用户名: 密码: 验证码:
等离子体处理对甲烷转化催化剂的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界石油资源的消耗,天然气(主要成分是甲烷)的化学利用日益提上了日程。从经济上考虑,甲烷经过合成气(氢气和一氧化碳)步骤,来间接合成液体燃料和含氧化合物的途径更具有应用前景。甲烷重整制合成气有三条路径:水蒸气重整,二氧化碳重整和部分氧化。现在工业上运行的水蒸气重整是一个能量密集过程,有很多不足。相对水蒸气重整,二氧化碳重整和部分氧化有各自的优势,比如甲烷二氧化碳重整具有温室气体的利用,甲烷部分氧化具有需要能量少、操作空速大等优点。对二氧化碳重整和部分氧化催化剂的基础研究具有重大的理论和实际意义。
     使用等离子体处理加焙烧的方法制备的Ni/Al_2O_3催化剂在甲烷二氧化碳重整反应中显示出高于常规催化剂样品的活性,并且在750 ?C保持50 h稳定。程序升温氧化反应5 h的催化剂样品,发现等常规催化剂样品的积碳量是等离子体处理样品的5.1倍。透射电镜观察发现,在反应10 h的常规样品中有大量的包埋碳和胡须碳,而在反应50 h后的等离子体样品中没有发现这些积碳。这些结果表明等离子体处理的样品大大抑制了这些对催化剂有害的积碳的生成。对催化剂的表征发现等离子体处理的样品中,Ni的平均颗粒直径比较小且分布均匀、Ni与载体的作用较强、Ni颗粒的表面比较平整。这些结构有效地降低了甲烷裂解产生积碳的速度,从而有效地抑制了胡须碳和包埋碳的成长。而较高的分散性提高和Ni富集在表面的特性提高了催化剂的活性。
     使用一氧化碳作为探针分子的漫反射红外光谱是研究催化剂结构的有效手段。在等离子体处理的Ni/Al_2O_3处理样品中观测到归属于一氧化碳桥式吸附在三个Ni原子上的特征峰,而在常规样品中没有观测到。这说明常规样品的Ni颗粒更加的粗糙,含有更多的缺陷位;而在等离子体处理的样品比较平整,含有较多的密集平面。
     等离子体处理制备的Pt/ZrO_2催化剂在甲烷二氧化碳重整反应中显示出高于常规催化剂的活性。初步研究表明等离子体处理提高了高温还原以后表层的Pt浓度,增强了Pt-ZrO_2的相互作用。
     使用各种表征手段,证明Ar辉光放电等离子体还原Pt催化剂的有效性,并且等离子体还原的催化剂在甲烷部分氧化反应中显示出与氢还原催化剂相近的活性。
     等离子体处理制备的Pt/ZrO_2催化剂在甲烷部分氧化反应中显示出优于常规催化剂的稳定性。催化剂的失活不是因为积碳而是因为Pt聚集引起的。使用CO吸附的漫发射红外光谱研究表明,等离子体处理的样品具有更好的高温临氧抗聚集性能。
With the depleting of oil resource in the world, the utilization of natural gas (main component is methane) resources to useful chemicals has becoming important. From the economic consideration, it is more promising to use methane for syntheses of liquid fuels and oxygenated hydrocarbons via synthesis gas (H_2 and CO). There are three approaches to produce synthesis gas from methane, namely, reforming with H_2O (steam reforming), with CO_2 (CO_2 reforming), and partial oxidation. Steam reforming is currently carried out in the industry with some drawbacks, for example, intense energy input. Compared to steam reforming, CO_2 reforming and partial oxidation have some advantages, for example, utilization of greenhouses gases, lower energy input and higher space velocity for partial oxidation. Therefore, it is of great importance for the studies of CO_2 reforming and partial oxidation.
     The Ni/Al_2O_3 catalyst prepared using plasma treatment followed by calcination method shows excellent stability and superior reactivity for CH_4/CO_2 reforming, compared with the non-plasma treated sample. The activity did not decline during 50 h time on stream at 750 ?C. Temperature programmed oxidation results show that the amount of carbon formed over the non-plasma treated sample during CH_4/CO_2 reforming at 750 ?C for 5 h was 5.1 times larger than that for the plasma treated sample. The TEM observations do not reveal obvious filamentous carbon or encapsulating carbon for the plasma treated sample even after 50 h time on stream. Whereas these carbon species are clearly observed for the non-plasma treated sample after 10 h time on stream. These results indicates that the greatly inhibition of filamentous carbon and encapsulating carbon formation over the plasma treated sample. Various characterizations illustrate the smaller particle size of Ni, the stronger interactions between the Ni and alumna support, and the flatter morphology of Ni particle result in the superior anti carbon property of plasma treated sample.
     CO adsorbed diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy is a powerful way to study the structure of supported catalysts. A band centered at 1887 cm-1, which can be assigned to CO bridged bonded to three nickel atoms, is observed for the plasma treated Ni/Al_2O_3 sample. However, it is absent for the non-plasma treated sample. This result suggests that the nickel particle of the non-plasma treated sample is more rough, containing more defect sites; whereas, it is more flat, containing more close packed planes for the plasma treated sample.
     The Pt/ZrO_2 catalyst prepared using the plasma treatment and calcination method shows higher reactivity for the CH_4/CO_2 reforming with regard to the sample without plasma treatment. We tentatively ascribe the result to higher exposed Pt concentration after high temperature reduction and stronger Pt-ZrO_2 interactions for the plasma treated sample.
     Various approaches were used to confirm the validation of Ar glow discharge plasma reduction of supported Pt catalysts. And the plasma reduced supported Pt catalysts show comparable reactivity during partial oxidation of methane.
     The Pt/ZrO_2 catalyst prepared using the plasma treatment and calcination method shows higher stability for the partial oxidation of methane with respect to the sample without plasma treatment. The deactivation of the catalyst is not due to coke formation but Pt sintering in the presence of O2. CO adsorbed DRIFT study shows that the plasma treated sample is more resistance to sintering at higher temperature in the presence of O2.
引文
[1] Crabtree R H. Aspects of methane chemistry, Chem. Rev., 1995, 95(4): 987-1008
    [2] Lunsford J H. Catalytic conversion of methane to more useful chemicals for 21st century. Catal. Today, 2000, 63: 165-174
    [3] Ross J R H, Hegarty M E S. The catalytic conversion of natural gas to useful products. Catal. Today, 1996, 30:193-199
    [4] Rostrup-Nielsen J R. New aspects of syngas production and use. Catal. Today, 2000, 63: 159-164
    [5] 马新华,李东旭,中国陆上天然气发展形势与前景,石油科技论坛,2000,6: 37-42
    [6] 唐书恒,史保生,岳巍等,中国煤层气资源分布概况,天然气工业, 1999,19(5): 6-8
    [7] 陈赓良,国内外天然气利用的现状与展望,石油与天然气化工,2002,31(5): 231-234
    [8] 王永杰,21 世纪能源走势浅析,精细石油化工进展,2000,1(6): 1-7
    [9] Periana R A, Tauble D J, Gamble S, et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative, Science, 1998, 280: 560-564
    [10] Herman R G, Sun Q, Shi C L, et al. Development of active oxide catalysts for the direct oxidation of methane to formaldehyde, Catal. Today, 1997, 37: 1-14
    [11] Cordi E M, Pak S, Rosynek M P, et al. Steady-state production of olefins in high yields during the oxidative coupling of methane: Utilization of a membrane contactor, Appl. Catal. A, 1997, 155(1): L1-L7
    [12] Pak S, Qiu P, Lunsford J H. Elementary reactions in the oxidative coupling of methane over Mn/Na2WO4/SiO2and Mn/Na2WO4/MgO catalysts, J. Catal., 1998, 179(1): 222-230
    [13] Qiu P, Lunsford J H, Rosynek M P. Steady-state conversion of methane to aromatics in high yields using an integrated recycle reaction system, Catal. Lett., 1997, 48(1-2): 11-15
    [14] Ding W, Li S, Meitzner G D, et al. Methane conversion to aromatics onMo/H-ZSM5: structure of molybdenum species in working catalysts, J. Phys. Chem. B, 2001, 105(2): 506-513
    [15] Li B T, Maruyama K, Nurunnabi M, et al. Temperature profiles of alumina-supported noble metal catalysts in autothermal reforming of methane, Appl. Catal. A, 2004, 275(1-2): 157-172
    [16] Tomishige K, Kanazawa S, Suzuki K, et al. Effective heat supply from combustion to reforming in methane reforming with CO2 and O2: comparison between Ni and Pt catalysts, Appl. Catal., 2002, 233(1-2): 35-44
    [17] Stevens R W, Chuang J S C C. In situ IR study of Transient CO2 reforming of CH4 over Rh/Al2O3, J. Phys. Chem. B, 2004, 108: 696-703
    [18] Song C S. Pan W. Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios, Catal. Today, 2004, 98: 463-484
    [19] Bergens S H, Gorman C B, Palmore G T R, et al. A redox fuel cell that operates with methane as fuel at 120°C, Science, 1994, 205: 1418-1420
    [20] Demird?ven N, Deutch J. Hybrid cars now, fuel cell cars later, Science, 2005, 305: 974-976
    [21] 徐学基,诸定昌,气体放电物理,上海:复旦大学出版社,1995
    [22] 罗思 J R, 工业等离子体工程基本原理(第一卷),北京:科学出版社,1998
    [23] 陈杰瑢, 低温等离子体化学及其应用,北京: 科学出版社,2001
    [24] 陈宗柱,高树香,气体导电(下册),南京:南京工学院出版社,1988
    [25] Grill A. Cold plasma in material fabrication, from fundamental to applications, New York: IEE Press, 1994
    [26] Rossnagel S M, Cuomo J J, Westwood W D. Handbook of plasma processing technology, Park Rigde: Noyes, 1990
    [27] Conrads H, Schmidt M, Plasma generation and plasma sources, Plasma Sources Sci. Technol. 2000, 9: 441-454
    [28] Liu C-J, Vissokov G P, Jang B W-L. Catalyst preparation using plasma technologies, Catal. Today, 2002, 75: 173-184
    [29] Francis G. The glow discharges at low pressure, Berlin: springer, 1956
    [30] 于开录,刘昌俊,夏清,邹吉军,低温等离子体技术在催化剂领域的应用,化学进展,2002,14(6):456-461
    [31] 于开录,等离子体增强催化剂制备的物理与化学研究:[硕士学位论文],天津:天津大学,2002
    [32] 邹吉军,等离子体处理制备高效催化剂的基础研究:[博士学位论文],天津:天津大学,2005
    [33] 程党国,等离子体法制备甲烷转化高效催化剂的表征:[博士学位论文],天津:天津大学,2006
    [34] Li L Y, Ishigaki T. Chem. Mater., 2001, 13: 1577-1584
    [35] Halverson D E, Cocke D L. Ruthenium impregnation of plasma-grown alumina films. J. Vac. Sci. Technol., 1989, 7: 40-48
    [36] Liu C J, Marafee A, Mallinson R, et al. Methane conversion in a corona discharge over metal oxide catalysts with OH groups. Appl. Catal. A Gen.1997, 164(1-2): 21-33
    [37] Marafee A, Liu C J, Xu G H, et al. An experimental study on the oxidative coupling of methane in a direct current corona discharge reactor over Sr/La2O3 catalyst. Ind. Eng. Chem. Res., 1997, 36(3): 632- 637
    [38] Liu C J, Mallinson R, Lobban L. Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma. J Catal.,1998, 179(1): 326-334
    [39] Liu C J, Lobban L L, Mallinson R G. Experimental investigations on the interaction between plasmas and catalyst for plasma catalytic methane conversion (PCMC) over zeolites. Stud.Surf.Sci.Catal.,1998, 119: 61-366
    [40] Heintze M, Pietruszka B. Plasma catalytic conversion of methane into syngas: the combined effect of discharge activation and catalysis. Catal. Today, 2004, 89: 21-25
    [41] Hammer T, Kappes T, Baldauf M. Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes. Catal. Today, 2004, 89: 5-14
    [42] Kirkpatrick M J, Finney W C, Lock B R. Plasma-catalyst interactions in the treatment of volatile organic compounds and NOx with pulsed corona discharge and reticulated vitreous carbon Pt/Rh-coated electrodes. Catal. Today, 2004, 89: 117-126
    [43] 王育,等离子体二甲醚研究:[博士学位论文],天津:天津大学,2006
    [44] Dadashova E A, Yagodovskaya T V, Shpiro E S, et al. The synthesis of Fe2O3/ZSM-5 catalyst for carbon monoxide hydrogenation in glow discharge of oxygen and argon. Kinet. Catal., 1993, 34: 670-673
    [45] Zhang Y, Chu W, Cao W, et al. A plasma-activated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas. Plasma Chem. Plasma Process., 2000, 20: 137-144
    [46] Theo L M M, Dolf S L, et al. Use of radiofrequency plasma for low-temperature calcinations of zeolites. J. Chem. Soc., Chem. Commun., 1987: 1284-1285
    [47] Maesen T M, Kouwenhoven H W, et al. Template removal from molecular sieves by low-temperature plasma calcinations. J. Chem. Soc., Faraday Trans., 1990, 86: 3967-3970
    [48] Furukawa K, Tian S R, Yamauchi H, et al. Characterization of HY zeolite modified by a radio-frequency CF4 plasma. Chem. Phys. Lett., 2000, 318: 22-26
    [49] Sugiyama K, Anan G, Shimada T, et al. Catalytic ability of plasma heat-treatedmetal oxides on vapor-phase Bechmann rearrangement. Surf. Coat. Technol., 1999 112: 76-79
    [50] Blecha J, Dudas J, Lodes A, et al. Activation of Tungsten oxide catalyst on SiO2 surface by low-temperature plasma. J. Catal., 1989, 116: 285-280
    [51] Li Z H, Tian S X, Wang H T, et al. Plasma treatment of Ni catalyst via a corona discharge. J. Mol. Catal. A: Chem., 2004, 211: 149-153
    [52] Chen M H, Chu W, Dai X Y, et al. New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene. Catal. Today, 2004, 89: 201-204
    [53] Shi C, Jang B. W-L. Nonthermal Rf plasma modifications of Pd/Al2O3 for selective hydrogenation of acetylene in the presence of ethylene. Ind. Eng. Chem. Res., 2006, 45: 5879-5884
    [54] Zhang X L, Zhu A M, Li X H, et al. Oxidative dehydrogenation of ethane with CO2 over catalyst under pulse corona plasma. Catal. Today, 2004, 89: 97-102
    [55] 王建国,等离子体转化甲烷之实验与密度泛函理论研究:[博士学位论文],天津:天津大学,2004
    [56] Yu K L, Liu C J, Zhang Y P, et al. The preparation and characterization of highly dispersed PdO over alumina for low-temperature combustion of methane. Plasma Chem. Plasma Process., 2004, 24: 393-403
    [57] Liu C J, Yu K L, Zhang Y P, et al. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion. Appl. Catal. B: Environ., 2004, 47: 95-100
    [58] Wang J G, Liu C J, Zhang Y P, et al. Partial oxidation of methane to syngas over plasma treated Ni-Fe/La2O3 catalyst. Chem. Lett., 2002: 1068-1069
    [59] Wang J G, Liu C J, Zhang Y P, et al. Partial oxidation of methane to syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst. Catal. Today, 2004, 89: 183-191
    [60] Liu C J, Zou J J, Yu K L, et al. Plasma application for more environmentally friendly catalyst preparation, Pure Appl. Chem, 2006, 78(6): 1227-1238
    [61] Zou J J, Liu C J, Zhang Y P. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment, Langmuir, 2006, 22(5): 2334-2339
    [62] Zou J J, Liu C J, Yu K L, et al. Highly efficient Pt/TiO2 photocatalyst prepared by plasma-enhanced impregnation method, Chem. Phys. Lett., 2004, 400(4-6): 520-523
    [63] Cheng D G, Zhu X L, Ben Y H, et al. Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma, Catal. Today, 2006, 115(1-4): 205-210
    [64] Zhang Y P, Ma P S, Zhu X L, et al. A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane, Catal. Commun., 2004, 5(1) 35-39
    [65] Liu C J, Cheng D G, Zhang Y P, et al. Remarkable enhancement in the dispersion and low-temperature activity of catalysts prepared via novel plasma reduction-calcination method, Catal. Surv. Asia, 2004, 8(2): 111-118
    [66] Liu C J, Wang J X, Yu K L, et al. Floating double probe characteristics of non-thermal plasmas in the presence of zeolite. J. Electrostatics, 2002, 54: 149-158
    [67] 贲宇恒,等离子体处理催化剂过程温度参数的测定,[硕士学位论文],天津,天津大学,2004
    [68] Ross J R H. Natural gas reforming and CO2 mitigation. Catal. Today, 2005, 100: 151-158
    [69] Gadalla A M, Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO2. Chem. Eng. Sci. 1988, 43(10): 3049-3062
    [70] Ashcroft A T, Cheetham A K, Green M L H, et al. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature, 1991, 352: 225-226
    [71] Rostrup-Nielsen J R, Hansen J-H B. CO2 reforming of methane over transition metals. J. Catal., 1993, 144: 38-49
    [72] Zhang Z L, Verykios X E. A stable and active nickel-based catalyst forcarbon dioxide reforming of methane to synthesis gas. J. Chem. Soc., Chem. Commun., 1995: 71-72
    [73] Zhang Z L, Verykios X E, Macdonald S M, et al. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts. J. Phys. Chem. B, 1996, 100: 744-754
    [74] Bradford M C J, Vannice M A. CO2 reforming of CH4. Catal. Rev.-Sci. Eng. 1999, 41(1): 1-42
    [75] Hu Y H, Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv. Catal., 2004, 48: 297-345
    [76] Wei J M, Iglesia E. Structural and mechanistic requirements for methane activation and chemical conversion on supported iridium clusters. Angew. Chem. Int. Ed., 2004, 43: 3685-3688
    [77] Choudhary T V, Goodman D W. Activation of methane over Ni and Ru model catalysts. J. Mol. Catal. A, 2000, 163: 9-18
    [78] Wei J M, Iglesia E. Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts. Phys. Chem. Chem. Phys., 2004, 6(13): 3754-3759
    [79] Wei J M, Iglesia E. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J. Catal., 2004, 225(1): 116-127
    [80] Wei J M, Iglesia E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J. Catal., 2004, 224(2): 370-383
    [81] Wei J M. Iglesia E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. J. Phys. Chem. B, 2004, 108(13): 4094-4103
    [82] Pompeo F, Nichio N N, Ferretti O A, et al. Study of Ni catalysts on different supports to obtain synthesis gas. Int. J. Hydrog. Energy, 2005, 20(13-14): 1399-1405
    [83] Yokota S, Okumura K, Niwa M. Support effect of metal oxide on Rh catalysts in CH4-CO2 reforming reaction. Catal. Lett., 2002, 84(1-2): 131-134
    [84] Sahli N, Petit C, Roger A C, et al. Ni catalysts from NiAl2O4 for CO2 reforming of methane. Catal. Today, 2006, 113: 187-193
    [85] Xu Z, Li Y M, Zhang J Y, et al. Bound-state Ni species ---a superior form in Ni-based catalyst for CH4/CO2 reforming. Appl. Catal. A, 2001, 210: 45-53
    [86] Delmon B. How to reduce the greenhouse effect, and a few other questions concerning catalysts. Appl. Catal. B, 1992, 1: 139-147
    [87] Pompeo F, Nichio N N, González M G, et al. Characterization of Ni/SiO2 and Ni/Li-SiO2 catalysts for methane dry reforming. Catal. Today, 2005, 107-108: 856-862
    [88] Fischer F, Tropsch H. Brennstoff Chem., 1928, 3: 39~45
    [89] Reitmeier R F, Atwood K, Bennett H A, et al. Production of Synthetic Gas - Reaction of Light Hydrocarbons with Steam and Carbon Dioxide. Ind. Eng. Chem. 1948, 40: 620-633
    [90] Teuner S. Hydrocarbon Proc., 1985, 64: 106
    [91] Rostrup-Nielsen J R. Catalysis, Science and Technology, 1984, 5: 1-117, Berlin: springer
    [92] Sakai Y, Saito H, Sodesawa T, et al. Catalytic reactions of hydrocarbon with carbon dioxide over metallic catalysts. React. Kinet. Catal. Lett., 1984, 24: 253-257
    [93] Hou Z Y, Yokota O, Tanaka T, et al. Investigation of CH4 reforming with CO2 on meso-porous Al2O3-supported Ni Catalyst. Catal. Lett., 2003, 89(1-2): 121-127
    [94] Lu G Q, Wang S B. Ni-based catalysts for carbon dioxide reforming of methane. Chemtech, 1999, 29: 37-43
    [95] Wang S B, Lu G Q. Catalytic activities and coking characteristics of oxides-supported Ni catalysts for CH4 reforming with carbon dioxide. Energy Fuels, 1998, 12: 248-256
    [96] Wang S B, Lu G Q. CO2 reforming of methane on Ni Catalysts: Effects of support phase and preparation technique. Appl. Catal. B, 1998, 16: 269-277
    [97] Takayasu O, Soman C, Takegahara Y, et al. Deactivation of ni-catalysts and its prevention by mechanically mixing an oxide for the formation reaction of CO+H2 from CO2+CH4. Stud. Surf. Sci. Catal., 1994, 88: 281-288
    [98] Ruckenstein E, Hu Y H. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts. Appl. Catal. A, 1995, 133: 149-161
    [99] Li X S, Chang J S, Park S E. CO2 reforming over Zirconia-supported nickel catalyst, Ⅰ. Catalytic specificity. Reat. Kinet. Catal. Lett., 1999, 67(2):375-381
    [100] Li X S, Chang J S, Park S E. CO2 reforming over Zirconia-supported nickel catalyst, Ⅱ. Thermogravimetric analysis. Reat. Kinet. Catal. Lett., 1999, 67(2): 383-389
    [101] Wang S B, Lu G Q. A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3 catalysts. Ind. Eng. Chem. Res. 1999, 38: 2615-2625
    [102] Zhang Z L, Verykios X E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catal. Today, 1994, 21: 589-595
    [103] Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over supported nickel catalysts. Ⅱ. Reaction kinetics. Appl. Catal. A, 1996, 142: 97-122
    [104] Osaki T, Mori T. Role of potassium in carbon-free CO2 reorming of methane on K-promoted Ni/Al2O3 catalysts. J. Catal., 2001, 204: 89-97
    [105] Osaki T, Fukaya H, Horiuchi, et al. Isotope Effect and Rate-Determining Step of the CO2-Reforming of Methane over Supported Ni Catalyst. J. Catal. 1998, 180(1): 106-109
    [106] Trimm D L. Catalysts for the control of coking during steam reforming. Catal. Today, 1999, 49: 3-10
    [107] Rostrup-Nielsen J R, Alstrup I. Innovation and science in the process industry: steam reforming and hydogenolysis. Catal. Today, 1999, 53: 311-316
    [108] Stolojan V, Tison Y, Chen G Y, et al. Controlled growth-reversal of catalytic carbon nanotubes under eletron-beam irradiation. Nano Lett., 2006, 6(9): 1837-1841
    [109] Kepinski L, Stasinska B, Borowiecki T. Carbon deposition on Ni/Al2O3 catalysts doped with small amount of molybdenum. Carbon, 2000, 38: 1845-1856
    [110] Baker R T K. Catalytic growth of carbon filaments. Carbon, 1989, 27(3): 315-323
    [111] Alstrup I. A new model explaining carbon filament growth on nickel, iron and Ni-Cu alloy catalysts. J. Catal., 1988, 109: 241-251
    [112] Burghgraef H, Jansen A P J,Santen R A V. Methane activation and dehydrogenation on nickel and cobalt: a computational study. Surf. Sci., 1995, 324(2-3): 345-356
    [113] Mark M F, Maier W. Active surface carbon---A reactive intermediate in the production of synthesis gas form methane and carbon dioxide. Angew. Chem. Int. Ed. Engl., 1994, 33(15-16): 1657-1660
    [114] Erdohelyi A, Cserenyi J. and Solymosi F. Activation of CH4 and its reaction with CO2 over supported Rh catalysts. J. Catal., 1993, 141(1): 287-299
    [115] Rostrup-Nielsen J R. Stud. Surf. Catal Sci., 1991, 68: 85.
    [116] Hou ZY, Yokota O, Tanaka T, et al. Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2. Appl. Catal. A, 2003, 253: 381-387
    [117] Juan-Juan J, Román-Martínez M C, Illán-Gómez M J. Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Appl. Catal. A, 2006, 301: 9-15
    [118] Bengaard H S, Alstrup I, Chorkendorff I, et al. Chemisorption of Methane on Ni(100) and Ni(111) Surfaces with Preadsorbed Potassium. J. Catal., 1999, 187(1): 238-244
    [119] Goula M A, Lemonidou A A, Efstathiou A M. Characterization of Carbonaceous Species Formed during Reforming of CH4 with CO2 over Ni/CaO–Al2O3Catalysts Studied by Various Transient Techniques. J. Catal., 1996, 161(2): 626-640
    [120] Crisafulli C, Scirè S, Maggiore R, et al. CO2 reforming over Ni-Ru and Ni-Pd bimetallic catalysts. Catal. Lett., 1999, 59: 21-26
    [121] Crisafulli C, Scirè S, Minicò S, et al. Ni-Ru bimematllic catalysts for the CO2 reforming of methane. Appl. Catal. A, 2002, 225: 1-9
    [122] Hou Z Y, Yashima T. Small Amounts of Rh-Promoted Ni Catalysts for Methane Reforming with CO2. Catal. Lett., 2003, 89(3-4): 193-197
    [123] Dias J A C, Assaf J M. Autothermal reforming of methane over Ni/γ-Al2O3 catalysts: the enhancement of small quatities of noble metals. J. Power Sources, 2004, 130: 106-110
    [124] Tomishige K, Kanazawa S, Sato M, et al. Catalyst design of Pt-modified Ni /Al2O3 catalyst with flat temperature profile in methane reforming with CO2 and O2. Catal. Lett., 2002, 84(1-2): 69-74
    [125] Hou Z Y, Chen P, Fang H L. et al. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount noble-(Rh-) promoted Ni Catalysts. Int. J. Hydrogen Energy, 2006, 31: 555-561
    [126] Lee J H, Lee E G, Joo O S, et al. Stabilization of Ni/Al2O3 catalyst by Cuaddition for CO2 reforming of methane. Appl. Catal. A, 2004, 269: 1-6
    [127] Hou Z Y, Yokota O, Tanaka T, et al. Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane. Appl. Surf. Sci. 2004, 233: 58-68
    [128] Bitter J H, Hally W, Seshan K, et al. The role of oxidic support on the support deactivation of Pt catalysts during the CO2 reforming of methane. Catal. Today, 1996, 29: 349-353
    [129] Bitter J H, Seshan K, Lercher J A. Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. J. Catal., 1998, 176: 93-101
    [130] Bradford M C J, Vannice M A. Metal-support interactions during CO2 reforming of CH4 over Model TiOx/Pt catalysts. Catal. Lett., 1997, 48: 31-38
    [131] Bradford M C J, Vannice M A. CO2 reforming of CH4 over support Pt catalysts. J. Catal., 1998, 173: 157-171
    [132] Souza M M V M, Aranda D A G, Schmal M. Reforming of methane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts. J. Catal., 2001, 204: 498-511
    [133] Souza M M V M, Aranda D A G, Schmal M. Coke formation on Pt/ZrO2/Al2O3 catalysts during CH4 reforming with CO2. Ind. Eng. Chem Res., 2002, 41: 4681-4685
    [134] Stagg-Williams S M, Noronha F B, Fendley G, et al. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. J. Catal., 2000, 194: 240-249
    [135] Stagg S M, Romeo E, Padro C, et al. Effect of promotion with Sn on supported Pt catalysts for CO2 reforming of methane. J. Catal., 1998, 178: 137-145
    [136] Pant B, Stagg-Williams S M. Investigation of the stability of Pt/LaCoO3 during high temperature reforming reactions. Catal. Commun., 2004, 5: 305-309
    [137] Daniels J J, Arther A R, Lee B L, et al. Infrared spectroscopy study CO and CO2 on Ce- and La-promoted Pt/ZrO2 catalysts. Catal. Lett. 2005: 103(3-4): 169-177
    [138] Ballarini A D, Miguel S R D, Jablonski E L, et al. Reforming of CH4 with CO2 on Pt-supported catalysts: Effect of the support on the catalytic behavior. Catal. Today, 2005, 107-108: 481-486
    [139] Bitter J H, Seshan K, Lercher J A. On the contribution of X-ray absorption spectroscopy to explore structure and activity relations of Pt/ZrO2 catalysts for CO2/CH4 reforming. Top. Catal., 2000, 10: 295-305
    [140] Yang M, Papp H. CO2 reforming methane to syngas over highly active and stable Pt/MgO catalysts. Catal. Today, 2006, 115: 199-204
    [141] O’Connor A M, Schuurman Y, Ross J R H, et al. Transient studies of carbon dioxide reforming of methane over Pt/ZrO2 and Pt/Al2O3. Catal. Today, 2006, 115: 191-198
    [142] Prettre M, Eichner C, Perrin M. Trans. Faraday Soc., 1946, 43: 335
    [143] Aschroft A T, Cheetham A K, Foord J S, et al. Selective oxidation of methane to synthesis gas using transition metal catalysts. Nature, 1990, 344: 319-321
    [144] Hickman D A, Schmidt L D. Production of Syngas by Direct Catalytic Oxidation of Methane. Science, 1993, 259: 343-346
    [145] Torniainen P, Chu X, Schmidt L D. Comparison of monolith-supported metals for the direct oxidation of methane to syngas. J. Catal., 1994, 146: 1-10
    [146] Laa J C, Berger R J, Marin G B. Partial oxidation of methane to synthesis gas over Rh/ -Al2O3 at high temperatures. Catal. Lett., 1997, 43: 63-70
    [147] Alberazzi S, Arpentinier P, Basile F. et al. Deactivation of a Pt/γ-Al2O3 catalyst in the partial oxidation of methane to synthesis gas. Appl. Catal. A, 2003, 247: 1-7
    [148] Mattos L V, Rodino E, Resassco D E, et al. Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce-ZrO2 Catalysts. Fuel Process. Technol., 2003, 73: 147-161
    [149] Pantu P, Gavals G R. Methane partial oxidation on Pt/CeO2 and Pt/Al2O3 catalysts. Appl. Catal. A, 2002, 223: 253-260
    [150] Pavlova S N, Sazonova N N, Ivanova J A, et al. Partial oxidation of methane to synthesis gas over supported catalysts based on Pt-promoted mixed oxides. Catal. Today, 2004, 91-92: 299-303
    [151] Souza M M V M, Schmal, M. Methane conversion to synthesis gas by partial oxidation and CO2 reforming over supported platinum catalysts. Catal. Lett., 2003, 91(1-2): 11-17
    [152] Bharadwaj S S, Schmidt L D. Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors. J. Catal., 1994, 146: 11-21
    [153] Dissanayake D, Rosynek M P, Kharas C C, et al. Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst. J. Catal., 1991, 132: 117-217
    [154] Hayakawa T, Harihara H, Andersen A G, et al. A sustainable catalyst ofr the partial oxidation of methane to synthesis gas: Ni/Ca1-xSrxTiO3, prepared in situ from perovskite precursors. Angew. Chem. Int. Ed. Engl., 1996, 35(2): 192-195
    [155] Tsipouriari V A, Zhang Z L, Verykios X E. Catalytic partial oxidation of methane to synthesis gas over Ni-based Catalysts: I. Catalyst performance characteristics. J. Catal., 1998, 179: 283-291
    [156] Wu T H, Yan Q G, Mao F L, et al. Partial oxidation of methane to syngas over Rh/SiO2 catalyst using on-line MS. Appl. Catal. A, 2004, 93-94: 121-127
    [157] 翁维正,罗春容,李健梅,等,Ir/SiO2上甲烷部分氧化制合成气反应的原位时间分辨红外和原位Raman光谱表征,化学学报,2004, 62(18): 1853-1857
    [158] Passos F B, Oliveria E R, Mattos L V, et al. Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts. Catal. Lett., 2006, 110(1-2): 161-167
    [159] Dissanayake D, Rosynek M P, Lunsford J H. Are the equilibrium concentrations of carbon monoxide and hydrogen exceeded during the oxidation of methane over a nickel/ytterbium oxide catalyst? J. Phys. Chem., 1993, 97(15): 3644-3646
    [160] Hu Y H, Ruckenstein E. Catalyst Temperature Oscillations during Partial Oxidation of Methane. Ind. Eng. Chem. Res., 1998, 37(6): 2333-2335
    [161] Ioannides T, Verykios X E. Catalytic partial oxidation of methane in a novel heat-integrated wall reactor. Catal. Lett., 1997, 47(3-4): 183-188
    [162] Salazar M, Berry D A, Gardner T H, et al. Catalytic partial oxidation of methane over Pt/ceria-doped catalysts: Effect of ionic conductivity. Appl. Catal. A, 2006: 310: 54-60
    [163] Santos A C S F, Damyanova S, Teixeira G NR, et al. The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane. Appl. Catal A, 2005, 290: 123-132
    [164] Tang S, Lin J, Tan K L. Partial oxidation of methane to synthesis gas over AL2O3-supported bimetallic Pt-Co catalysts. Catal. Lett., 1999, 59: 129-135
    [165] Tang S, Lin J, Tan K L. Characterization and reactivity of Al2O3-supportedPt-Co bimetallic catalysts. Surf. Interface Anal., 1999, 28: 155-158
    [166] Tops?e N-Y. In situ FTIR: A versatile tool for the study of industrial catalysts. Catal. Today, 2006, 113(1-2): 58-94
    [167] Weckhuysen B M. Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem. Commun., 2002, (2): 97-111
    [168] Tinnemans S J, Mesu J G, Kervinen K, et al. Combining operando techniques in one spectroscopic-reaction cell: New opportunities for elucidating the active site and related reaction mechanism in catalysis. Catal. Today, 2006,113(1-2): 3-15
    [169] Blyholder G. Molecular orbital view of chemisorbed carbon monoxide. J. Phys. Chem., 1964, 68(10): 2772-2778
    [170] Blyholder G. CNDO model of carbon monoxide chemisorbed on nickel. J. Phys. Chem., 1975, 79(7): 756-761
    [171] Bazin P, Saur O, Lavalley J C. et al. FT-IR study of CO adsorption on Pt/CeO2: characterisation and structural rearrangement of small Pt particles. Phys. Chem. Chem. Phys., 2005, 7: 187-194
    [172] Primet M, Basset J M, Mathieu M V, et al. Infrared study of CO adsorbed on Pt/Al2O3, A method for determining metal-adsorbate interactions. J. Catal., 1973, 29: 213-223
    [173] Barth R, Pitchai R, Anderson R L, et al. Thermal desorption-infrared study of carbon monoxide adsorption by alumina-supported platinum. J. Catal., 1989, 116: 61-70
    [174] Berroulche S, Gravejat P, Bianchi D. Heats of adsorption of linear CO species adsorbed on the Au0 and Ti+δsites of a 1% Au/TiO2 catalyst using in situ FTIR spectroscopy under adsorption equilibrium. J. Am. Chem. Soc., 2004, 126: 13010-13015
    [175] Kappers M J, van der Maas J H. Correlation between CO frequency and Pt coordination number. A DRIFT study on supported Pt catalysts. Catal. Lett., 1991, 10: 365-373
    [176] Greenler R G, Burch K D, Kretzchmar K, et al. Stepped single-crystal surfaces as models for small catalyst particles. Surf. Sci., 1985, 152-153: 336-345
    [177] de Ménorval L-C, Chaqroune A, Coq B, et al. Characterization of mono- and bi-metallic platinum catalysts using CO FTIR spectroscopy Size effects and topological segregation. J. Chem. Soc., Faraday Trans., 1997, 93(20):3715-3720
    [178] Hammer B, Nielsen O H, N?skov J K. Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt Surfaces. Catal. Lett., 1997, 46: 31-35
    [179] Raskó J. CO-induced surface structure changes of Pt on oxide-supported Pt catalysts studied by DRIFTS. J. Catal., 2003, 217: 478-486
    [180] Rochester C, Terrell R J. Infrared study of effects of sulphur-poisoning on the adsorption of carbon monoxide by nickel. J. Chem. Soc., Faraday Trans. I, 1977, 73: 609
    [181] Primet M, Dalmon J A, Martin G A. Adsorption of CO on well-defined Ni/SiO2 catalysts in the 195-373 K range studied by infrared spectroscopy and magnetic methods. J. Catal. 1977, 46: 25-36
    [182] Derrouiche S, Bianchi D. Heats adsorption of the linear and bridged CO species on a Ni/Al2O3 Catalyst by using the AEIR method. Appl. Catal. A, 2006, 313: 208-217
    [183] Ruckenstein E, Hu Y H. Role of support in CO2 reforming of CH4 to syngas over Ni Catalysts. J. Catal., 1996, 162: 230-238
    [184] Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅰ. Catalyst characterization and activity. Appl. Catal. A, 1996, 142: 73-96
    [185] Jacono M L, Schiavello M, Cinico A. Structure, magnetic, and optical properties of nickel oxide supported on η- and γ-aluminas. J. Phys. Chem. 1972, 75: 1044-1050
    [186] Rynkowski J M, Paryjczak T, Lenik M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl. Catal. A, 1993, 106: 73-82
    [187] Gamman J J, Millar G J, Rose G, et al. Characterization of SiO2-supported nickel catalysts for carbon dioxide reforming of methane. J. Chem. Soc., Faraday Trans., 1998, 94(5): 701-710
    [188] Kroll V C H, Swaan H M, Mirodatos C. Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst: I. Deactivation studies. J. Catal., 1996, 106: 409-422
    [189] Swaan H M, Kroll V C H, Martin G A, et al. Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide. Catal. Today, 1994, 24(2-3): 571-578
    [190] Figueriredo J L, Bernardo C A, Chludzinski J J, et al. The reversibility offilamentous carbon growth and gasification. J. Catal., 1988, 110(1): 127-138
    [191] Tang S, Ji L, Lin J, et al. CO2 reforming of methane to synthesis gas over Sol–Gel-made Ni/γ-Al2O3 catalysts from organometallic precursors. J. Catal., 2000, 194(2): 424-430
    [192] Kim J-H, Suh D J, Park T-J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts. Appl. Catal. A, 2000, 197(2): 191-200
    [193] Chen D, Christensen K O, Ochoa-Fernández E, et al. Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J. Catal., 2005, 229(2): 82-96
    [194] Bengaard H S, N?rskov J K, Sehested J, et al. Steam reforming and graphite formation on Ni catalysts. J. Catal., 2002, 209(2): 365-384
    [195] Chen Y-G, Ren J. Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalysts. Effect of Ni-Al2O3 interactions. Catal. Lett., 1994, 29(1-2): 39-48
    [196] Freni S, Calogero G, Cavallaro. Hydrogen production from methane through catalytic partial oxidation reactions. J. Power Sources, 2000, 87: 28-38
    [197] Gracia F J, Bollmann L, Wolf E E, et al. In situ FTIR, EXAFS, and activity studies of the effect of crystallite size on silica-supported Pt oxidation catalysts. J. Catal., 2003, 220(2): 382-391
    [198] Nagai Y, Shinjoh H, Yokota K. Oxidation selectivity between n-hexane and sulfur dioxide in diesel simulated exhaust gas over platinum-supported zirconia catalyst. Appl. Catal. B, 2002, 39(2): 149-155
    [199] Mohamed M M, Salama T M, Ohnishi R, et al. Characterization of Gold(I) in Dealuminated H-Mordenite Zeolite. Langmuir, 2001, 17(18): 5678-5684
    [200] Navarro R M, álvarez-Galván M C, Cruz Sánchez-Sánchez M, et al. Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Appl. Catal. B, 2005, 55(4): 229-241
    [201] Mattos L S, Noronha F B. Partial oxidation of ethanol on supported Pt catalysts. J. Power sources, 2005,145(1): 10-15
    [202] Fujimoto K, Ribeiro F H, Avalos-Borja M, et al. Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J. Catal., 1998, 179: 431-442
    [203] Legrand JC, Diamy A M, Riahi G, et al. Application of a dihydrogen afterglow to the preparation of zeolite-supported metallic nanoparticles. Catal. Today, 2004, 89(1-2): 177-182
    [204] Kim S S, Lee H, Na B K, et al. Plasma-assisted reduction of supported metal catalyst using atmospheric dielectric-barrier discharge. Catal. Today, 2004, 89(1-2): 193-200
    [205] Koo G, Lee M S, Shim J H, et al. Platinum nanoparticles prepared by plasma-chemical reduction method. J. Mater. Chem., 2005, 15: 4125-4128
    [206] Da Silva G G, Alves C, Hajek V, et al. Production of tungsten powder by plasma reduction of WO3: structure and morphology. Int. J. Powder Metall., 2005, 41: 43-48
    [207] Palmer R A, Doan T M, Lloyd P G, et al. Reduction of TiO2 with hydrogen plasma. Plasma Chem. Plasma Process. 2002, 22, 335-241
    [208] Gold R G, Sandall W R, Chemplick P G, et al. Plasma reduction of iron-oxide with hydrogen and natural gas at 100 kW and 1 MW. J. Electrochem. Soc. 1975, 122: C99-106
    [209] Shelimov B, Lambert J-F, Che M, et al. Initial steps of the alumina-supported platinum catalyst preparation: A molecular study by 195Pt NMR, UV–Visible, EXAFS, and Raman spectroscopy. J. Catal., 1999, 185(2), 462-468
    [210] Riguetto B A, Damyanova S, Gouliev G., et al. Surface behavior of alumina-supported Pt catalysts modified with cerium as revealed by X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy of CO adsorption. J. Phys. Chem. B, 2004, 108(17): 5349-5358
    [211] Jackson S D, Willis J, McLellan G D, et al. Supported metal catalysts: preparation, characterization, and function: I. Preparation and physical characterization of platinum catalysts. J. Catal., 1993, 139(1): 191-206
    [212] Pesty F, Steinrück H-P, Madey T E. Thermal stability of Pt films on TiO2(110): Evidence for encapsulation. Surf. Sci., 1995, 339(1-2): 83-95
    [213] Belloni J. Nucleation, Growth and properties of nanoclusters studied by radiation chemistry application to catalysis. Catal. Today, 2006, 113(3-4): 141-156
    [214] Mojet B L, Miller J T, Koningsberger D, et al. The effect of CO adsorption on the structure of supported Pt particles. J. Phys. Chem. B, 1999, 103: 2724-2734
    [215] Visser T, Nijhuis T A, van der Eerden A M J, et al. Promotion effects in the oxidation of CO over zeolite-supported Pt nanopartilces. J. Phys. Chem. B, 2005, 109: 3822-3831
    [216] Perrichon V, Retailleau L, Bazin P, et al. Metal dispersion of CeO2-ZrO2 supported platinum catalysts measured by H2 or CO chemisorption. Appl. Catal. A, 2004, 206: 1-8
    [217] Hadjiivanov K I. IR study of CO and H2O co adsorption on Ptn+/TiO2 and Pt/TiO2 samples. J. Chem. Soc., Fraraday Trans., 1998, 94(13): 1901-1904
    [218] Song H, Rioux R M, Hoefelmeyer J D, et al. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterizations, and catalytic properties. J. Am. Chem. Soc., 2006, 128: 3027-3027
    [219] Nagai Y, Hirabayashi T, Dohmae K, et al. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. J. Catal., 2006, 242: 103-109
    [220] Datye A K, Xu Q. Kharas K C, Particles size distributions in heterogeneous catalysts: What do they tell us about the sintering mechanism? Catal. Today, 2006, 11: 59-67
    [221] Alexeev O A, Chin S Y, Engethard M H, et al. Effect of reduction temperature and metal-support interactions on the catalytic activity of Pt/γ-Al2O3 and Pt/TiO2 for the oxidation of CO in the presence and absence of H2. J. Phys. Chem. B, 2005, 109: 23430-23443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700