    8 Anderson. Olaf, Bange. Klaus. Characteriaztion of Glass Surfaces by X-ray Reflectivity. Glass Science and Technology,1997,70(10):316-321
    9张贤华.浮法玻璃的锡缺陷.玻璃,2000,24(2):36-37
    10 zhou.Xu-Hong, Wu.Wen-Jiang. Application of Reconstruction Analysis in Solving the Problem of Float Glass Stained with Tin.International Journal of General Systems,2000,29(3):439-442
    11宋炯生,嵇书伟.浮法玻璃虹彩的检验及消除.玻璃,2000,26(2):28-30
    12 Petschauer,Hans.Ebigt,Helmut. Steps toward the Solution of the Sin Bath Block Peeling Problem in Float Glass Lines. Ceramic Engineering and Science Proceedings,1995,16(2):59-67
    13 Moseler.Doris,Heide.Gerhard. Atomic Force Ficroscope Study of the Topography of Float Glasses and a Model to Explain the Bloom Effect.Glass Science and Technology,2002,75(4):174-183
    14姜宏,赵会峰.浮法玻璃表面渗锡与工艺诊断.玻璃与搪瓷, 2000, 28(3):44-57
    15 M.Feldmann. Initial Stages of Float Glass Corrosion. Journal of Non-Crystalline Solids, 1997,218:205-209
    16 G.Principi, A.Maddalena and A.Gupta.Oxidation State of Surface Tin in an in- dustrially Produced Float Glass. Nuclear Instruments and Methods in Physics Research,1993,B76:215-217
    17 T-J Wang. Penetration of Tin in The Surface of Float Glass. Glass Technol,1997, 38(3):104-106
    18 Frischat,G.H. On the Origin of the Tin Hump in Several Float Glasses. Journal of Non-Crystalline Solids,2001,283(1-3):246-249
    19 K.F.E. Williams, C.E.Tin.Oxidation State, Depth Profile of Sn2+ and Sn4+ and Oxygen Diffusivity in Float Glass by Mossbauer Spectroscopy. Journal of Non-Crystalline Solids,1997,211:103-107
    20 Satoshi Takeda, Ryoji Akiyama, Formation of Nanometer-Sized SnO2 Collids and Change in Sn-depth Concentration Profile in Float Glass Induced by Oxygen Diffusion from Atmosphere at Temperature above Tg. Journal of Non-Crystalline Solids, 2001,281:1-5
    21 Yasuo.Hayashi,Kiyoshi.Matsumoto,Masahiro Kudo. The Diffusion Mechanism of Tin into Glass Governed by Redox Reactions During The Float Process.Journal of Non-Crystalline Solids,2001,282:188-196
    22 Yasuo.Hayashi, Ryoji.Akiyama and Masahiro Kudo. Surface Characterization of Float Glass Related to Charges in The Optical Properties after Reheating. Surface and interface analysis,2001,31:87-92
    23 Williams, K.F.E. Effect of Tin on Some Physical Properties of The Bottom Surface of Float Glass and The Origin of Bloom.Glass Technology,1999:103-107
    24刘世民等.浮法玻璃渗锡量的临界值及其实际意义.玻璃,2000:64-67.
    25 F.Lamouroux, N.Can, D.Townsend, B.W.Farmery. Ion Beam Analysis of Float Glass Surface Composition. Journal of Non-Crystalline Solids, 1997, (212): 232-242
    26 F. Matteucci, M. Dondi, G. Guarini, Effect of Soda-lime Glass on Sintering and Technological Properties of Porcelain Stoneware Tiles, Ceramics International 2002, (28): 873–880
    27王承遇,陶瑛.玻璃表面和表面处理.北京:中国建筑材料工业出版社,1993:105-134
    28嵇训烨.浮法玻璃钢化虹彩的研究.玻璃, 2000:90-94
    29 Meisel.Werner. Depth Profile of Tin in Float Glass-a CEMS Study. Glass Science and Technology,1999,72(9):291-294
    30 B.Yang. Cathodoluminescence and Depth Profiles of Tin in Float Glass. Journal of Physics D,1994,27(8):1757-1762
    31 K.F.E.Williams, C.E.Johnson, O.Nikolov,etal. Characterization of Tin at the Surface of Float Glass. Journal of Non-Crystalline Solids,1998,242:183-188
    32金明坤.X射线荧光分析在测定浮法玻璃表面渗锡量中的应用.玻璃,2000,25(6):11 -15
    33李楠.提高槽压降低渗锡量.玻璃,2000,24(4):35-36
    34伍洪标.浮法玻璃虹彩的消除方法.玻璃,2000,55-58
    35 Wieland,K.Weichert,T. Tin Bath Bottom Blocks. Glass International,1994,4:25-38
    36龚方田.消除钢化虹彩的两点建议.中国硅酸盐学会全国玻璃学术年会会议论文集,上海,2001(10):65-67
    37叶圣强.浮法玻璃成形缺陷与解决办法.硅酸盐通报,1998:158-161
    38闻亦忠.浮法玻璃成形操作方法的比较与改进.硅酸盐通报,1998:127-130
    39 Allak,H. Valence Band Offset of the Lattice Matchedβ-FeSi(110)/Si(001) Hetero Structure. Phys.Rev,2001,63:9668-9676
    40 Ackland,G.J.Em Brittlement and the Bistable Crystal Structure of Zirconium Hydride. Phys. Rev. Lett, 1998, 80:2233-2236
    41 Tsuneda,Takao. A new Nne-parameter Progressive Colle-Salvetti-type Correlation Functional. J.Chem.Phys,1999,110(33):10664-10669
    42 Sun,H. An ab initio Force Field Optimized for Condensed-Phase Applictions overview with Details on Alkane and Benzene Compounds.J.Phys.Chem.B, 1998,102:7338-7342
    43朱仕明.动力学.武汉:华中工学院出版社,2000:5-12
    44 Sun,H. Polysiloxanes:ab initio Force Field and Structural,Conformational and Thermophysical Properties. J.Amer.Chem.Soc,1997,53:1301-1323
    45 Eichinger,B.E. Computational Chemistry Applied to Materials Design-Contact Lenses. Computional Polymer Science,1995,5:147-148
    46 Mei,donghai. Molecular Dynamics Simulation of Self-diffusion Coefficients of Exponential-six fluids.Chinese Journal of Chemical Engineering,2000,83:224-229
    47 Higashi,Hidenori. Calculation of Self-diffusion and Tracer Diffusion Coefficients near the Critical Point of Carbon Dioxide Using Molecular Dynamics Simulation. Industrial and Engineering Chemistry Research,2000,39(12):4567-4570
    48 Watanable,K. Investigation of the Air Separation Properties of Zeolites types A, X and Y by Monte Carlo Simulations.Molec.Sim,1995,15:197-221
    49蔡任钢.电磁兼容原理、设计和预测技术.北京:北京航空航天大学出版社, 1997:1
    50湖北省电磁兼容学会.电磁兼容性原理及应用.北京:国防工业出版社, 1996:1
    51金磊.电子危害分析及安全对策.环境保护, 1995:30
    52胡玉翠,李建平,张世麟.计算机信息泄漏的防护措施.电子材料与电子技术, 1993, 20(4):47
    53杨艳容.电磁辐射对操作人员的危害.电子材料与电子技术, 1993, 20(3):56
    54高攸纲.电磁兼容技术的若干新进展.电子科技导报, 1997(11):19
    55翟宇,聂彦,沈翔.电磁屏蔽材料的研究进展与发展趋势.功能材料, 2004, 35:917-920
    56汝强,胡社军,胡显奇.电磁屏蔽理论及屏蔽材料的研制.包装工程, 2004, 25(5):21-24
    57冯猛,张羊换,王鑫.电磁屏蔽涂料研究现状.涂料工业, 2004, 34(11):32-36
    58万刚,李荣德.电磁屏蔽材料的进展.屏蔽技术与屏蔽材料, 2003, 1:40-45
    59张玉萍.造福人类的电磁屏蔽和吸波材料.物理与工程, 2003, 13(6):25-29
    60张晓宁,毛倩瑾,王群.三明治型电磁屏蔽材料的制备与性能.材料研究学报, 2002, 15(5): 536-540
    61阎鑫.纳米微孔铁氧体吸波剂的水热合成研究.西北工业大学硕士学位论文, 1998:2-5
    62赵九蓬,吴佩莲.新型吸波材料研究动态.材料科学与工艺, 2002:6
    63夏新仁.隐身技术发展现状与趋势.中国航天, 2002:1
    64步文博,徐洁,丘泰.吸波材料基础理论的探讨及展望.江苏陶瓷, 2001, 6(2):23
    65 Jingyao Cao, D.D.L.Chung. Coke powder As an Admixture in Cement for Electromagnetic Interference Shielding. Letters To the Editor/Carbon, 2003, 41:2427-2451
    66 Y.K.Hong, C.Y.Lee, C.K.Jeong etc. Electromagnetic Interference Shielding Characteristics of Fabric Complexes Coated With Conductive Polypyrrole and Thermally Evaporated Ag. Current Applied Physics, 2001, 1:439-442
    67 P.S. Neelakanta, K. Subramaniam. Controlling the Properties of Electromagnetic Composites. Adv. Mater. Proc.1992, 141(3):20-25
    68 G. Lu, X. Li, H. Jiang. Electrical and Shielding Properties of ABS Resin Filled with Nickel-coated Carbon Fibers. Compos. Sci. Technol, 1996, 56:193-200
    69吴世熊,姜恩泳.计算机信息防泄复合薄膜屏蔽材料设计.功能材料, 1995, 26(6):541-548
    70何益艳,杜仕国,施冬梅.铜系电磁屏蔽涂料的研究.现代涂料与涂装, 2002, 5:1-3
    71林说,李志章,吴年强.电磁屏蔽导电涂层.材料导报, 1996, 3:72-76
    72黄婉霞,毛建,吴行.铁磁性铁氧体与铁电性复合材料吸收电磁波能力研究.四川联合大学报, 1998, 12(60):110-113
    73 A. Kaynak, A. Polat, U. Yilmazer. Some Microwave and Mechanicalproperties of Carbon Fiber- Polypropylene and Carbon Black–Polypropylene Composites. Mater. Res. Bull, 1996, 31(10):1195-1206
    74 P.B. Jana, A.K. Mallick, Studies on Effectiveness of Electromagnetic Interference Shielding in Carbon Fiber Filled Polychloroprene Composites,J. Elastomers Plast, 1996, 26(1):58-73
    75 J.M. Chiou, Q. Zheng, D.D.L. Chung. Electromagnetic Interference Shielding by Carbon Fiber Reinforced Cement. Composites, 1989, 20(4):379-381
    76 J. Wolsiefer, D.R. Morgan. Silica Fume in Shotcrete, Concr. Int.:Des. Constr, 1993, 15(4):34-39
    77 Kubo.Interface Activity of Water Given Rise by Tourmaline J. Solid State Physics,1989,24(12)
    78 M.Paligova, J.Vilcakova, P.Saha. Electromagnetic Shielding of Epoxy Resin Composites Containing Carbon Fibers Coated with Polyaniline Base. Physica A, 2004, 335:421-429
    79 J-L.Wojkiewicz, S.Fauveaux, J-L.Miane. Electromagnetic Shielding Properties of Polyaniline Composites. Synthetic Metals, 2003, 135-136:127-128
    80 Chi-Yuan Huang, et al. Electromagnetic Interference Shielding Effectiveness and Mechanical Slielding Behavior for Electroless Nickel Phosphorous-poly(tetrafluoroethylene) Codeposition on Carbon Fiber Acrylonitrile-butadiene-styrene Composites, Journal of Applied Polymer Science, 2002, 85(8): 1661-1668
    81 Brilli Donnay. Structrue Mechanism of Pyroelectricity in Tourmaline J. Acta Cryst ,1977 (A33): 927-932
    82 Pilkington and the Flat Glass Industry 2005, 9
    83 P.A.Morris Hotsenpiller, G.A.Wilson, A.Roshko. Heteroepitaxial Growth of TiO2 Films by Ion-beam Sputter Deposition. Journal of Crystal Growth, 1996, 166:779-785
    84 H.Weis, T.Muggenburg, P.Grosse etc. Advanced Characterization Tools for Thin Films in Low-E Systems. Thin Solid Films, 1999, 351:184-189
    85 P.A.Morris Hotsenpiller, G.A.Wilson, A.Roshko. Heteroepitaxial Growth of TiO2 Films by Ion-beam Sputter Deposition. Journal of Crystal Growth, 1996, 166:779-785
    86 Elin Hammarberg, Arne Roos. Antireflectin Treatment of Low-emitting Glazings for Energy Efficient Windows With High Visible Transmittance. Thin Solid Films, 2003, 442:222-226
    87 J.H.Lee, S.H.Lee, K.L.Yoo etc. Deposition of Multi-period Low-emissivity Filters for Display Application by RF Magnetron Sputtering. Surface and Coatings Technology, 2002, 158-159:477-481
    88张春福.锡槽中的锡污染对浮法玻璃质量的影响.辽宁建材,2001(4):20-22
    89刘世民.浮法玻璃下表面渗锡分布特点、成因及渗锡量的探讨.玻璃,1995 (1):25-27
    90王承遇.浮法玻璃表面的研究.玻璃,1995, (4): 1-4
    91林亢.浮法玻璃渗锡面上中锡氧化物含量的近似计算.玻璃,1999 (2): 16-18
    92 Satoshi Takeda, Ryoji Akiyama,Hideo Hosono. Precipitation of Nanometer-sized SnO2 Crystals and Sn Depth Profile in Heat-treated Float Gglass. Journal of Non-Crystalline Solids, 2002, (311): 273-280
    93 Yasou Hayashi, Yasuo Fukuda, Masahiro Kudo. Investigation on Changes in Surface Composition of Float Glass-Mechanisms and Effects on the Mechanical Properties. Surface science, 2002, (507-510): 872-876
    94 Jalian.Bent, Alex C.Hannon, Diane Holland, Mustaman M.A.Karim. The Structure of Tin Silicate Glasses. Journal of Non-Crystalline Solids, 1998,(232):300-308
    95 F. Caccavale, R. Coppola, A. Menelle. Characterisation of SnOx Films on Architectural Glass by Neutron Reflectometry, SIMS, GEMS and Spectrophotometry. Journal of Non-Crystalline Solids, 1997, (218): 291-295
    96 R.P. Pettersson. A Method for Trace Element Determination of Marine Periphyton Communities on Discs of Float Glass (without Sample Preparation) Using Total-reflection X-ray Fluorescence Spectrometry. Spectrochimica Acta Part B, 1998, (53): 101-115
    97 Townsend. P .D; Chandler.P.J; Farmery.B.W, et. al. Comparisons of Tin Depth Profile Analyses in Float Glass. Journal of Non-Crystalline Solids, 1998, (223): 73-85
    98 Modi, H. Mohammed, S. Gyanendra , Ion Irradiation Damage on Tin Side Surface of Float Glass. Nuclear Inst. and Methods in Physics Research, 2005,B(239): 383-390
    99 J.M. Grimal, P. Chartier, P. Lehuédé. X-ray Reflectivity-A new Tool for the Study of Glass Surfaces. Journal of Non-Crystalline Solids, 1996, (196): 128-133
    100 Glen B. Cook 1, Reid F. Cooper. Redox Dynamics in the High-temperature Float Processing of Glasses. I. Reaction Between Undoped and Iron-doped Borosilicate Glass Melts and a Gold–tin alloy. Journal of Non-Crystalline Solids, 1999, (249): 210-227
    101 I. Okur, P.D. Townsend, P.J. Chandler, New Techniques for Optical Absorption Measurement of Implanted Nanoparticles in Float Glass. Nuclear Instruments and Methods in Physics Research B, 1999, (148): 1069-1073
    102 TingJi Wang, Hongyan Zhang, Guowu Zhang. Computer Modeling of Satellite Peak in Tin Profile of Float Glass. Journal of Non-Crystalline Solids, 2000 (271) :126-136
    103 Manuela Prieto, JoséDíaz, Eduardo Egusquiza. Analysis of the Fluid-Dynamic and Thermal Behaviour of a Tin Bath in Float Glass Manufacturing. Int. J. Therm. Sci. 2002 (41):348-359
    104白晓华,杨旗风,代丽萍.光度法测量浮法玻璃下表面渗锡.玻璃, 2003 (166) 42-43
    105马振珠,刘元新,王廷籍.浮法玻璃渗锡量的测量方法.硅酸盐学报,2004 (32) 649-652
    106樊美公.光化学基本原理与光子学材料科学,北京:科学出版社,2001:1-30
    107刘长松,朱震刚.分子动力学模拟液态硅的扩散性质.中山大学学报.2001,40:(279-280)
    108严六明,严琪良等.Ar-Kr溶液扩散系数的分子动力学模拟及其与温度的关系.高等学校化学学报.1997,18:2026-2029
    109 Allen.Toby.Biophysical Chemistry. Molecular Dynamics Estimates of Ion Diffusion in Model Hydrophobic and Kcs,A potassium channels.2000,86(1):1-14
    110 V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V.Akhmatskaya, R.H.Nobes, Electronic Structure, Properties, and Phase Stability of Inorganic Crystals: A pseudopotential Plane-wave Study, International Journal of Quantum Chemistry. 2000, (77) :895-899
    111 J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review. Letter. 1996, (77): 3865-3869
    112 S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and Related Crystal Properties from Density-functional Perturbation Theory, Review of Modern. Physics., 2001, (73):515-520
    113 R.M. Martin, Electronic Structure, Part 2,Cambridge University Press, Cambridge, 2004:1-30
    114 P. Hohenberg, W. Kohn, Relativistic Density-functional Theory for Ensembles of Excited States, Physical Review B, 1964, (136):864-871
    115 D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B. 1990, (41) :7892-7898
    116 J.P.Perdew,Y.Wang, Accurate and Simple Analytic Representation of the Electron-gas Correlation Energy, Physical Review B. 1992, (45):13244-13251
    117高名芩,叶先贤.浮法玻璃表面光畸变点的电子探针研究.武汉工业大学学报,1994, 16(3):43-45
    118 J.S.Sieger. Chemical Characteristics of Float gGlass Surfaces, Journal of Non-Crystalline Solids.1975(19):213-221
    119庄大明,刘有荣,林育杨,等.离子硫化层的微观组织及其摩擦学性能.中国表面工程,1998,(4):15-20
    120高伟,施忠良,顾明元.碳钢渗硫层面接触滑动摩擦特性的试验研究.摩擦学学报,1998,18(4):312-315
    121鲍登·P·F,泰伯·D·.固体的摩擦与润滑.北京:机械工业出版社,1982:114
    122三科博司.表面性状と摩擦.表面科学,1988,9(9):96-101
    123 M.M.Hyland, G.M.Bancroft. An XPS study of Gold Deposition at Low Temperature on Sulfide Minerals: Reducing Agents[J].Geochim.Cosmochim.Acta,53:367-372
    124 M.M.Hyland, G.Jean, G.M.Bancroft. XPS and AES Studies of Hg(Ⅱ) Sorption and Desorption Reactions on Sulfide Minerals[J].Geochim.Cosmochim.Acta,1990,54:19 57-1967
    125草場啓治.硫化鉄(FeS)の高温高圧下での2次相転移.日本結晶学会誌.2001,43(2): 180-184
    126天野田昭,渡辺俊樹,道山馨.微量の硫黄を添加したFe-20Cr-4Al合金の高温酸化.日本金属学会誌,1997,61(10):1077-1085
    127瀬尾真浩.合金の表面酸化比較的低温領域における挙動.表面科学, 1989,10(9):2-8
    128贾建业,谢先德,吴大清,等.常见硫化物表面的XPS研究.高校地质学报.2000,6(2): 255-259
    129居毅.20#碳氮共渗层组成与化学状态的AES和XPS的研究.摩擦学学报.2001,21(4): 312-314
    130刘履华,辛川,梁统琛,等.用XPS研究钢表面“低温硫钼处理”渗层剖面.四川真空.1990,(2):13-15
    131张永喜.浮法玻璃在线水洗设计.中国建材装备, 1991,(1):23-24
    132王自强,王杏娟.浮法玻璃表面出膜浅析.玻璃,1999,26(5):15-16
    133林泰夫,工藤正博.ガラス表面のキャラクタリゼーション(Ⅰ)—ガラス表面における諸現象の発見機構—.表面科学,2001,22(1)55-63
    134林泰夫,工藤正博.ガラス表面のキャラクタリゼーション(Ⅱ)—ガラス表面にコーティングした薄膜の特性支配因子の解析.表面科学,2001,22(1)64-71
    135 K.Krambrock, M.V.B.Pinheiro, S.M.Mediros and K.J.Guedes. Investigation of Radiation-induced Yellow Color in Tourmaline by Magnetic Resonance. Nuclear Instruments and Methods in Physics Research B, 2002,191:243-244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700