用户名: 密码: 验证码:
类质同晶甾体化合物的分离过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
11α-羟基16α,17α-环氧黄体酮(简称HEP)是一种重要的激素药物中间体。工业上,HEP通过微生物转化16α,17α-环氧黄体酮(简称EP)制得,过程转化率约为40-45%。为解决工业生产中存在的HEP和EP分离难、收率低、产品质量不稳定等问题,本文对HEP和EP的分离工艺进行了系统的研究,建立了将萃取与溶析结晶耦合的“萃取溶析结晶”工艺,以及“浸取-结晶”和“浸取-吸附”集成的分离新工艺,并成功应用于HEP和EP的分离纯化。
     根据HEP和EP分子与晶体结构的相似性,提出了HEP和EP在溶液结晶过程中形成了固体溶液型混晶的假设。通过设计实验制备出了不同质量比的HEP/EP混晶产品,并采用XRD、DSC以及HPLC等表征手段证明了该假设的正确性。从而说明结晶法分离纯化HEP和EP必须靠多级结晶完成。
     测定了HEP和EP在8种纯溶剂和不同组成的甲苯-氯仿混合溶剂中的溶解度;研究了溶液热力学,特别是EP和HEP相对溶解度对于结晶纯化HEP的影响。发现同一溶剂中,EP相对于HEP的溶解度越大,结晶所得HEP纯度越高,氯仿-甲苯混合溶剂最适合HEP的分离纯化。
     对开发新型分离HEP和EP工艺进行了探索性的研究。提出将萃取分离与溶析结晶分离相耦合的萃取溶析结晶技术并成功应用于HEP和EP的分离。进而研究了对原料进行浸取分离的预处理方式,将浸取过程与溶析-蒸发结晶过程组合,通过一次浸取预处理,再两次重结晶实现了HEP的分离纯化,该工艺较工厂分离工艺减少两次溶解,两次结晶和一次过滤操作,节约成本25~30%左右。
     此外,还对经过浸取分离预处理后的原料,经溶剂溶解后进行吸附分离的浸取-吸附分离工艺过程首次进行了系统研究和优化。对吸附分离过程进行了系统的研究和优化。根据溶解度数据以及溶解度参数等理论,选择甲醇作为溶剂,氯仿作为洗脱剂,非极性大孔吸附树脂为吸附剂的吸附过程来实现HEP和EP的分离。通过吸附热力学与动力学数据的测定和关联,筛选树脂,优化了工艺条件;采用固定床吸附实现了HEP和EP的分离。吸附分离与原料的浸取预处理相结合,采用一步浸取一步吸附即可实现HEP和EP的分离,此工艺方案亦表现出很大的工业应用潜力。同时针对固定床吸附分离HEP和EP过程,完成了数学建模和模拟求解,为以后工业放大提供了基础模型依据。
     上述有关研究内容尚未见国内外文献报道。
11α-Hydroxy-16α,17α-epoxyprogesterone (abbreviated as HEP) is an important intermediate for synthesis of hormone pharmaceuticals. In industry, HEP is prepared from 16α,17α-epoxyprogesterone (abbreviated as EP) through bioconversion with low conversion (about 40~45%). The separation and purification of HEP is difficult with low yield and poor product quality. To solve these problems, a systematic study on the separation process of HEP and EP was performed, and three different new processes for separation and purification of HEP have been developed in this thesis. According to the similarity in the molecular and crystal structures of HEP and EP, the solid solution formation of the two steroids when they were crystallized from solution were postulated and then confirmed based on the X-ray diffraction crystal structure determination, thermal analysis and composition analysis of the prepared HEP/EP solid solution crystals. This indicates that several stages or times crystallization is needed to get pure HEP crystals.
     The solubility of HEP and EP in eight different pure solvents and chloroform-toluene mixed solvents with four different compositions were determined. The effect of relative solubility on the crystal purity was studied. The experimental results show that the bigger the relative solubility of EP to HEP is, the higher the purity of HEP crystals can be obtained. Toluene-chloroform mixed solvents afford the most effective enhancement of HEP crystal purity.
     Novel separation process was studied and compared. The extractive drowning out crystallization was proposed and successfully used for separation and purification of HEP and EP for the first time. Then, combinative separation processes of leaching with crystallization were proposed. HEP was separated and purified through once leaching and twice recrystallization. The efficiency of purification increased 25~30% compared with the current five times recrystallization in industry.
     Also a leaching-adsorption process was proposed and showed big potential for industrial application. The leaching-adsorption process was studied in detail. The isothermal adsorption equilibrium of HEP and EP on different adsorbates were determined. Screening of adsorbate, solvent and diluting solvent were performed. Also the adsorption kinetics of HEP and EP on the selected adsorbent were measured. The separation of HEP and EP by fixed bed adsorption was studied. The breakthrough and elution curves were determined, the process parameters were optimized. HEP was purified through once leaching and once following adsorptive separation. The modeling for the fixed bed adsorption was performed and solved. This work affords basic data and important foundation for the scaling up of the process.
     All the contents above have never been founded in any type documents.
引文
[1] 周巧龙, 黄海, 吴伶伶, 超越分子前沿--化学与化学工程面临的挑战, 北京: 科学出版社, 2004.18-19
    [2] Noble R D, Agrawal R, Separation research needs for the 21st century, Industrial & Eningeering Chemistry Research, 2005, 44: 2887-2892.
    [3] 宋育贤, 化工分离技术的新进展, 中外科技情报, 2005, 19: 300-302.
    [4] 费维扬, 王德华, 尹晔东, 化工分离技术的若干新进展, 化学工程, 2002, 30 (1): 63-66.
    [5] Gu Y L, Shi F, Deng Y Q, Room temperature ionic liquid as leaching reagent for separation of the solid mixture of taurine and sodium sulfate, Acta Chimica Sinica, 2004, 62 (5): 532-536.
    [6] Gu Y L, Shi F, Yang H Z, et al., Leaching separation of taurine and sodium sulfate solid mixture using ionic liquids, 2004, 35 (2): 153-159.
    [7] 顾彦龙, 石峰, 邓友全, 室温离子液体浸取分离牛磺酸与硫酸钠固体混合物, 化学学报, 2004, 62 (5): 532-536.
    [8] 李雄辉, 季清荣, 栀子黄色素提取及精制新工艺的研究, 食品科学, 2003, 24 (12): 70-74.
    [9] 龙小艺, 许民, 湿法冶锌新浸取技术及其进展, 江西化工, 2004, 2: 24-28.
    [10] Tan T, Huo Q, Ling Q, Purification of glycyrrhizin from glycyrrhiza uralensis fisch with ethanol/phosphate aqueous two phase system, Biotechnology Letters, 2002, 24 (17): 1417-1420.
    [11] 黄仁伦, 陈战海, 超临界流体技术在医药工业中的应用, 国际医药卫生导报, 2002, 12b: 65-65.
    [12] 沈忠耀, 表面活性剂在生物工程中的应用之一——反胶团萃取, 日用化学工业, 2001, 31 (1): 24-27.
    [13] 孙福强, 崔英德, 刘永等, 膜分离技术及其应用研究进展, 化工科技, 2002, 10 (4): 58-63.
    [14] 何炳林, 黄文强, 离子交换与吸附树脂, 上海: 上海科技教育出版社, 1995.389-482
    [15] 钱庭宝, 刘维林, 李金和, 吸附树脂及其应用, 北京: 化学工业出版社, 1990.158-257
    [16] 叶振华, 化工吸附分离过程, 北京: 中国石化出版社, 1992.1-7
    [17] 王静康, 化学工程手册-结晶, 北京: 化学工业出版社, 1996.2
    [18] Moyers C G, Rousseau R W, Crystallization operations, in Rousseau R W ed. Handbook of Separation process Technology, New York: John Wiley & sons, 1987.758
    [19] 朱洪涛, 工业结晶分离技术研究新进展,1999,28(7):493-496.
    [20] Wey J S, Karpinski P H, Precipitation process, in Myerson A S, Handbook of industrial crystallization, Boston: Butterworth- Heinemann, 2002. 141
    [21] 上海工业微生物研究所甾体研究小组, 根霉 80322 应用于甾体 11α 羟化的研究, 工业微生物, 1981, 5: 15-20.
    [22] 许关煜, 药物中间体手册, 北京: 化学工业出版社, 2001.145
    [23] Peterson D H, Meister P D, Weintraur A, et al., Microbiological transformation of steroids. Xii. Oxygenation of 16a,l7a-oxidoprogesterone to 11 α-hydroxy-l6α, 17α-oxidoprogesterone by rhizopus nigricans, Journal of the American Chemical Society, 1955, 77: 4428-4431.
    [24] Ercoli A, De Ruggieri P, Della Morte D, et al., Corticosteroids. Iii. Microbiological oxidation of 16α,17-oxidoprogesterone to 11α-hydroxy- 16α,17-oxidoprogesterone. Successive conversion into 17α-hydroxy- 11-oxoprogesterone (21-deoxycortisone), Gazzetta Chimica Italiana, 1955, 85: 628-635.
    [25] 黄鸣龙, 蔡祖恽, 王志勤等, 副肾皮酮乙酸酯的合成, 化学学报, 1959, 25: 295-301.
    [26] Hanson J R, Hunter A C, The microbiological hydroxylation of some steroids with a cortical side chain by cephalosporium aphidicola, Phytochemistry, 1998, 49 (8): 2359-2362.
    [27] Turuta A M, Kamernitskii A V, Korobov A A, et al., Microbiological hydroxylation of 16α,17α-epoxyprogesterone, Khimiko-Farmatsevticheskii Zhurnal, 1990, 24 (6): 52-55.
    [28] 李晓静, 分散剂处理底物对甾体微生物转化体系的影响, 化学工业与工程, 2005, 22 (5): 329-332.
    [29] 李晓静, 冯霞, 阳葵, 底物的溶解对甾体微生物羟化反应的影响, 天津大学学报:自然科学与工程技术版, 2004, 37 (11): 941-944.
    [30] 阳葵, 李晓静, 底物的分散和溶解对甾体微生物酶反应的影响, 微生物学通报, 2001, 28 (6): 68-71.
    [31] 阳葵, 王福东, 磁化水处理菌种在甾体微生物转化过程中的效应, 微生物学通报, 1999, 26 (5): 336-338.
    [32] 阳葵, 王福东, 超声处理在甾体微生物转化过程中的效应, 化工学报,1999, 50 (3): 417-420.
    [33] 阳葵, 张鎏, 生长调节剂对甾体微生物催化转化过程的影响, 分子催化, 1999, 13 (2): 137-139.
    [34] 张丽青, 张敏华, 16,17a-环氧黄体酮 c11 位 a-羟化的工艺改进, 药学通报, 1987, 22 (1): 7-8.
    [35] Yang K, Li X-J, Wang J-F, et al., Relationship between growth and morphology of metarrhizium anisopliae in biotransformation of steroid, Transactions of Tianjin University, 2001, 7 (1): 1-6.
    [36] 黄腾华, 李淳娟, 石美珍等, 微生物用于甾体 11-α 羟化大的中试研究, 医药工业, 1984, 3: 1-5.
    [37] Kitaigorodsky A I, Molecular crystals and molecules, New York: Academic Press, 1973.94-111
    [38] Kitaigorodsky A I, Mixed crystals, Berlin: Springer-Verlag, 1984.202
    [39] Mcnaught A D, Wilkinson A I, International union of pure and applied chemistry, compendium of chemical terminology, "the gold book", ed 2, Malden: Blackwell Scientific Publications, 1997
    [40] 顾菡珍, 叶于浦, 相平衡和相图基础, 北京: 北京大学出版社, 1991.11-24
    [41] 梁敬魁, 相图与相结构, 北京: 科学出版社, 1993.170-184
    [42] 于伯龄, 姜胶东, 实用热分析, 北京: 纺织工业出版社, 1990.68-77
    [43] Bonno B, Gérardot F, Laporte J L, et al., Triplet exciton fusion in organic mixed crystals: The naphthalene as host and chrysene and 1,2,5,6-dibenzanthracene as guests system, Journal of Photochemistry., 1987, 38: 157-165.
    [44] Dupuy F, Ribière Y, Garitey J L, et al., Resonant secondary emission and spectral diffusion in isotopically mixed naphthalene crystals, Chemical Physics Letters, 1986, 110 (2-3): 195-209.
    [45] Jadhav S A, Patil S R, Sensitization of fluorescence of crystalline fluorene by anthracene, 1999, 60 (2): 204-210.
    [46] Morawski O, Kozankiewicz B, Prochorow J, et al., Singlet states of chemically mixed anthracene-acridine crystals, Chemical Physics Letters, 1988, 150 (3-4): 307-310.
    [47] Sidman J W, Concentration dependence of the absorption and fluorescence spectra of mixed crystals of anthracene with phenanthrene at 77 k, Journal of the American chemistry society, 1957, 79: 305-307.
    [48] Trommsdorff H P, Casalegno R, Miller R J D, et al., Direct optical studies ofproton tunneling in hydrogen bonded mixed molecular crystals, Journal of Luminescence, 1984, 31-32 (2): 517-524.
    [49] Givand J C, Chang B K, Teja A S, et al., Distribution of isomorphic amino acids between a crystal phase and an aqueous solution, Industrial & Engineering Chemistry Research, 2002, 41: 1873-1876.
    [50] Givand J C, Teja A S, Rousseau R W, Effect of relative solubility on amino acid crystal purity, AIChE Journal, 2001, 47: 2705-2712.
    [51] Teja A S, Givand J C, Rousseau R W, Correlation and prediction of crystal solubility and purity, AIChE Journal, 2002, 48: 2629-2634.
    [52] Goetschel R, Bar R, Formation of mixed crystals in microbial conversion of sterols and steroids, Enzyme and Microbial Technology, 1992, 14 (6): 462-469.
    [53] Maxon W D, Chen J W, Hanson F R, Simulation of steroid bioconversion with mathematical model, Indutrial and Engineering Chemistry Process Design and Development, 1966, 5 (3): 285-289.
    [54] Lopez D O, Braak J V, Tamarit J L, et al., Molecular mixed crystals of neopentane derivatives. A comparative analysis of three binary systems showing crossed isodimorphism, Calphad, 1995, 19 (1): 37-47.
    [55] Beckman R L, Hayes J M, Small G J, Neat and mixed crystal and glass optical spectra of the anthracene-trinitrobenzene complex, Chemical Physics Letters, 1977, 21 (1): 135-144.
    [56] Havlik D, Schranz W, Halulka M, et al., Thermal expansion measurements of c60/c70 mixed crystals, Solid State Communications, 1997, 104 (12): 775-779.
    [57] Davis W W, The physical chemistry of cholesterol and β-sitosterol related to the intestinal absorption of cholesterol, New York Academy of Sciences, 1955, 18: 123-127.
    [58] Karpuj L, Garti N, Sarig S, Study of cholesterolabsorption be reduced by phytosterols and phytostanols via a cocrystallization mechanism? Chemistry and Physics of Lipids, 2004, 127 (7): 15-33.
    [62] Koolman H C, Rousseau R W, Effects of isomorphic compounds on the purity and morphology of l-isoleucine crystals, AIChE Journal, 1996, 147-153.
    [63] 刘艳, 刘子如, 阴翠梅, 1,3,3-三硝基氮杂环丁烷(TNAZ)的二元相图和低共熔物, 含能材料, 2004, 12 (A01): 227-230.
    [64] Myerson A S, Handbook of industrial crystallization, Boston: Butterworth- Heinemann, 2002.90-91
    [65] Mullin J W, Crystallization, Oxford: Butterworth- Heinemann, 1993.110-113
    [66] 金克新, 赵传钧, 马沛生, 化工热力学, 天津: 天津大学出版社, 1990.120
    [67] 朱自强, 化工热力学, 北京: 化学工业出版社, 1991.161
    [68] De Mateo A, Kurata F, Correlation and prediction of solubility of solid hydrocarbons in liquid methane using the redlich-kwong equation of state, Industrial & Engineering Chemistry Process Design and Development, 1975, 14 (2): 137-140.
    [69] Soave G S, Application of the redlich-kwong-soave equation of state to solid-liquid equilibrium calculations, Chemicl Engineering Science, 1979, 34 (2): 225-229.
    [70] Masuoka H, Tawaraya R, Satio S, Calculation of solid-liquid equilibriums using the modified bwr equation of state of lee and kesler, Journal of Chemical Engineering of Japan, 1979, 12 (2): 257-262.
    [71] Reid R C, Prausnitz J M, Sherwood T K, The properties of gases and liquids, New York: McGraw-Hill, 1977
    [72] Lee M J, Chi P C, Solid-liquid equilibrium for mixtures containing cresols, piperazine, and dibutyl ether, Journal of Chemical and Engineering Data, 1993, 38: 292-295.
    [73] Anderko A, A simple equation of state incorporating association, Fluid Phase Equilibria, 1989, 45 (1): 39-67.
    [74] Hildebrand J H, Prausnitz J M, Scott R L, Regular and related solutions, New York: Van Nostrand-Reinhold, 1970
    [75] Preston G T, Prausnitz J M, Thermodynamics of solid solubility in cryogenic solvents, Industrial & Engineering Chemistry Process Design and Development, 1970, 9 (2): 264-271.
    [76] Myers A L, Prausnitz J M, Thermodynamics of solid carbon dioxide solubility in liquid solvents at low temperatures, Industrial & Engineering Chemistry Fundamental, 1965, 4 (2): 209-212.
    [77] Wilson G M, Vapor-liquid equilibrium. A new expression for the excess free energy of mixing, Journal of the American Chemical Society, 1964, 86: 127-130.
    [78] Morimi J, Nakanishi. K, Use of the wilson equation to calculate solid-liquid phase equilibria in binary and ternary systems, Fluid Phase Equilibria, 1977, 1 (2): 153-160.
    [79] Muir R F, Howart C S, Predicting solid-liquid equilibrium data from vapor-liquid data, Chemical Engineering, 1982, 89 (4): 89-92.
    [80] Abrams D S, Prausnitz J M, Statistical thermodynamica of liquid mixtures: A new expression for the excess gibbs energy of partly or completely miscible systems, AIChE Journal, 1975, 21: 116-128.
    [81] Domanska U, Domanski K, Correlation of the solubility of hexacosane in aliphatic alcohols, Fluid phase equilibria, 1991, 68: 103-114.
    [82] 刘金晨, 陆九芳, 氨基酸溶解平衡的热力学研究, 清华大学学报:自然科学版, 1997, 37 (12): 32-36.
    [83] 李小森, 陆九芳, 改进的 uniquac 模型在非离子表面活性剂溶液中的应用, 化工学报, 1999, 50 (9): 228-234.
    [84] Fredenslund A, Gmehling J, Michelsen M L, et al., Computerized design of multicomponent distillation columns using the unifac group contribution method for calculation of activity coefficients, Industrial & Engineering Chemistry Process Design and Development, 1977, 16 (4): 450-462.
    [85] Fredenslund A, Jones R L, Prausnitz J M, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE Journal, 1975, 21 (6): 1086-1099.
    [86] Gmehling J G, Anderson T F, Prausnitz J M, Solid-liquid equilibrium using unifac, Industrial & Engineering Chemistry Fundamental, 1978, 17 (4): 269-273.
    [87] Spiliotis N, Tassios D, A unifac model for phase equilibrium calculations in aqueous and nonaqueous sugar solutions, Fluid Phase Equilibria, 2000, 173 (1): 39-55.
    [88] Peres a M, Macedo E A, A modified unifac model for the calculation of thermodynamic properties of aqueous and non-aqueous solutions containing sugars, Fluid Phase Equilibria, 1997, 139 (1-2): 47-74.
    [89] 王志容, 尹潜, 汽液固三相平衡的计算, 1986, 14 (6): 52-55.
    [90] 张玉华, 张雪梅, 张卫江等, Unifac 基团贡献法对合成硝基麝香固液平衡的研究, 化学工程, 2005, 33 (5): 69-71.
    [91] Domanska U, Solubility of n-alkanols (c16,c18,c20) in binary solvent mixtures, Fluid Phase Equilibria, 1989, 46 (2-3): 223-248.
    [92] Domanska U, Kozlowska. M K, Solubility of imidazoles in ketones, Fluid Phase Equilibria, 2003, 206 (1-2): 253-266.
    [93] Domanska U, Lachwa J, (solid + liquid) phase equilibria of binary mixtures containing n-methyl-2-pyrrolidinone and long-chain n-alkanols at atmospheric pressure, Fluid Phase Equilibria, 2002, 198 (1): 1-14.
    [94] Domanska U, Rolinska J, Measurement and correlation of the solubility of n-alkanols (c18, c20) in n-alkanes (c7-c16), Fluid Phase Equilibria, 1993, 86: 233-250.
    [95] Ferreira L A, Macedo E A, Pinho S P, Pinho solubility of amino acids and diglycine in aqueous alkanol solutions, Chemical Engineering Science, 2004, 59 (15): 3117-3124.
    [96] Buchowski H, Khiat A, Solubility of solids in liquids: One-parameter solubility equation, Fluid Phase Equilibria, 1986, 25 (3): 273-278.
    [97] Buchowski H, Ksiazczak A, Pietrzyk S, Solvent activity along saturation line and solubility of hydrogen-bonding solids, Journal of Physical Chemistry, 1980, 84: 975-979.
    [98] Domanska U, Hofman T, Rolinska J, Solubility and vapour pressures in saturated solutions of high-molecular-weight hydrocarbons, Fluid Phase Equilibria, 1987, 32: 273-293.
    [99] 孔学军, 夏清, 维生素 B6 和维生素 B6 酮的溶解度测定与关联, 化学工程, 2000, 28 (6): 38-41.
    [100] Apelblat A, Manzurola E, Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-dl-aspartate in water from T=(278 to 348) k, Journal of Chemical Thermodynamics, 1999, 31: 85-91.
    [101] Li D-Q, Evans D G, Duan X, Solid-liquid equilibria of terephthalaldehydic acid in different solvents, Journal of Chemical and Engineering Data, 2002, 47 (5): 1220-1221.
    [102] Wang S, Wang J, Yin Q, Measurement and correlation of solubility of 7-aminocephalosporanic acid in aqueous acetone mixtures, 2005, 44 (10): 3783-3787.
    [103] 刘江鶵, 陈忠民, 田洪河等, 苯甲酸溶解度的测定及关联, 郑州工业大学学报, 2001, 22 (1): 97-99.
    [104] 任国宾, 盐酸帕罗西汀结晶过程研究(博士学位论文), 天津大学, 2005
    [105] 徐衡, 董奕, 顺丁烯二酸酐在邻苯二甲酸酯中溶解度的研究., 石油化工, 2000, 29 (7): 502-504.
    [106] Rosenberger F, Fundamentals of crystal growth, Berlin: Springer-Verlag, 1979
    [107] Rosenberger F, Riveros H G, Segregation in alkali halide crystallization from aqueous solution, Journal of Chemical Physics, 1974, 60: 668-674.
    [108] Chernov A A, Modern crystallography iii, crystal growth springer series on solid state, Berlin: Springer, 1984.179
    [109] Sha Z L, Alatalo H, Louhi-Kultanen M, et al., Purification by crystallization from solutions of various viscosities, Journal of Crystal Growth, 1999, 198-199: 692-696.
    [110] Burton J A, Prim R C, Slichter W P, The distribution of solute in crystals grown from the melt. Part i. Theoretical, Journal of Chemical Physics, 1953, 21 (11): 1987-1996.
    [111] Sangwal K, Palczynska T, On the supersaturation and impurity concentration dependence of segregation coefficient in crystals grown from solutions, Journal of Crystal Growth, 2000, 212 (3-4): 522-531.
    [112] Sloan G J, Mcghie A R, Techniques of melt crystallization, New York: John Wiley & Sons, 1988.442-447
    [113] Thomas B R, Chernov a A, Vekilov P G, et al., Distribution coefficients of protein impurities in ferritin and lysozyme crystals-self-purification in microgravity, Journal of Crystal Growth, 2000, 211 (1-4): 149-156.
    [114] Woensdregt C F, Hartman-perdok theory-influence of crystal-structure and crystalline interface on crystal-growth, Faraday discussions, 1993, 95 (95): 97-107.
    [115] Weiser K, Theoretical calculation of distribution coefficients of impurities in germanium and silicon, heats of solid solution, Journal of Physics and Chemistry of Solids, 1958, 7 (2-3): 118-126.
    [116] Smallwood I M, Handbook of organic solvent properties, London: Arnold, 1996.39-300
    [117] Meenan P A, Anderson S R, Klug D L, Handbook of industrial crystallization, ed 2, Boston: Butterworth-Heinemann, 2002.73-80
    [118] Fontenot K J, Extractive solution crystallization of chemical compounds, US Patent 6500973, 2002.
    [119] Gaikar V G, Mohan Sharma M, Dissociation extractive crystallization, Industrial & Eningeering Chemistry Research, 1987, 26 (5): 1045-1048.
    [120] Park S-J, Won D-B, Oh J-H, et al., Vapor-liquid equilibria for water, benzene,toluene+dmf, water+nmf and liquid-liquid equilibria for water+dmf+benzene, toluene, The 15th International Joint Symposium on Chemical Engineering of Taejon/Chungnam-Kyushu, 2002, OA04: 7-8.
    [121] Langmuir I, The constitution and fundamental properties of solids and liquids. Part i. Solids, Journal of the American Chemical Society, 1916, 38 (11): 2221-2295.
    [122] Freundlich H, Uber die adsorption in losungen, Zeitschrift fur Physikalische Chemie, 1906, 57: 385-470.
    [123] Freundlich H, Colloid and capillary chemistry, London: Matheun(uen) and Co., Ltd., 1926.10
    [124] Peterson D L, O.Redlich, Sorption of normal paraffins by molecular sieves type 5a, journal of Chemical and Engineering Data, 1962, 7 (4): 570-574.
    [125] Singer P C, Yen C-Y, Adsorption of alkyl phenols by activated carbon, Ann Arbor,Michigan: Ann Arbor Science, 1980.167-189.
    [126] Coulson J M, Richardson J F, Particle technology and separation processes, ed 4, Oxford: Pergamon, 1991.735-811.
    [127] Sheindorf C, Rebhun M, Sheintuch M, Organic pollutants adsorption from multicomponent systems modeled by freundlich type isotherm, Water Research, 1982, 16 (3): 357-362.
    [128] Radke C J, Prausnitz J M, Adsorption of organic solutes from dilute aqueous solutions on activated carbon, Industrial & Engineering Chemistry Fundamentals, 1972, 11: 445-450.
    [129] Moon H, Tien C, Furtherworkonmulticomponent adsorptionequilibria calculations based on the ideal ads0rption solution theory, Industrial & Engineering Chemistry Research, 1987, 26: 2042-2047.
    [130] Goswami A N, Nanoti A, Ganguly S K, Prediction of multicomponent adsorption equilibriain carboxylic acid activated carbon systems, Separation Science and Technology, 1998, 33: 1617-1628.
    [131] Walker G M, Weatherley L R, Prediction of bisolute dye adsorption isotherms on activated carbon, Process Safety And Environmental Protection, 2000, 78 (B3): 219-223.
    [132] Fritz W, Merk W, Schlunder E U, Competitive adsorption of 2 dissolved organics onto activated carbon.2. Adsorption-kinetics in batch reactors, Chemical Engineering Science, 1981, 36 (4): 731-741.
    [133] Suwanayuen S, Danner, R P, A gas adsorption isotherm equation based on vacancy solution theory, AIChE Journal, 1980, 26: 76-83.
    [134] Fukuchi K, Kobuchi S, Arai Y, Application of vacancy solution theory to adsorption from dilute aqueous solutions, Journal of Chemical Engineering of Japan, 1982, 15: 316-318.
    [135] Khan A, Alwaheab I, Alhaddad A, A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution, Environmental Technology, 1996, 17 (1): 13-23.
    [136] Bell J, Tsezos M, Removal of hazardous organic pollutants by biomass adsorption, Journal Water Pollution Control Federation, 1987, 59 (4): 191-198.
    [137] Garciadelgado R, Cotoruelominguez L, Rodriguez J, Equilibrium study of single-solute adsorption of anionic surfactants with polymeric xad resins, Separation Science and Technology, 1992, 27 (7): 975-987.
    [138] Gustapson R L a L, J.A., Adsorption of organic ions by anion exchange resins, Industrial and Eningeering Chemistry Product Research Development, 1968, 7: 116-120.
    [139] Janauer G E, Turner I M, The selectivity of a polystyrenebenzy- ltrimethylammonium-type anion-exchange resin for alkanesulfonates, Journal of Physical Chemistry, 1969, 73 (7): 2194-2203.
    [140] Jain a K, Gupta V K, Jain S, et al., Removal of chlorophenols using industrial wastes, Environmental Science and Technology, 2004, 38 (4): 1195-1200.
    [141] Parfitt G D, Rochester C H, Adsorption from solution at the solid/liquid interface, Orlando: Academic Press, 1983
    [142] Silva J P, Sousa S, Rodrigues J, et al., Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains, Separation and Purification Technology, 2004, 40: 309-315.
    [143] Abrams I M, Macroporous condensate resins as adsorbents, Industrial & Eningeering Chemistry Product Research and Development, 1975, 14 (2): 108-212.
    [144] Bhandari V M, Yonemoto T, Investigating the differences in acid separation behaviour on weak base ion exchange resins, Chemical Engineering Science, 2000, 55: 6197-6208.
    [145] Husson S M, King C J, Multiple-acid equilibria in adsorption of carboxylic acids from dilute aqueous solution, Industrial & Engineering Chemistry Research, 1999, 38: 502-511.
    [146] Li P, Sengupta A, Intraparticle diffusion during selective ion exchange with a macroporous exchanger, Reactive & Functional Polymers, 2000, 44 (3):273-287.
    [147] 钱庭宝, 刘维琳, 李金和, 吸附树脂及其应用,北京:化学工业出版社, 1990.175-250
    [148] Dutta M, Dutta N N, Bhattacharya K G, Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon, Separation and Purification Technology, 1999, 16: 213-224.
    [149] Lagergren S, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24 (4): 1-39.
    [150] Ho Y, Mckay G, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Safety and Environmental Protection, 1998, 76 (B4): 332-340.
    [151] Mckay G, The adsorption of basic dye onto silica from aqueous solution-solid diffusion model, Chemical Engineering Science, 1984, 39: 129-138.
    [152] Mckay G, Ho Y S, Wase D A J, et al., Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat, Environmental Technology, 1996, 17: 71-77.
    [153] Eren Z, Acar F N, Adsorption of reactive black 5 from an aqueous solution: Equilibrium and kinetic studies, Desalination, 2006, 194: 1-10.
    [154] Wu F-C, Tseng R-L, Juang R-S, Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan, Water Research, 2001, 35 (3): 613-618.
    [155] Ungarish M, Aharoni C, Kinetics of chemisorption: Deducing kinetic laws from experimental data, Journal of the Chemical Society-Faraday Transactons, 1981, 77: 975-985.
    [156] Low M J D, Kinetics of chemisorption of gases on solids, Chemical Reviews, 1960, 60: 267-312.
    [157] Chien S H, Clayton W R, Application of elovich equation to the kinetics of phosphate release and sorption in soils, Soil Science Society of America Journal, 1980, 44: 265-268.
    [158] Boyd G E, Adamson A W, Myers L S, The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics, Journal of the American Chemical Society, 1947, 69: 2836-2848.
    [159] Reichenberg D, Properties of ion-exchange resins in relation to their structure. Iii. Kinetics of exchange, Journal of the American Chemical Society, 1953, 75: 589-597.
    [160] Gupta V K, Mittal A, Krishnan L, et al., Adsorption kinetics and columnoperations for the removal and recovery of malachite green from wastewater using bottom ash, Separation and Purification Technology, 2004, 40 (1): 87-96.
    [161] Mittal A, Krishnan L, Gupta V K, Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya, Separation and Purification Technology, 2005, 43 (2): 125-133.
    [162] Singh K P, Mohan D, Sinha S, et al., Color removal from wastewater using low-cost activated carbon derived from agricultural waste material, Industrial & Engineering Chemistry Research, 2003, 42 (9): 1965-1976.
    [163] Rawat J P, Thind P S, A kinetic study ion exchange in tantalum arsenate to understand the theoretical aspects of separations, The Journal of Physical Chemistry, 1976, 80 (12): 1384-1387.
    [164] Helfferich F, Ion-exchange kinetics. V. Ion exchange accompanied by reactions, Journal of Physical Chemistry, 1965, 69 (4): 1178-1187.
    [165] 姜志新, 谌竟清, 宋正孝, 离子交换分离工程, 第一版, 天津: 天津大学出版社, 1992.79-83
    [166] Rao M G, Gupta a K, Ion exchange processes accompanied by ionic reactions, The Chemical Engineering Journal, 1982, 24 (2): 181-190.
    [167] Rao M G, Gupta A K, Kinetics of ion exchange accompanied by reactions, AIChE Symposium Series (AIChE Symp. Ser.), 1982, 219 (7): 96-102.
    [168] Dave S M, Patil S S, Suresh A K, Ion exchange for product recovery in lactic acid fermentation, Separation Science and Technology, 1997, 32 (7): 1273-1294.
    [169] Seki H, Suzuki A, Kinetic study of lead adsorption to composite biopolymer adsorbent, Journal of Colloid and Interface Science, 1999, 211 (2): 375-379.
    [170] Seki H, Suzuki A, Kinetic study of metal biosorption to a brown alga, kjellmaniella crassiforia, Journal of Colloid and Interface Science, 2002, 246 (2): 259-262.
    [171] Vermeulen T, Theory for irreversible and constant-pattern solid diffusion, Industrial and Engineering Chemistry, 1953, 45 (8): 1664-1670.
    [172] Streat M, Patrick J W, Camporro Perez M J, Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons, Water Research, 1995, 29 (2): 467-472.
    [173] Jansson-Charrier M, Saucedo I, Guibal E, et al., Approach of uranium sorption mechanisms on chitosan and glutamate glucan by ir and l3c-nmr analysis, Reactive and Functional Polymers, 1995, 27 (3): 209-221.
    [174] Zhao Y, Xi H, Xie L, et al., The determination of adsorption isotherms and solid diffusion coefficients of mannitol and sorbitol by liquid chromatography technique, Chinese Journal of Reactive Polymers, 1999, 8 (Z1): 46-52.
    [175] Dabrowski A, Adsorption-from theory to practice, Advances in Colloid and Interface Science, 2001, 93: 135-224.
    [176] George W, Handbook of solvents, Toronto-New York: ChemTec Publishing, 2001.106
    [177] Otero M, Grande C A, Rodrigues A E, Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal, Reactive & Functional Polymers, 2004, 60: 203-213.
    [178] 李长海, 史鹏飞, 树脂法吸附分离β一萘磺酸废水过程及模拟, 哈尔滨工业大学学报, 2001, 33 (6): 807-811.
    [179] 王重, 史作清, 酚醛型吸附树脂吸附咖啡因的热力学研究, 离子交换与吸附, 2003, 19 (1): 23-30.
    [180] Yadava K P, Tyagi B S, Singh V N, Effect of temperature on the removal of lead(ii) by adsorption on china clay and wollastonite, Journal of Chemical Technology and Biotechnology, 1991, 51: 47-60.
    [181] Banerjee K, Cheremisinoff P N, Cheng S L, Adsorption kinetics of o-xylene by flyash, Water Research, 1997, 31: 249-261.
    [182] Chu B S, Baharin B S, Che Man Y B, et al., Separation of vitamin e from palm fatty acid distillate using silica: Ii kinetics of batch adsorption, Journal of Food Engineering, 2004, 62: 105-111.
    [183] Grzegorczyk D S, Carta G, Adsorption of amino acids on porous polymeric adsorbents ii. Intraparticle mass transfer, 1996, 51 (5): 819-826.
    [184] Namasivayam C, Ranganatban K, Removal of cd(ii) from waste water by adsorption on waste fe(iii)/cr(iii) hydroxide, Water Research, 1995, 29: 1737-1744.
    [185] Singh D B, Rupainwar D C, Prasad G, Studies on the removal of cr(iv) from waste-water by feldspar, Journal of Chemical Technology and Biotechnology, 1992, 53: 127-131.
    [186] Hulscher T E M, Cornelissen G, Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants - a review, Chemosphere, 1996, 32 (4): 609-626.
    [187] 马友光, 段志青, 朱春英等, 激光实时全息干涉法测量甘氨酸水溶液扩散系数, 应用激光, 2004, 24 (2): 99-101.
    [188] 苏雪丽, 史清洪, 吴玉龙等, 蛋白质在离子交换吸附剂颗粒中的扩散系数,化学工业与工程, 2005, 22 (5): 362-366.
    [189] Hahn R, Panzer M, Mass transfer properties of monoliths, Separation Science and Technology, 2002, 37 (7): 1545-1565.
    [190] Whitaker S, Difusionin packed beds of porous particles, AIChE Journal, 1988, 34 (4): 679- 683.
    [191] Hassan M M, Rahman K M S, Laughlin K F, Modelling of simulated moving bed adsorption system: A more precise approach, Separations Technology, 1995, 5: 77-89.
    [192] Hwang K S, Jun J H, Lee W K, Fixed-bed adsorption for bulk component system. Non-equilibrium, non-isothermal and non-adiabatic model, Chemical Engineering Science, 1995, 50 (5): 813-825.
    [193] Ramos A M, Otero M, Rodrigues A E, Recovery of vitamin b12 and cephalosporin-c from aqueous solutions by adsorption on non-ionic polymeric adsorbents, Separation and Purification Technology, 2004, 38: 85-98.
    [194] 王晟, 马正飞, 姚虎卿, 烷烃中芳烃的固定床吸附模拟, 高校化学工程学报, 2000, 14 (1): 65-70.
    [195] 李长海, 弱碱性阴离子树脂分离硫酸/2-萘磺酸/亚硫酸的研究(博士学位论文), 哈尔滨工业大学, 2003.85-87
    [196] Huang R T, Weng H S, Binary adsorption in a fixed-bed column packed with anion-exchange resin, Separation Science and Technology, 1995, 30 (13): 2371-2476.
    [197] 杨俊, 固定床吸附器的双组分溶液吸附流出曲线预测模型, 暨南大学学报(自然科学版), 1999, 20 (3): 82-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700